Module deepsport_utilities.court

Expand source code
from typing import NamedTuple

import cv2
import numpy as np

from calib3d import ProjectiveDrawer, Point2D, Point3D, Calib

court_dim = {
    "NBA": (2865.0, 1524.0),
    "FIBA": (2800.0, 1500.0),
    "NFHS30": (2560.32, 1524.0),
    "IH_IIHF": (6096.0, 2590.0),
    "NCAA15M": (2865.12, 1524.0),
    "NCAA15W": (2865.12, 1524.0),
    "NCAAM": (2865.12, 1524.0),
    "NCAAW": (2865.12, 1524.0),
}

court_types_from_rule_type = {
    "NFHS30":  "NFHS",
    "NCAA15M": "NCAA",
    "NCAA15W": "NCAA",
    "NCAAM":   "NCAA",
    "NCAAW":   "NCAA",
}


BALL_DIAMETER = 23

class CourtDefinition(NamedTuple):
    width: float
    height: float
    circle_diameter: float
    three_point_distance: float
    three_point_limit: float
    key_area_width: float
    key_area_length: float
    board_offset: float
    board_width: float
    board_height: float
    board_elevation: float
    rim_center_offset: float
    rim_height: float
    rim_radius: float
    no_charge_zone_radius: float
#                                                       KEY AREA
#                                                        width
#                                             <--------------------------->
#    +----------+----------------------------+-----------------------------+----------------------------+------------+
#    |          |                        ^   |     ^ BOARD            ^    |                            |            |
#    |          |                        |   |     | offset           | RIM                             |            |
#    |          |                        |   |     v   ------------   | offset                          |            |
#    |          |                        |   |            ( X )       v    |                            |            |
#    | 3-POINTS |                        |   |             ˘-\             |                            |            |
#    |  limit   |               KEY AREA |   |                \            |                            |            |
#    |<-------->|                lenght  |   |                 \           |                            |            |
#    |          |                        |   |                  \          |                            |            |
#    |           |                       |   |                   \         |                           |             |
#    |           |                       |   |                    \        |                           |             |
#    |            \                      |   |                     \       |                          /              |
#    |             |                     |   |                      \      |                         |               |
#    |              \                    v   |                       \     |                        /                |
#    |               \                       +-----+-----------------+\----+                       /                 |
#    |                 \                           |<--------------->| \                         /                   |
#    |                   '.                         \    CIRCLE d   /   \ 3-POINTS            .'                     |
#    |                     '-.                        '.         .'      \  dist           .-'                       |
#    |                        '-.                        `-----´          \             .-'                          |
#    |                           '--.                                      \        .--'                             |
#    |                               '--.                                   \   .--'                                 |
#    |                                   '---___                         ___-ˇ-'                                     |
#    |                                          ''-------_______-------''                                            |
#    |                                                                                                               |
# TODO: Warning /!\ Those numbers should be checked carefully if model rely on them
#                           |      COURT      | CIRCLE |    3-POINTS  |    KEY AREA    |          BOARD                      |        RIM        | NO_CHARGE
court_definitions = {     # | width  | height |   d    | dist , limit | width | length | offset | width | height | elevation | offset |  h  | r  | radius
    "FIBA":  CourtDefinition( 2800.0 , 1500.0 , 360.0  , 675  , 90.0  , 490.0 , 575.0  ,  122   ,  183  , 106.6  ,    290    , 160    , 305 , 23 , 125),
    "NBA":   CourtDefinition( 2865.1 , 1524.0 , 366.0  , 723.9, 90.0  , 488.0 , 575.0  ,  122   ,  183  , 106.6  ,    290    , 160    , 305 , 23 , 122),
    "NCAA":  CourtDefinition( 2865.1 , 1524.0 , 366.0  , 723.9, 90.0  , 488.0 , 575.0  ,  122   ,  183  , 106.6  ,    290    , 157.5  , 305 , 23 , 122),
    "NCAAW": CourtDefinition( 2865.1 , 1524.0 , 366.0  , 632  , 90.0  , 488.0 , 575.0  ,  122   ,  183  , 106.6  ,    290    , 157.5  , 305 , 23 , 122),
    "NFHS":  CourtDefinition( 2865.1 , 1524.0 , 366.0  , 602  , 160.0 , 488.0 , 574.0  ,  122   ,  183  , 106.6  ,    290    , 157.5  , 305 , 23 , 122)
}
# https://en.wikipedia.org/wiki/Basketball_court#Table
# https://en.wikipedia.org/wiki/Key_(basketball)

class Court():
    """ Defines the world 3D coordinates of a Basketball court.
        Please refer to calib.py if you want to obtain their 2D image coordinates
    """
    def __init__(self, rule_type="FIBA"):
        self.w, self.h = court_dim[rule_type]
        court_type = court_types_from_rule_type.get(rule_type, rule_type)
        self.court_definition = court_definitions[court_type]

    @property
    def corners(self):
        return Point3D([0,self.w, self.w,0],[0,0,self.h,self.h],[0,0,0,0])

    @property
    def edges(self):
        for c1, c2 in zip(self.corners, self.corners.close()[:,1:]):
            yield c1, c2

    def visible_edges(self, calib: Calib):
        for edge in self.edges:
            try:
                yield calib.visible_edge(edge)
            except ValueError:
                continue
    def projects_in(self, calib: Calib, point2D):
        point3D = calib.project_2D_to_3D(point2D, Z=0)
        return point3D.x >= 0 and point3D.x <= self.w and point3D.y >= 0 and point3D.y <= self.h

    def draw_rim(self, image, calib: Calib, color=(128,200,90), thickness=2):
        pd = ProjectiveDrawer(calib, color, thickness=thickness)
        offset = self.court_definition.rim_center_offset
        h = self.court_definition.rim_height
        r = self.court_definition.rim_radius
        pd.draw_arc(image, Point3D(offset, self.h/2, -h), r)
        pd.draw_arc(image, Point3D(self.w-offset, self.h/2, -h), r)

    def draw_poles(self, image, calib: Calib, color=(10,10,10)):
        pass

    def draw_net(self, image, calib: Calib, color=(128,90,200)):
        offset = self.court_definition.rim_center_offset
        r = self.court_definition.rim_radius
        angles = np.linspace(0, np.pi*2, 20)
        pd = ProjectiveDrawer(calib, color)
        for x in [offset, self.w-offset]: # two rims
            center = Point3D(x, self.h/2, -self.court_definition.rim_height)
            xts = np.cos(angles)*r + center.x
            yts = np.sin(angles)*r + center.y
            xbs = np.cos(angles)*r/2 + center.x
            ybs = np.sin(angles)*r/2 + center.y

            zs = np.ones_like(angles)*center.z
            points = Point3D([Point3D(x,y,z) for x,y,z in zip(np.concatenate((xts,xbs)),np.concatenate((yts,ybs)),np.concatenate((zs,zs+40)))])
            pd.polylines(image, points)

    def _get_three_points_anchors(self):
        def sign(value):
            return -1 if value < 0 else 1
        #    +----------+----------------------------+-----------------------------+----------------------------+------------+
        #    |          |                            |              ^              |                            |            |
        #    |          |                            |         RIM  |              |                            |            |
        #    |          |                            |       offset |              |                            |            |
        #    |          |                            |              v              |                            |            |
        #    |          |                            |       -----( X )            |                            |            |
        #    | 3-POINTS |                            | -------      ^              |                            |            |
        #    |  limit   |                      ------|-   |         |              |                            |            |
        #    |<-------->|               -------      |     \        |              |                            |            |
        #    |          |        -------   Z         |       '.     |              |                            |            |
        #    |           |-------                    |   alpha  `---|              |                           |             |
        #    |           |                           |              |              |                           |             |
        #    |            \                          |              | 3-POINTS     |                          /              |
        #    |             |                         |              |   dist       |                         |               |
        #    |              \                        |              |              |                        /                |
        #    |               \                       +-----+-----------------+-----+                       /                 |
        #    |                 \                           |        |        |                           /                   |
        #    |                   '.                         \       |       /                         .'                     |
        #    |                     '-.                        '.    |    .'                        .-'                       |
        #    |                        '-.                        `-----´                        .-'                          |
        #    |                           '--.                       |                       .--'                             |
        #    |                               '--.                   |                   .--'                                 |
        #    |                                   '---___            |            ___-ˇ-'                                     |
        #    |                                          ''-------___v____-------''                                           |
        #    |                                                                                                               |

        # The goal of this function is to determine the "alpha" angle (see illustration above).
        # alpha: angle (in radian) between a a line at the center of the court height, and where the 3-points arc meets the straight line (nearby the "3-POINTS limit" annotation here above)
        # Y: line from the center of the rim to the point where the 3-points arc meets the straight line (nearby the "3-POINTS limit" annotation here above)

        # See https://mathworld.wolfram.com/Circle-LineIntersection.html for terminology
        # Note that all the computation are done on a euclidean standard orthonormal basis (positive abscissa pointing to the right, positive ordinate pointing to the top)
        y1 = 0
        y2 = - self.w/2 # Arbitary point on the extension of the 3-points line
        x1 = -(self.h/2 - self.court_definition.three_point_limit) # Considers the center of the 3-points circle at (0, 0), with y-axis inverted
        x2 = x1
        dx = x2 - x1
        dy = y2 - y1
        dr = np.sqrt(dx**2 + dy**2)
        det = x1*y2 - x2*y1
        discriminant = (self.court_definition.three_point_distance**2) * (dr**2) - det**2
        assert discriminant >= 0 # Two points of intersection (one in the court, the other before the baseline) or 1 point intersection
        x_intersection = (det*dy + sign(dy)*dx*np.sqrt(discriminant)) / (dr**2)
        y_intersection = (-det*dx + abs(dy)*np.sqrt(discriminant)) / (dr**2)
        if y_intersection >= 0: # The estimated intersection is before the rim, compute the second intersection
            x_intersection = (det*dy - sign(dy)*dx*np.sqrt(discriminant)) / (dr**2)
            y_intersection = (-det*dx - abs(dy)*np.sqrt(discriminant)) / (dr**2)

        # Compute alpha, the angle between the Z line and the vertical "3-points dist" line
        Z_line_vector = [0 - 0, 0 + self.court_definition.three_point_distance]
        three_point_dist_line_vector = [0 - x_intersection, 0 - y_intersection]
        alpha = np.arccos(np.dot(Z_line_vector, three_point_dist_line_vector)/(np.linalg.norm(Z_line_vector)*np.linalg.norm(three_point_dist_line_vector)))

        return alpha, -y_intersection + self.court_definition.rim_center_offset

    def draw_lines(self, image, calib: Calib, color=(255,255,0), thickness=5):
        """
            If color is None, use incremental color
        """
        pd = ProjectiveDrawer(calib, color, thickness)

        N = 100 # maximum number of lines
        _color = iter(range(1, N)) if color is None else iter([color]*N)

        # draw court borders
        for edge in self.edges:#self.visible_edges(calib):
            pd.draw_line(image, edge[0], edge[1], color=next(_color))

        # draw midcourt-line
        pd.draw_line(image, Point3D(self.w/2,0,0), Point3D(self.w/2,self.h,0), color=next(_color))

        # draw central circle
        r = self.court_definition.circle_diameter/2
        pd.draw_arc(image, Point3D(self.w/2,self.h/2,0), r, color=next(_color))

        # draw paints
        w, l = self.court_definition.key_area_width, self.court_definition.key_area_length
        # left paint
        pd.draw_line(image, Point3D(0, self.h/2-w/2, 0), Point3D(l, self.h/2-w/2, 0), color=next(_color))
        pd.draw_line(image, Point3D(l, self.h/2-w/2, 0), Point3D(l, self.h/2+w/2, 0), color=next(_color))
        pd.draw_line(image, Point3D(0, self.h/2+w/2, 0), Point3D(l, self.h/2+w/2, 0), color=next(_color))
        pd.draw_arc(image, Point3D(l, self.h/2,0), r, -np.pi/2, np.pi/2, color=next(_color))
        # right paint
        pd.draw_line(image, Point3D(self.w, self.h/2-w/2, 0), Point3D(self.w-l, self.h/2-w/2, 0), color=next(_color))
        pd.draw_line(image, Point3D(self.w-l, self.h/2-w/2, 0), Point3D(self.w-l, self.h/2+w/2, 0), color=next(_color))
        pd.draw_line(image, Point3D(self.w, self.h/2+w/2, 0), Point3D(self.w-l, self.h/2+w/2, 0), color=next(_color))
        pd.draw_arc(image, Point3D(self.w-l,self.h/2,0), r, np.pi/2, 3*np.pi/2, color=next(_color))

        # draw 3-points line
        offset = self.court_definition.rim_center_offset
        r = self.court_definition.three_point_distance
        arc_rad, x_intersection = self._get_three_points_anchors()
        # left 3-points-line
        pd.draw_arc(image, Point3D(offset,self.h/2,0), r, -arc_rad, arc_rad, color=next(_color))
        pd.draw_line(image, Point3D(0,self.court_definition.three_point_limit,0), Point3D(x_intersection,self.court_definition.three_point_limit,0), color=next(_color))
        pd.draw_line(image, Point3D(0,self.h-self.court_definition.three_point_limit,0), Point3D(x_intersection,self.h-self.court_definition.three_point_limit,0), color=next(_color))
        # right 3-points-line
        pd.draw_arc(image, Point3D(self.w-offset,self.h/2,0), r, np.pi -arc_rad, np.pi + arc_rad, color=next(_color))
        pd.draw_line(image, Point3D(self.w,self.court_definition.three_point_limit,0), Point3D(self.w-x_intersection,self.court_definition.three_point_limit,0), color=next(_color))
        pd.draw_line(image, Point3D(self.w,self.h-self.court_definition.three_point_limit,0), Point3D(self.w-x_intersection,self.h-self.court_definition.three_point_limit,0), color=next(_color))

    def fill_court(self, image, calib, color=(255, 0, 255)):
        pd = ProjectiveDrawer(calib, color)
        pd.fill_polygon(image, self.corners)

    def fill_court_coordinates(self, image, calib):
        pass

    @property
    def left_key_area(self):
        """ Return the 3D coordinates of the 4 corners of the left key area
        """
        return Point3D([0, self.court_definition.key_area_length, self.court_definition.key_area_length, 0], # x
                       [self.h/2 - self.court_definition.key_area_width/2, self.h/2 - self.court_definition.key_area_width/2, self.h/2 + self.court_definition.key_area_width/2, self.h/2 + self.court_definition.key_area_width/2], # y
                       [0,0,0,0]) # z

    @property
    def right_key_area(self):
        """ Return the 3D coordinates of the 4 corners of the right key area
        """
        return Point3D([self.w - self.court_definition.key_area_length, self.w, self.w, self.w - self.court_definition.key_area_length], #x
                       [self.h/2 - self.court_definition.key_area_width/2,  self.h/2 - self.court_definition.key_area_width/2, self.h/2 + self.court_definition.key_area_width/2, self.h/2 + self.court_definition.key_area_width/2], # y
                       [0,0,0,0]) # z

    @property
    def left_board(self):
        """ Return the 3D coordinates of the 4 corners of the left basketball board (panel)
        """
        board_offset = self.court_definition.board_offset
        board_width = self.court_definition.board_width
        board_height = self.court_definition.board_height
        board_elevation = self.court_definition.board_elevation
        return Point3D([0+board_offset, 0+board_offset, 0+board_offset, 0+board_offset], # x
                       [self.h/2-board_width/2,self.h/2+board_width/2, self.h/2+board_width/2, self.h/2-board_width/2], # y
                       [-board_elevation, -board_elevation, -board_elevation-board_height, -board_elevation-board_height]) # z

    @property
    def right_board(self):
        """ Return the 3D coordinates of the 4 corners of the right basketball board (panel)
        """
        board_offset = self.court_definition.board_offset
        board_width = self.court_definition.board_width
        board_height = self.court_definition.board_height
        board_elevation = self.court_definition.board_elevation
        return Point3D([self.w-board_offset, self.w-board_offset, self.w-board_offset, self.w-board_offset], # x
                       [self.h/2-board_width/2,self.h/2+board_width/2, self.h/2+board_width/2, self.h/2-board_width/2], # y
                       [-board_elevation, -board_elevation, -board_elevation-board_height, -board_elevation-board_height]) # z

    def fill_board(self, image, calib: Calib, color=(128,255,128)):
        pd = ProjectiveDrawer(calib, color)
        pd.fill_polygon(image, self.left_board)
        pd.fill_polygon(image, self.right_board)

def sort_points_clockwise(data):
    assert data.size != 0, "Empty input data"
    mean = np.mean(data, axis=0) # center of mass of the points
    angles = np.arctan2((data-mean)[:, 1], (data-mean)[:, 0])
    angles[angles < 0] = angles[angles < 0] + 2 * np.pi # Transform angles from [-pi,pi] -> [0, 2*pi]
    return data[np.argsort(angles)]

Functions

def sort_points_clockwise(data)
Expand source code
def sort_points_clockwise(data):
    assert data.size != 0, "Empty input data"
    mean = np.mean(data, axis=0) # center of mass of the points
    angles = np.arctan2((data-mean)[:, 1], (data-mean)[:, 0])
    angles[angles < 0] = angles[angles < 0] + 2 * np.pi # Transform angles from [-pi,pi] -> [0, 2*pi]
    return data[np.argsort(angles)]

Classes

class Court (rule_type='FIBA')

Defines the world 3D coordinates of a Basketball court. Please refer to calib.py if you want to obtain their 2D image coordinates

Expand source code
class Court():
    """ Defines the world 3D coordinates of a Basketball court.
        Please refer to calib.py if you want to obtain their 2D image coordinates
    """
    def __init__(self, rule_type="FIBA"):
        self.w, self.h = court_dim[rule_type]
        court_type = court_types_from_rule_type.get(rule_type, rule_type)
        self.court_definition = court_definitions[court_type]

    @property
    def corners(self):
        return Point3D([0,self.w, self.w,0],[0,0,self.h,self.h],[0,0,0,0])

    @property
    def edges(self):
        for c1, c2 in zip(self.corners, self.corners.close()[:,1:]):
            yield c1, c2

    def visible_edges(self, calib: Calib):
        for edge in self.edges:
            try:
                yield calib.visible_edge(edge)
            except ValueError:
                continue
    def projects_in(self, calib: Calib, point2D):
        point3D = calib.project_2D_to_3D(point2D, Z=0)
        return point3D.x >= 0 and point3D.x <= self.w and point3D.y >= 0 and point3D.y <= self.h

    def draw_rim(self, image, calib: Calib, color=(128,200,90), thickness=2):
        pd = ProjectiveDrawer(calib, color, thickness=thickness)
        offset = self.court_definition.rim_center_offset
        h = self.court_definition.rim_height
        r = self.court_definition.rim_radius
        pd.draw_arc(image, Point3D(offset, self.h/2, -h), r)
        pd.draw_arc(image, Point3D(self.w-offset, self.h/2, -h), r)

    def draw_poles(self, image, calib: Calib, color=(10,10,10)):
        pass

    def draw_net(self, image, calib: Calib, color=(128,90,200)):
        offset = self.court_definition.rim_center_offset
        r = self.court_definition.rim_radius
        angles = np.linspace(0, np.pi*2, 20)
        pd = ProjectiveDrawer(calib, color)
        for x in [offset, self.w-offset]: # two rims
            center = Point3D(x, self.h/2, -self.court_definition.rim_height)
            xts = np.cos(angles)*r + center.x
            yts = np.sin(angles)*r + center.y
            xbs = np.cos(angles)*r/2 + center.x
            ybs = np.sin(angles)*r/2 + center.y

            zs = np.ones_like(angles)*center.z
            points = Point3D([Point3D(x,y,z) for x,y,z in zip(np.concatenate((xts,xbs)),np.concatenate((yts,ybs)),np.concatenate((zs,zs+40)))])
            pd.polylines(image, points)

    def _get_three_points_anchors(self):
        def sign(value):
            return -1 if value < 0 else 1
        #    +----------+----------------------------+-----------------------------+----------------------------+------------+
        #    |          |                            |              ^              |                            |            |
        #    |          |                            |         RIM  |              |                            |            |
        #    |          |                            |       offset |              |                            |            |
        #    |          |                            |              v              |                            |            |
        #    |          |                            |       -----( X )            |                            |            |
        #    | 3-POINTS |                            | -------      ^              |                            |            |
        #    |  limit   |                      ------|-   |         |              |                            |            |
        #    |<-------->|               -------      |     \        |              |                            |            |
        #    |          |        -------   Z         |       '.     |              |                            |            |
        #    |           |-------                    |   alpha  `---|              |                           |             |
        #    |           |                           |              |              |                           |             |
        #    |            \                          |              | 3-POINTS     |                          /              |
        #    |             |                         |              |   dist       |                         |               |
        #    |              \                        |              |              |                        /                |
        #    |               \                       +-----+-----------------+-----+                       /                 |
        #    |                 \                           |        |        |                           /                   |
        #    |                   '.                         \       |       /                         .'                     |
        #    |                     '-.                        '.    |    .'                        .-'                       |
        #    |                        '-.                        `-----´                        .-'                          |
        #    |                           '--.                       |                       .--'                             |
        #    |                               '--.                   |                   .--'                                 |
        #    |                                   '---___            |            ___-ˇ-'                                     |
        #    |                                          ''-------___v____-------''                                           |
        #    |                                                                                                               |

        # The goal of this function is to determine the "alpha" angle (see illustration above).
        # alpha: angle (in radian) between a a line at the center of the court height, and where the 3-points arc meets the straight line (nearby the "3-POINTS limit" annotation here above)
        # Y: line from the center of the rim to the point where the 3-points arc meets the straight line (nearby the "3-POINTS limit" annotation here above)

        # See https://mathworld.wolfram.com/Circle-LineIntersection.html for terminology
        # Note that all the computation are done on a euclidean standard orthonormal basis (positive abscissa pointing to the right, positive ordinate pointing to the top)
        y1 = 0
        y2 = - self.w/2 # Arbitary point on the extension of the 3-points line
        x1 = -(self.h/2 - self.court_definition.three_point_limit) # Considers the center of the 3-points circle at (0, 0), with y-axis inverted
        x2 = x1
        dx = x2 - x1
        dy = y2 - y1
        dr = np.sqrt(dx**2 + dy**2)
        det = x1*y2 - x2*y1
        discriminant = (self.court_definition.three_point_distance**2) * (dr**2) - det**2
        assert discriminant >= 0 # Two points of intersection (one in the court, the other before the baseline) or 1 point intersection
        x_intersection = (det*dy + sign(dy)*dx*np.sqrt(discriminant)) / (dr**2)
        y_intersection = (-det*dx + abs(dy)*np.sqrt(discriminant)) / (dr**2)
        if y_intersection >= 0: # The estimated intersection is before the rim, compute the second intersection
            x_intersection = (det*dy - sign(dy)*dx*np.sqrt(discriminant)) / (dr**2)
            y_intersection = (-det*dx - abs(dy)*np.sqrt(discriminant)) / (dr**2)

        # Compute alpha, the angle between the Z line and the vertical "3-points dist" line
        Z_line_vector = [0 - 0, 0 + self.court_definition.three_point_distance]
        three_point_dist_line_vector = [0 - x_intersection, 0 - y_intersection]
        alpha = np.arccos(np.dot(Z_line_vector, three_point_dist_line_vector)/(np.linalg.norm(Z_line_vector)*np.linalg.norm(three_point_dist_line_vector)))

        return alpha, -y_intersection + self.court_definition.rim_center_offset

    def draw_lines(self, image, calib: Calib, color=(255,255,0), thickness=5):
        """
            If color is None, use incremental color
        """
        pd = ProjectiveDrawer(calib, color, thickness)

        N = 100 # maximum number of lines
        _color = iter(range(1, N)) if color is None else iter([color]*N)

        # draw court borders
        for edge in self.edges:#self.visible_edges(calib):
            pd.draw_line(image, edge[0], edge[1], color=next(_color))

        # draw midcourt-line
        pd.draw_line(image, Point3D(self.w/2,0,0), Point3D(self.w/2,self.h,0), color=next(_color))

        # draw central circle
        r = self.court_definition.circle_diameter/2
        pd.draw_arc(image, Point3D(self.w/2,self.h/2,0), r, color=next(_color))

        # draw paints
        w, l = self.court_definition.key_area_width, self.court_definition.key_area_length
        # left paint
        pd.draw_line(image, Point3D(0, self.h/2-w/2, 0), Point3D(l, self.h/2-w/2, 0), color=next(_color))
        pd.draw_line(image, Point3D(l, self.h/2-w/2, 0), Point3D(l, self.h/2+w/2, 0), color=next(_color))
        pd.draw_line(image, Point3D(0, self.h/2+w/2, 0), Point3D(l, self.h/2+w/2, 0), color=next(_color))
        pd.draw_arc(image, Point3D(l, self.h/2,0), r, -np.pi/2, np.pi/2, color=next(_color))
        # right paint
        pd.draw_line(image, Point3D(self.w, self.h/2-w/2, 0), Point3D(self.w-l, self.h/2-w/2, 0), color=next(_color))
        pd.draw_line(image, Point3D(self.w-l, self.h/2-w/2, 0), Point3D(self.w-l, self.h/2+w/2, 0), color=next(_color))
        pd.draw_line(image, Point3D(self.w, self.h/2+w/2, 0), Point3D(self.w-l, self.h/2+w/2, 0), color=next(_color))
        pd.draw_arc(image, Point3D(self.w-l,self.h/2,0), r, np.pi/2, 3*np.pi/2, color=next(_color))

        # draw 3-points line
        offset = self.court_definition.rim_center_offset
        r = self.court_definition.three_point_distance
        arc_rad, x_intersection = self._get_three_points_anchors()
        # left 3-points-line
        pd.draw_arc(image, Point3D(offset,self.h/2,0), r, -arc_rad, arc_rad, color=next(_color))
        pd.draw_line(image, Point3D(0,self.court_definition.three_point_limit,0), Point3D(x_intersection,self.court_definition.three_point_limit,0), color=next(_color))
        pd.draw_line(image, Point3D(0,self.h-self.court_definition.three_point_limit,0), Point3D(x_intersection,self.h-self.court_definition.three_point_limit,0), color=next(_color))
        # right 3-points-line
        pd.draw_arc(image, Point3D(self.w-offset,self.h/2,0), r, np.pi -arc_rad, np.pi + arc_rad, color=next(_color))
        pd.draw_line(image, Point3D(self.w,self.court_definition.three_point_limit,0), Point3D(self.w-x_intersection,self.court_definition.three_point_limit,0), color=next(_color))
        pd.draw_line(image, Point3D(self.w,self.h-self.court_definition.three_point_limit,0), Point3D(self.w-x_intersection,self.h-self.court_definition.three_point_limit,0), color=next(_color))

    def fill_court(self, image, calib, color=(255, 0, 255)):
        pd = ProjectiveDrawer(calib, color)
        pd.fill_polygon(image, self.corners)

    def fill_court_coordinates(self, image, calib):
        pass

    @property
    def left_key_area(self):
        """ Return the 3D coordinates of the 4 corners of the left key area
        """
        return Point3D([0, self.court_definition.key_area_length, self.court_definition.key_area_length, 0], # x
                       [self.h/2 - self.court_definition.key_area_width/2, self.h/2 - self.court_definition.key_area_width/2, self.h/2 + self.court_definition.key_area_width/2, self.h/2 + self.court_definition.key_area_width/2], # y
                       [0,0,0,0]) # z

    @property
    def right_key_area(self):
        """ Return the 3D coordinates of the 4 corners of the right key area
        """
        return Point3D([self.w - self.court_definition.key_area_length, self.w, self.w, self.w - self.court_definition.key_area_length], #x
                       [self.h/2 - self.court_definition.key_area_width/2,  self.h/2 - self.court_definition.key_area_width/2, self.h/2 + self.court_definition.key_area_width/2, self.h/2 + self.court_definition.key_area_width/2], # y
                       [0,0,0,0]) # z

    @property
    def left_board(self):
        """ Return the 3D coordinates of the 4 corners of the left basketball board (panel)
        """
        board_offset = self.court_definition.board_offset
        board_width = self.court_definition.board_width
        board_height = self.court_definition.board_height
        board_elevation = self.court_definition.board_elevation
        return Point3D([0+board_offset, 0+board_offset, 0+board_offset, 0+board_offset], # x
                       [self.h/2-board_width/2,self.h/2+board_width/2, self.h/2+board_width/2, self.h/2-board_width/2], # y
                       [-board_elevation, -board_elevation, -board_elevation-board_height, -board_elevation-board_height]) # z

    @property
    def right_board(self):
        """ Return the 3D coordinates of the 4 corners of the right basketball board (panel)
        """
        board_offset = self.court_definition.board_offset
        board_width = self.court_definition.board_width
        board_height = self.court_definition.board_height
        board_elevation = self.court_definition.board_elevation
        return Point3D([self.w-board_offset, self.w-board_offset, self.w-board_offset, self.w-board_offset], # x
                       [self.h/2-board_width/2,self.h/2+board_width/2, self.h/2+board_width/2, self.h/2-board_width/2], # y
                       [-board_elevation, -board_elevation, -board_elevation-board_height, -board_elevation-board_height]) # z

    def fill_board(self, image, calib: Calib, color=(128,255,128)):
        pd = ProjectiveDrawer(calib, color)
        pd.fill_polygon(image, self.left_board)
        pd.fill_polygon(image, self.right_board)

Instance variables

var corners
Expand source code
@property
def corners(self):
    return Point3D([0,self.w, self.w,0],[0,0,self.h,self.h],[0,0,0,0])
var edges
Expand source code
@property
def edges(self):
    for c1, c2 in zip(self.corners, self.corners.close()[:,1:]):
        yield c1, c2
var left_board

Return the 3D coordinates of the 4 corners of the left basketball board (panel)

Expand source code
@property
def left_board(self):
    """ Return the 3D coordinates of the 4 corners of the left basketball board (panel)
    """
    board_offset = self.court_definition.board_offset
    board_width = self.court_definition.board_width
    board_height = self.court_definition.board_height
    board_elevation = self.court_definition.board_elevation
    return Point3D([0+board_offset, 0+board_offset, 0+board_offset, 0+board_offset], # x
                   [self.h/2-board_width/2,self.h/2+board_width/2, self.h/2+board_width/2, self.h/2-board_width/2], # y
                   [-board_elevation, -board_elevation, -board_elevation-board_height, -board_elevation-board_height]) # z
var left_key_area

Return the 3D coordinates of the 4 corners of the left key area

Expand source code
@property
def left_key_area(self):
    """ Return the 3D coordinates of the 4 corners of the left key area
    """
    return Point3D([0, self.court_definition.key_area_length, self.court_definition.key_area_length, 0], # x
                   [self.h/2 - self.court_definition.key_area_width/2, self.h/2 - self.court_definition.key_area_width/2, self.h/2 + self.court_definition.key_area_width/2, self.h/2 + self.court_definition.key_area_width/2], # y
                   [0,0,0,0]) # z
var right_board

Return the 3D coordinates of the 4 corners of the right basketball board (panel)

Expand source code
@property
def right_board(self):
    """ Return the 3D coordinates of the 4 corners of the right basketball board (panel)
    """
    board_offset = self.court_definition.board_offset
    board_width = self.court_definition.board_width
    board_height = self.court_definition.board_height
    board_elevation = self.court_definition.board_elevation
    return Point3D([self.w-board_offset, self.w-board_offset, self.w-board_offset, self.w-board_offset], # x
                   [self.h/2-board_width/2,self.h/2+board_width/2, self.h/2+board_width/2, self.h/2-board_width/2], # y
                   [-board_elevation, -board_elevation, -board_elevation-board_height, -board_elevation-board_height]) # z
var right_key_area

Return the 3D coordinates of the 4 corners of the right key area

Expand source code
@property
def right_key_area(self):
    """ Return the 3D coordinates of the 4 corners of the right key area
    """
    return Point3D([self.w - self.court_definition.key_area_length, self.w, self.w, self.w - self.court_definition.key_area_length], #x
                   [self.h/2 - self.court_definition.key_area_width/2,  self.h/2 - self.court_definition.key_area_width/2, self.h/2 + self.court_definition.key_area_width/2, self.h/2 + self.court_definition.key_area_width/2], # y
                   [0,0,0,0]) # z

Methods

def draw_lines(self, image, calib: calib3d.calib.Calib, color=(255, 255, 0), thickness=5)

If color is None, use incremental color

Expand source code
def draw_lines(self, image, calib: Calib, color=(255,255,0), thickness=5):
    """
        If color is None, use incremental color
    """
    pd = ProjectiveDrawer(calib, color, thickness)

    N = 100 # maximum number of lines
    _color = iter(range(1, N)) if color is None else iter([color]*N)

    # draw court borders
    for edge in self.edges:#self.visible_edges(calib):
        pd.draw_line(image, edge[0], edge[1], color=next(_color))

    # draw midcourt-line
    pd.draw_line(image, Point3D(self.w/2,0,0), Point3D(self.w/2,self.h,0), color=next(_color))

    # draw central circle
    r = self.court_definition.circle_diameter/2
    pd.draw_arc(image, Point3D(self.w/2,self.h/2,0), r, color=next(_color))

    # draw paints
    w, l = self.court_definition.key_area_width, self.court_definition.key_area_length
    # left paint
    pd.draw_line(image, Point3D(0, self.h/2-w/2, 0), Point3D(l, self.h/2-w/2, 0), color=next(_color))
    pd.draw_line(image, Point3D(l, self.h/2-w/2, 0), Point3D(l, self.h/2+w/2, 0), color=next(_color))
    pd.draw_line(image, Point3D(0, self.h/2+w/2, 0), Point3D(l, self.h/2+w/2, 0), color=next(_color))
    pd.draw_arc(image, Point3D(l, self.h/2,0), r, -np.pi/2, np.pi/2, color=next(_color))
    # right paint
    pd.draw_line(image, Point3D(self.w, self.h/2-w/2, 0), Point3D(self.w-l, self.h/2-w/2, 0), color=next(_color))
    pd.draw_line(image, Point3D(self.w-l, self.h/2-w/2, 0), Point3D(self.w-l, self.h/2+w/2, 0), color=next(_color))
    pd.draw_line(image, Point3D(self.w, self.h/2+w/2, 0), Point3D(self.w-l, self.h/2+w/2, 0), color=next(_color))
    pd.draw_arc(image, Point3D(self.w-l,self.h/2,0), r, np.pi/2, 3*np.pi/2, color=next(_color))

    # draw 3-points line
    offset = self.court_definition.rim_center_offset
    r = self.court_definition.three_point_distance
    arc_rad, x_intersection = self._get_three_points_anchors()
    # left 3-points-line
    pd.draw_arc(image, Point3D(offset,self.h/2,0), r, -arc_rad, arc_rad, color=next(_color))
    pd.draw_line(image, Point3D(0,self.court_definition.three_point_limit,0), Point3D(x_intersection,self.court_definition.three_point_limit,0), color=next(_color))
    pd.draw_line(image, Point3D(0,self.h-self.court_definition.three_point_limit,0), Point3D(x_intersection,self.h-self.court_definition.three_point_limit,0), color=next(_color))
    # right 3-points-line
    pd.draw_arc(image, Point3D(self.w-offset,self.h/2,0), r, np.pi -arc_rad, np.pi + arc_rad, color=next(_color))
    pd.draw_line(image, Point3D(self.w,self.court_definition.three_point_limit,0), Point3D(self.w-x_intersection,self.court_definition.three_point_limit,0), color=next(_color))
    pd.draw_line(image, Point3D(self.w,self.h-self.court_definition.three_point_limit,0), Point3D(self.w-x_intersection,self.h-self.court_definition.three_point_limit,0), color=next(_color))
def draw_net(self, image, calib: calib3d.calib.Calib, color=(128, 90, 200))
Expand source code
def draw_net(self, image, calib: Calib, color=(128,90,200)):
    offset = self.court_definition.rim_center_offset
    r = self.court_definition.rim_radius
    angles = np.linspace(0, np.pi*2, 20)
    pd = ProjectiveDrawer(calib, color)
    for x in [offset, self.w-offset]: # two rims
        center = Point3D(x, self.h/2, -self.court_definition.rim_height)
        xts = np.cos(angles)*r + center.x
        yts = np.sin(angles)*r + center.y
        xbs = np.cos(angles)*r/2 + center.x
        ybs = np.sin(angles)*r/2 + center.y

        zs = np.ones_like(angles)*center.z
        points = Point3D([Point3D(x,y,z) for x,y,z in zip(np.concatenate((xts,xbs)),np.concatenate((yts,ybs)),np.concatenate((zs,zs+40)))])
        pd.polylines(image, points)
def draw_poles(self, image, calib: calib3d.calib.Calib, color=(10, 10, 10))
Expand source code
def draw_poles(self, image, calib: Calib, color=(10,10,10)):
    pass
def draw_rim(self, image, calib: calib3d.calib.Calib, color=(128, 200, 90), thickness=2)
Expand source code
def draw_rim(self, image, calib: Calib, color=(128,200,90), thickness=2):
    pd = ProjectiveDrawer(calib, color, thickness=thickness)
    offset = self.court_definition.rim_center_offset
    h = self.court_definition.rim_height
    r = self.court_definition.rim_radius
    pd.draw_arc(image, Point3D(offset, self.h/2, -h), r)
    pd.draw_arc(image, Point3D(self.w-offset, self.h/2, -h), r)
def fill_board(self, image, calib: calib3d.calib.Calib, color=(128, 255, 128))
Expand source code
def fill_board(self, image, calib: Calib, color=(128,255,128)):
    pd = ProjectiveDrawer(calib, color)
    pd.fill_polygon(image, self.left_board)
    pd.fill_polygon(image, self.right_board)
def fill_court(self, image, calib, color=(255, 0, 255))
Expand source code
def fill_court(self, image, calib, color=(255, 0, 255)):
    pd = ProjectiveDrawer(calib, color)
    pd.fill_polygon(image, self.corners)
def fill_court_coordinates(self, image, calib)
Expand source code
def fill_court_coordinates(self, image, calib):
    pass
def projects_in(self, calib: calib3d.calib.Calib, point2D)
Expand source code
def projects_in(self, calib: Calib, point2D):
    point3D = calib.project_2D_to_3D(point2D, Z=0)
    return point3D.x >= 0 and point3D.x <= self.w and point3D.y >= 0 and point3D.y <= self.h
def visible_edges(self, calib: calib3d.calib.Calib)
Expand source code
def visible_edges(self, calib: Calib):
    for edge in self.edges:
        try:
            yield calib.visible_edge(edge)
        except ValueError:
            continue
class CourtDefinition (width: float, height: float, circle_diameter: float, three_point_distance: float, three_point_limit: float, key_area_width: float, key_area_length: float, board_offset: float, board_width: float, board_height: float, board_elevation: float, rim_center_offset: float, rim_height: float, rim_radius: float, no_charge_zone_radius: float)

CourtDefinition(width, height, circle_diameter, three_point_distance, three_point_limit, key_area_width, key_area_length, board_offset, board_width, board_height, board_elevation, rim_center_offset, rim_height, rim_radius, no_charge_zone_radius)

Expand source code
class CourtDefinition(NamedTuple):
    width: float
    height: float
    circle_diameter: float
    three_point_distance: float
    three_point_limit: float
    key_area_width: float
    key_area_length: float
    board_offset: float
    board_width: float
    board_height: float
    board_elevation: float
    rim_center_offset: float
    rim_height: float
    rim_radius: float
    no_charge_zone_radius: float

Ancestors

  • builtins.tuple

Instance variables

var board_elevation : float

Alias for field number 10

var board_height : float

Alias for field number 9

var board_offset : float

Alias for field number 7

var board_width : float

Alias for field number 8

var circle_diameter : float

Alias for field number 2

var height : float

Alias for field number 1

var key_area_length : float

Alias for field number 6

var key_area_width : float

Alias for field number 5

var no_charge_zone_radius : float

Alias for field number 14

var rim_center_offset : float

Alias for field number 11

var rim_height : float

Alias for field number 12

var rim_radius : float

Alias for field number 13

var three_point_distance : float

Alias for field number 3

var three_point_limit : float

Alias for field number 4

var width : float

Alias for field number 0