Journal of Statistical Software

August 2018, Volume 86, Issue 7. doi: 10.18637/jss.v086.7i07

DNest4: Diffusive Nested Sampling in C++
and Python

Brendon J. Brewer Daniel Foreman-Mackey
The University of Auckland University of Washington
Flatiron Institute

Abstract

In probabilistic (Bayesian) inferences, we typically want to compute properties of
the posterior distribution, describing knowledge of unknown quantities in the context of
a particular dataset and the assumed prior information. The marginal likelihood, also
known as the “evidence”, is a key quantity in Bayesian model selection. The diffusive
nested sampling algorithm, a variant of nested sampling, is a powerful tool for generating
posterior samples and estimating marginal likelihoods. It is effective at solving complex
problems including many where the posterior distribution is multimodal or has strong
dependencies between variables. DNest4 is an open source (MIT licensed), multi-threaded
implementation of this algorithm in C+411, along with associated utilities including:
(i) ‘RIObject’, a class template for finite mixture models; and (ii) a Python package
allowing basic use without C++ coding. In this paper we demonstrate DNest4 usage
through examples including simple Bayesian data analysis, finite mixture models, and
approximate Bayesian computation.

Keywords: Bayesian inference, Markov chain Monte Carlo, Metropolis algorithm, Bayesian
computation, nested sampling, C++11, Python.

1. Introduction

Bayesian inference, where probability theory describes degrees of logical implication or subjec-
tive certainty, provides a powerful general basis for data analysis (O’Hagan and Forster 2004;
Sivia and Skilling 2006). The result of such an analysis is typically posterior probabilities
of various hypotheses, or a joint posterior probability distribution for the values of unknown
parameters. Throughout this paper we denote probability distributions using a lower case p
and probabilities with an upper case P.

In a standard Bayesian inference situation, the posterior distribution for parameters 6 given

https://doi.org/10.18637/jss.v086.i07

2 DNest4: Diffusive Nested Sampling in C++ and Python

data D, within the context of prior information M, is

p(0|M)p(DI6, M)
p(D|M)

p(0|D, M) =

or

prior x likelihood

terior = .
DOSLEHOT marginal likelihood

If prior information I (dropped hereafter) implies a set of possible “models” {M;}, rather
than a single one M, the posterior model probabilities are given by

_ P(My)p(D|M;)
P(M;|D) = > P(M;)p(D|M;)’

where
p(DIM;) = [p(0;120,)p(DI6;, M;) db,

is the marginal likelihood of model j, equal to the expected value of the likelihood function
with respect to the prior distribution. This kind of calculation is often called “model selection”
or “model averaging”, and the results are often presented as ratios of marginal likelihoods,
known as Bayes factors. When discussing computational matters, the prior distribution for
parameters is often written 7(6), the likelihood L(6), and the marginal likelihood Z. A
popular alternative name for the marginal likelihood, which emphasizes its role in Bayesian
model averaging, is the “evidence”.

Nested sampling (NS; Skilling 2006) is a Monte Carlo method whose main aim is to calculate
Z. However, it can also be used to generate samples to represent the posterior distribution
m(0)L(0)/Z, or any other distribution proportional to m(0)® [L(6)] where ® is any monotonic
function. This latter property makes nested sampling particularly useful for statistical me-
chanics calculations (Partay, Bartok, and Csanyi 2010; Baldock, Péartay, Barték, Payne, and
Csényi 2016), where the “canonical” family of distributions proportional to 7(6)L(6)" is of
interest. In such applications, L(#) is usually equivalent to exp(—energy). Nested sampling
is particularly efficient for this, since only a single run (exploring regions of higher and higher
L) is needed, and different canonical distributions can be obtained by re-weighting the output
points.

A defining feature of nested sampling is that it works with a sequence of constrained prior
distributions, proportional to 7 but restricted to regions of the parameter space where L(0)
is above some threshold ¢:

EIOIORY)
a X(0) ’

p(0;4) (1)

where
X(0) = /7r(9)]l IL(6) > 1] db

is the amount of prior mass which has likelihood greater than ¢, and 1() is the indicator
function which takes the value 1 if the argument is true and 0 otherwise. In the standard

Journal of Statistical Software 3

nested sampling framework, the sequence of £ values is selected so that X (¢) shrinks by a factor
~ e 1/N per iteration, where N is the number of particles used. This geometric compression
of the parameter space is a defining feature of nested sampling.

Sampling from the constrained priors (Equation 1) is required, and Markov chain Monte Carlo
(MCMC) is a popular method of doing this, although alternatives exist (e.g., Feroz, Hobson,
and Bridges 2009; Handley, Hobson, and Lasenby 2015). Diffusive nested sampling (DNS;
Brewer, Partay, and Csanyi 2011) is an alternative to nested sampling for problems where
MCMC is the only viable sampling method. DNS is based on the Metropolis algorithm, and
evolves one or more particles in the parameter space, along with an integer index variable j
for each particle, to explore the following joint distribution:

p(0,7) = p(H)p(0l5)

o TO1)[{L((Z; > 4] -

where the {/;} are a sequence of increasing likelihood thresholds or levels, £y = 0, and {w,}
is the marginal distribution for j. The marginal distribution for 6 is then a mizture of
constrained priors:

max |
) =n(0)y, LD 0

J=0

The DNS algorithm consists of two stages. In the first stage, the particle(s) are initialized
from the prior 7(f), equivalent to the mixture of constrained priors with a single level whose
log-likelihood threshold is —oco. The mixture of constrained priors evolves by adding new
levels, each of which compresses the distribution by a factor of about e ~ 2.71818 (see Brewer
et al. (2011) for details). In this stage, the mixture weights {w;} are set according to

wj o< exp(j/A), (4)

where A is a scale length. This enhances the probability that particles stay close to the
highest likelihood regions seen. The second stage sets the mixture weights to be approximately
uniform (w; o< 1), with some tweaks described by Brewer et al. (2011).

The mixture of constrained priors tends to be easier to sample than the posterior, as the
prior is always a mixture component, allowing the MCMC chain to mix between different
modes in some circumstances. The marginal likelihood estimate can also be more accurate
than standard MCMC-based nested sampling (Brewer et al. 2011), as less information is
discarded. DNS has been applied several times in astrophysics (e.g., Pancoast, Brewer, and
Treu 2014; Huppenkothen et al. 2015; Brewer and Donovan 2015) and was recently used in a
biological application (Dybowski, Restif, Goupy, Maskell, Mastroeni, and Grant 2015).

There are several ways of using DNest4. After installing the software (Section 4), you can
implement a model as a C++ class (Section 8) and compile it to create an executable file to
run DNest4 on that problem. This method offers full control over the design of your class,
and allows the opportunity of optimizing performance by preventing a full re-computation of
the log-likelihood when only a subset of the parameters has been changed.

Alternatively, the Python (Van Rossum et al. 2011) bindings (Section 11) allow you to specify

a model class in Python, and run DNest4 entirely in the Python interpreter without having
to invoke the C4++ compiler.

4 DNest4: Diffusive Nested Sampling in C++ and Python

2. Relation to other algorithms

The diffusive nested sampling algorithm, and its implementation in DNest4, has advantages
and disadvantages compared to other Bayesian computation algorithms and software.

In the nested sampling sphere, the simple C implementation given by Skilling (2006) is useful
for understanding the classic nested sampling algorithm. Similarly to DNest4, it is the user’s
responsibility to implement the MCMC moves used. The DNS algorithm produces more
accurate estimates of Z and ought to outperform classic nested sampling on multimodal
problems.

MultiNest (Feroz et al. 2009) is a Fortran nested sampling implementation that dispenses with
MCMC for generating new particles from constrained prior distributions. Instead, the new
particles are generated by making an approximation to the constrained prior using ellipsoids.
This tends to work well in low to moderate dimensional parameter spaces (up to ~ 40).
In higher dimensions, DNest4 is more useful than MultiNest since it is based on MCMC.
We expect MultiNest to be more useful than DNest4 only on low to moderate dimensional
problems with slow likelihood evaluations, where DNest4’s reliance on MCMC becomes costly.
The more recent POLYCHORD (Handley et al. 2015) combines MultiNest-like methods with
MCMC.

Outside of nested sampling, the popular JAGS (Plummer 2003) and Stan (Carpenter et al.
2017) packages are more convenient than DNest4 for specifying models, by virtue of their
model-specification languages. For users who are interested only in the posterior distribution
and do not need the marginal likelihood, these are very useful. However, being based on Gibbs
sampling and Hamiltonian MCMC respectively, they can run into difficulty on multimodal
posterior distributions.

emcee (Foreman-Mackey, Hogg, Lang, and Goodman 2013) is a popular Python package for
MCMC based on affine-invariant ensemble sampling. The user needs only to specify a Python
function evaluating the log of the posterior density (up to a normalizing constant). This user-
friendliness is a key advantage of emcee, and its algorithm performs well on low to moderate
dimensional (up to ~ 50) parameter spaces with a unimodel target distribution (which can
be highly dependent). However, it can give misleading results in higher dimensions (Huijser,
Goodman, and Brewer 2015).

Algorithms based on “annealing” or “tempering”, such as parallel tempering (Hansmann
1997) and annealed importance sampling (Neal 2001) are related to nested sampling and are
useful on multimodal posterior distributions. However, they require much more tuning than

Package Easy to High Multimodal Dependent Phase Computes Z7
implement dimensions? distributions? distributions? changes?
models?
DNest4 v v v v v
emcee v v
JAGS v v
MultiNest v v v v v
Stan v v v

Table 1: A simplified summary of the advantages and disadvantages of some Bayesian com-
putation software packages.

Journal of Statistical Software

nested sampling (in the form of an annealing schedule) and do not work on phase change
problems, unlike nested sampling (Skilling 2006).

The advantages and disadvantages of a subset of these packages are summarized in Table 1.

3. Markov chain Monte Carlo

DNS is build upon the Metropolis-Hastings algorithm. In this algorithm, the acceptance
probability « is given by

o = min (1,80 TV L)

q(016") w(0) L(6)

where ¢(6']0) is the proposal distribution used to generate a new position 6’ from the current
position 0. Often, g is symmetric so that the ¢ terms cancel in the acceptance probability.
In DNS, the target distribution is not the posterior but rather the joint distribution in Equa-
tion 2. Moves of 0 are done keeping j fixed, so we only need to consider the Metropolis
acceptance probability for fixed j, i.e., with respect to a single constrained prior like Equa-
tion 1. Hence, the appropriate acceptance probability for a proposed move from 6 to ¢’
is

q(0'6) m(6")
"q(616") m(0)
where ¢; is the likelihood threshold for the current level j. There are also moves that propose
a change to j while keeping 6 fixed, but the details are less relevant to the user.

a =min |1

L(L(O") > ¢;) | , (5)

For convenience later on, we separate the prior and proposal-related terms from the likelihood-
related term, and write the former as

The logarithm of H,

@) ()
In(H) =In [qu/))

is the user’s responsibility when implementing models, and will become relevant in Sections 8.2
and 8.3. In terms of In(H), the acceptance probability becomes

a = min {1,61H(H) x 1 (L) > Ej)} . (6)

4. Dependencies and installation

The following instructions apply to Unix-like operating systems such as GNU/Linux, Mac
OS X, and FreeBSD. Currently we have not tested DNest4 on Microsoft Windows.

Development of DNest4 takes place in the git repository located at https://github.com/
eggplantbren/DNest4/. The software is licensed under the permissive open source MIT

https://github.com/eggplantbren/DNest4/
https://github.com/eggplantbren/DNest4/

6 DNest4: Diffusive Nested Sampling in C++ and Python

license. To compile and run DNest4, you require a recent version of the GNU C++ compiler,
g++ (GCC 2016). DNest4 uses features from the C++11 standard (Stroustrup 2013).

The Python packages NumPy (Van der Walt, Colbert, and Varoquaux 2011), matplotlib
(Hunter 2007), Numba (Lam, Pitrou, and Seibert 2015), and Cython (Behnel, Bradshaw,
Citro, Dalcin, Seljebotn, and Smith 2011) are also needed. To download and compile DNest4
the following steps are sufficient:

$ wget https://github.com/eggplantbren/DNest4/archive/0.2.3.tar.gz
$ tar xvzf 0.2.3.tar.gz

$ mv DNest4-0.2.3 DNest4

$ cd DNest4/code

$ make

$ cd ../python

$ python setup.py install

In Mac OS X, the final line (which installs the Python parts of DNest4) needs to provide
information about your OS version. For example, if your computer runs Mac OS X 10.9, the
installation command for the Python package is:

$ MACOSX_DEPLOYMENT TARGET=10.9 python setup.py install

We recommend to create an environment variable called DNEST4_PATH and set it to the direc-
tory above the DNest4 directory. Then, if the model templates from the DNest4 repository
are copied to any other location on your system and used as the basis for new work, their
Makefiles will continue to function.

5. Running DNest4

To demonstrate DNest4, we will use a simple linear regression example where the sampling
distribution is

yilm,b,o ~ Normal(mz; + b, o%)
and the priors are

m ~ Normal(0, 1000%),
b ~ Normal(0, 1000?),
In o ~ Uniform(—10, 10).

These are naive diffuse priors and do not have any special status. The dataset is shown in
Figure 2 on the right and the code is included in the code/Examples/StraightLine subdi-
rectory, and a slightly simplified version of the code is explained in Section 8. To execute
DNest4 on this problem, go to this directory and execute main. The output to the screen
should contain information about levels and “saving particles to disk”. After 10,000 particles
have been saved to the disk, the run will terminate.

Journal of Statistical Software

6. Output files

The executable main is responsible for the exploration part of the DNS algorithm (i.e., running
the MCMC chain, building levels, and then exploring all the levels). It creates three text
output files, sample.txt, sample_info.txt, and levels.txt.

The first output file, sample.txt, contains a sampling of parameter values that represents
the mizture of constrained priors (the target distribution used in DNS), not the posterior
distribution. Each line of sample.txt represents a point in parameter space. In the linear
example, there are three parameters (m, b, and ¢); so there are three columns in sample.txt.
Each time a point is saved to sample.txt, DNest4 prints the message “Saving a particle to
disk. N =..."

The second output file, sample_info.txt, should have the same number of rows as the
file sample.txt, because it contains metadata about the samples in sample.txt. The first
column is the index j, which tells us which “level” the particle was in when it was saved. Level
0 represents the prior, and higher levels represent more constrained versions of the prior. The
second column is the log-likelihood value, and the third column is the likelihood “tiebreaker”,
which allows nested sampling to work when there is a region in parameter space with nonzero
prior probability where the likelihood is constant. The final column tells us which thread the
particle belonged to: when you use DNest4 in multithreaded mode (see Appendix A), each
thread is responsible for evolving one or more particles.

The third output file, levels.txt, contains information about the levels that were built
during the run. The first column has estimates of the log(X) values of the levels, i.e., how
compressed they are relative to the prior, in units of nats. For example, if a level has log(X) =
—1.02, its likelihood value encloses exp(—1.02) ~ 36.1% of the prior mass.

The second column contains the log-likelihoods of the levels. The first level, with a log(X)
value of 0 and a log-likelihood of —103% (basically “minus infinity”), is simply the prior. The
third column has the “tiebreaker” values for the levels, which again are not particularly useful
unless your problem has likelihood plateaus. The fourth and fifth columns are the number of
accepted proposals and the total number of proposals that have occurred within each level,
which are useful for monitoring the Metropolis acceptance ratio as a function of level. The
final two columns, called “exceeds”, and “visits”, are used to refine the estimates of the level
compressions (and hence the log(X) values of the levels in column 1), as discussed in Section 3
of Brewer et al. (2011). The visits column counts the number of times a level (level j, say)
has been visited, but only starts counting after the next level (j + 1) has been created. The
exceeds column counts the number of times a particle that was in level j had a likelihood
that exceeded that of level j + 1.

7. Post-processing

The output files themselves are typically not immediately useful. The goal of running nested
sampling is usually to obtain posterior samples and the marginal likelihood Z, whereas
sample.txt only contains samples from the mixture of constrained priors. Additional post-
processing is required. This can be achieved by running the following Python function®:

! Alternatively, the file showresults.py in the example directory runs this function, and then calls the code
in display.py to create a further plot shown in Figure 2 on the right.

8 DNest4: Diffusive Nested Sampling in C++ and Python

50 A 0.0 4
c —0.5
2 AN
40 ﬁ—l.o \/--—V/\u S
Q
E-15
o
30 ~2.07
> ———————=
H 0 10 20 30 40 50
4 1.0
204
0 0.8
o
s
206
10 S
£04
= 0.2
0 T + T r T T T T 0.0 +— . T T T T
0 50 100 150 200 250 300 350 400 0 10 20 30 40 50
Iteration Level

Figure 1: Left: The level j of the saved particles over time. Typically, this will trend up-
wards until all the levels have been created, and then diffuse evenly throughout all the levels.
Right, top panel: The estimated compression factor between subsequent levels, expressed as
In(X;41/X;). Right, bottom panel: The Metropolis acceptance fraction as a function of level.

>>> import dnest4
>>> dnest4.postprocess ()

This produces the three diagnostic plots in Figures 1 and 2 on the left, along with the following
output:

log(Z) = -175.47872682863076
Information = 15.166340875399044 nats.
Effective sample size = 1251.3576752091165

These are the natural log of the marginal likelihood, the information

(01D, M)

H:/p(9|D,M)ln {pp(9|M) } do,

which quantifies the degree to which D restricted the range of possible 6 values, and the
effective sample size, or number of saved particles with significant posterior weight. The
postprocess function also saves a file, posterior_sample.txt, containing posterior samples
(one per row). Unfortunately, it is harder to compute justified error bars on In(Z) in DNS
than it is in standard nested sampling.

The postprocess function can be called while DNest4 is running. This is helpful for moni-
toring the progress of a run, by inspecting the output plots.

7.1. Options

A plain-text file called OPTIONS resides in the directory from which you execute a run. This
file contains numerical parameters controlling the DNS algorithm. Here are the contents of
OPTIONS for the linear regression example:

Journal of Statistical Software

1/1, log(Z) = -175.47872682863076 500 Regression Lines

=175+
700 4
=200 1

log(L)

-225 600

—2501 e Samples

e Levels 5001

=275+

-50 -40 -30 -20 -10 0 . 400 4
0.0020
300 4
1 0.0015
200 4
0.0010 4 \
0.0005 -~ 100 4
-
0.00001 - - - - - . 0 - - - -
-50 -40 -30 -20 -10 0 0 20 40 60 80 100
log(X) X

Figure 2: Left, top panel: The log-likelihood curve, showing the relationship between log-
likelihood and the enclosed prior mass. Left, bottom panel: Posterior weights of the saved
particles. For a successful run, there should be a clear peak, and saved particles to the left
of this plot should have insignificant posterior weight compared to those in the peak. Right:
Regression lines drawn from the posterior.

File containing parameters for DNest4.

Put comments at the top, or at the end of the line.
5 # Number of particles

10000 # New level interval

10000 # Save interval

100 # Thread steps - pooling interval

0 # Maximum number of levels (0 ==> automatic)

10 # Backtracking scale length lambda in the paper.
100 # Equal weight enforcement. Beta in the paper.
10000 # Maximum number of saves (0 ==> run forever)

Additional options are available on the command line. These are described in Appendix A.

7.2. Number of particles

The first option is the number of particles, here set to five. If you use more particles, the same
amount of CPU time will be spent evolving more particles, so each one will not be evolved
as far. On most problems, five is a sensible default value. On complex problems where the
likelihood function has a challenging structure, more particles are useful, but it is usually
better to run in multi-threaded mode (see Appendix A).

7.3. New level interval

The new level interval controls how quickly DNest4 creates new levels. In this example, this
is set to 10,000, so a new level will be created once 10,000 MCMC steps have resulted in
10,000 likelihood values above the current top level. It is difficult to give a sensible default
for this quantity because it depends on the complexity of the problem (basically, how good
the Metropolis proposals are at exploring the target distribution). However, 10,000 will work

10 DNest4: Diffusive Nested Sampling in C++ and Python

for many problems, so we suggest it as a sensible default. Higher values are slower, but more
fail-safe.

7.4. Save interval

The save interval controls how often DNest4 writes a model to the output files; what is
usually called “thinning”. Saving more frequently (i.e., a smaller save interval) is usually
better. However, this can result in big output files if your model prints a lot of parameters to
sample.txt causing the post-processing to take a long time and/or a lot of RAM. A default
suggestion, used in the example, is to set the save interval to the same value as the new level
interval.

7.5. Thread steps

The “thread steps” parameter controls how frequently separate threads pool their information
about the levels (when running in multi-threaded mode, see Appendix A). It should be set
to a moderate value, but should also be a small fraction of the new level interval and the
save interval. 100 is a suggested default value that should work without problems in the vast
majority of cases.

7.6. Maximum number of levels

As the name suggests, this tells DNest4 how many levels to create, and therefore controls
the factor by which the parameter space is ultimately compressed. An appropriate value for
this quantity depends on the specific model and dataset at hand — typically, a larger numbers
of parameters and larger (more informative) datasets will lead to a larger value of #H, and
therefore need more levels.

In the initial phase of DNS when levels are being created, the particles move to the left in
Figure 2, increasing likelihood L and decreasing prior mass X. The posterior distribution
is concentrated where the rate of increase of In(L) and the rate of decrease of In(X) are
approximately equal. Figure 2 is the most useful diagnostic plot for setting the correct
maximum number of levels. A clear peak should be visible in the posterior weights plot in
the lower panel, such that moving further to the left would not add any more particles with
comparable weight to those in the peak.

As described by Skilling (2006), there is no guarantee in principle that another peak might
have appeared had a run continued for longer. These phase changes are more common in
statistical mechanics problems than in data analysis problems, but can appear in the latter
(e.g., Brewer 2014; Brewer and Donovan 2015).

Alternatively, DNest4 can try to determine the maximum number of levels automatically, if
you set the maximum number of levels to 0. This works well on problems where the MCMC
exploration is efficient. When it fails, this is detectable as the posterior weights plot (lower
panel of Figure 2) will peak at the left end of its domain. However, such a failed run may
still be useful as it can be used to suggest an order of magnitude for the required number of
levels. For example, if the automatic setting results in 150 levels and is later seen to fail, it
might be worth a try to set the maximum number of levels to, say, 1.3 x 150 = 195.

Journal of Statistical Software

7.7. Backtracking scale length

The backtracking scale length, denoted by A, appeared in Equation 4, and controls the degree
to which particles are allowed to “backtrack” down in level during the first stage of DNS when
levels are being built. Higher values are more fail-safe, but make it take longer to create the
levels. The value 10 used in the linear regression example is a suitable default value that
should work in almost all cases. In simple problems where MCMC exploration is easy, lower
values from 1 to 5 work sufficiently well.

7.8. Equal weight enforcement

This value is the parameter 5 described in Brewer et al. (2011), and compensates for impre-
cision in the spacing of the levels, so that the desired mixture weights w; oc 1 are achieved
during the second stage of the DNS algorithm. The value 100 is recommended.

7.9. Maximum number of saves

This controls the length of a DNest4 run, in units of saved particles in sample.txt, which
represent the mixture of constrained priors. The number of posterior samples is always less
than this. In most applications 5,000 (as in the linear regression example) provides enough
posterior samples (typically a few hundred) for sufficiently accurate posterior summaries.
However, if you want to plot smooth-looking posterior histograms, you’ll need to increase this
value.

If you set the maximum number of saves to zero, DNest4 will run until you terminate it
manually.

8. Implementing models

The “classic” method of implementing models in DNest4 is by writing a C++ class, an object
of which represents a point in your parameter space.

To run DNest4 on any particular problem, such as this linear regression example, the user
needs to define a C++ class to specify the model. Specifically, an object of the class represents
a point in the model’s parameter space. Member functions are defined which generate the
object’s parameters from the prior, make proposal steps, evaluate the likelihood, and so on.
The sampler calls these member functions while executing a run.

For the simple linear regression example, we will call the class ‘StraightLine’. The member
variables representing the unknown parameters are defined in the header file StraightLine.h:

class StraightLine
{
private:
double m, b, sigma;

};

The class must also define and implement the following member functions:

11

(i) void from_prior(DNest4::RNG& rng), which generates parameter values from the prior.

12 DNest4: Diffusive Nested Sampling in C++ and Python

(ii) double perturb(DNest4::RNG& rng), which proposes a change to the parameter val-
ues, and returns In(H) as defined in Equation 6.

(iii) double log_likelihood() const, which evaluates the log of the likelihood function.

(iv) void print(std::ostream& out) const, which prints parameters of interest to the
given output stream.

(v) std::string description() const, which returns a C++ string naming the parame-
ters printed by print(std::ostream&) const. This string is printed (after a comment
character #) at the top of the output file.

These are all described (using the linear regression example) in the following sections.
8.1. Generating from the prior
The member function used to generate straight line parameters from the prior is:

void StraightLine::from_prior (DNest4::RNG& rng)

{

// Naive diffuse prior

m = 1E3 * rng.randn();

b = 1E3 * rng.randn();

// Log-uniform prior

sigma = exp(-10.0 + 20.0 * rng.rand());
}

This generates m, b, and o from their joint prior. In this case, the priors are all independent,
so this reduces to generating the parameters each from their own prior distribution. For
convenience, DNest4 provides an ‘RNG’ class to represent random number generators. The
‘BRNG’ class is just a convenience wrapper for the random number generators built into C+411.
As you might expect, there are rand() and randn() member functions to generate double
precision values from a Uniform(0, 1) and Normal(0, 1) distribution respectively.

8.2. Proposal moves

The perturb member function for the straight line model is given below. This takes a random
number generator as input, makes changes to a subset of the parameters, and returns a double
corresponding to In(H) as defined in Equation 6. The combination of the choice of proposal
and the In(H) value returned must be consistent with the prior distribution.

double StraightLine: :perturb(DNest4::RNG& rng)
{

// log_H value to be returned

double log H = 0.0;

// Proposals must be consistent with the prior
// Choose which of the three parameters to move

Journal of Statistical Software

int which = rng.rand_int(3);

if (which == 0)

{
// log_H takes care of the prior ratio
// i.e., log_H = log(pi(theta')/pi(theta))
log H -= -0.5 * pow(m / 1E3, 2);

// Take a step
m += 1E3 * rng.randh();

// log_H takes care of the prior ratio
log H += -0.5 * pow(m / 1E3, 2);
}
else if(which == 1)
{
log H -= -0.5*pow(b / 1E3, 2);
b += 1E3 * rng.randh();
log H += -0.5*pow(b / 1E3, 2);
}
else
{
// Proposal for a parameter with a log-uniform
// prior takes the log of the parameter,
// takes a step with respect to a uniform prior,
// then takes the exp of the parameter
sigma = log(sigma);
sigma += 20.0 * rng.randh();

// Wrap proposed value back into the
// interval allowed by the prior
DNest4: :wrap(sigma, -10.0, 10.0);
sigma = exp(sigma);

}

return log_H;

}

This function first chooses a random integer from {0, 1,2} using the rand_int (int) member
function of the ‘DNest4: :RNG’ class. This determines which of the three parameters (m,b, o)
is modified. In this example, there are no proposals that modify more than one of the
parameters at a time, and all proposals are “random walk” proposals that add a perturbation
(drawn from a symmetric distribution) to the current value.

8.3. Proposals for single parameters

The proposal for m involves adding a perturbation to the current value using the line

13

14 DNest4: Diffusive Nested Sampling in C++ and Python

m += 1E3 * rng.randh();

A challenge using MCMC for standard nested sampling is that the target distribution is not
static — it gets compressed over time. Similarly, in the first stage of DNS the target distribution
gets compressed (as levels are added), and in the second stage the target distribution is a
mixture of distributions that have been compressed to varying degrees. This makes it difficult
to tune step-sizes as you would when using the standard Metropolis algorithm to sample the
posterior distribution.

Rather than trying to adapt proposal distributions as a function of level, it is much simpler to
just use heavy-tailed proposals which have some probability of making a jump of appropriate
size. This is slightly wasteful of CPU time, but it saves a lot of human time and is more fail-
safe than tuned step sizes. In simple experiments, we have found that heavy-tailed proposals
are about as efficient as slice sampling (Neal 2003), but much easier to implement. The
following procedure generates x from a heavy-tailed distribution:

1. Generate a ~ Normal(0, 1).

2. Generate b ~ Uniform(0, 1).

3. Define ¢t :=a//—In(b).
4. Generate n ~ Normal(0, 1).

5. Set x := 101-5-3ltp,

The variable t has a student-¢ distribution with 2 degrees of freedom. Overall, this procedure
generates values z with a maximum scale of tens to hundreds, down to a minimum scale
of about 10730 with 99% probability, by virtue of the ¢-distribution’s heavy tails. For con-
venience, the ‘RNG’ class contains a member function randh() to generate values from this
distribution. The factor of 1E3 is included because it is a measure of the prior width. There-
fore, this proposal will attempt moves whose maximum order of magnitude is a bit wider
than the prior (since it would be very surprising if any bigger moves were needed), and will
propose moves a few orders of magnitude smaller with moderate probability. We recommend
using this strategy (a measure of prior width, multiplied by randh()) as a default proposal
that works well in almost all problems.

Recall that for nested sampling, the Metropolis acceptance probability, excluding the term
for the likelihood, is

a@10) ()
q(016") ~ w(0)
When implementing a model class, the perturb(DNest4: :RNG&) member function must re-

turn the logarithm of this value. Since the prior for m is a normal distribution with mean
zero and standard deviation 1000, H is

H:

exp |~ 5 (m’'/1000)?]

exp [~ (m/1000)%|

This explains the use of the 1log_H variable.

Journal of Statistical Software

In the example, the proposal for ¢ is implemented by taking advantage of the uniform prior
for In(o). So o is transformed by taking a logarithm, a proposal move is made (that satisfies
detailed balance with respect to a uniform distribution), and then o is exponentiated again.
The step for the uniform prior between —10 and +10 uses the following code:

sigma += 20.0 * rng.randh();
DNest4: :wrap(sigma, -10.0, 10.0);

The factor of 20 accounts for the prior width, and the wrap(double&, double, double)
function uses the modulo operator to construct periodic boundaries. For example, if the
perturbation results in a value of 10.2, which is outside the prior range, the value is modified to
—9.8. The wrap function has no return value and works by modifying its first argument, which
is passed by reference. Alternatively, the log-uniform prior, which has density proportional
to 1/, could have been used directly by adding In [(1/¢”)/(1/0)] to the return value instead
of using the log/exp trick. However, this is not recommended for a prior distribution like this
which covers several orders of magnitude, because the appropriate scale size for the proposal
is less clear. This is likely to cause inefficient sampling.

8.4. Consistency of prior and proposal

It is imperative that from_prior and perturb be consistent with each other, and that each
implements the prior distributions that you want to use. One technique for testing this is to
sample the prior for a long time (by setting the maximum number of levels to 1) and inspect
sample.txt to ensure that each parameter is exploring the prior correctly.

8.5. Log-likelihood

The log-likelihood for the model is evaluated and returned by the log_likelihood member
function. For the straight line fitting example, the log-likelihood is based on the normal
density, and the code is given below.

double StraightLine::log_likelihood() const
{
// Grab the dataset
const std::vector<double>& x
const std::vector<double>& y

Data::get_instance().get_x();
Data::get_instance().get_y();

// Variance
double var = sigma * sigma;

// Conventional Gaussian sampling distribution
double log L = 0.0;
double mu;
for(size_t i = 0; i < y.size(); ++i)
{
mu =m * x[i] + b;
log L += -0.5 * log(2 * M_PI * var) - 0.5 * pow(y[i] - mu, 2) / var;

15

16 DNest4: Diffusive Nested Sampling in C++ and Python

return log L;

}

The dataset is assumed to be accessible inside this function. In the regression example, this
is achieved by having a ‘Data’ class to represent datasets. Since there will usually only be
one dataset, the singleton pattern (a class of which there is one instance accessible from
anywhere) is recommended. The ‘Data’ class has one static member which is itself an object
of class ‘Data’, and is accessible using Data: :get_instance() — this is the singleton pattern,
essentially a way of defining quasi-“global” variables:

class Data

{
private:
// 'static' means this exists at the level of the class
// instead of being truly global
static Data instance;
public:
// Getter
static Data& get_instance();
};

Alternatively, the data could be defined using static members of your model class.

8.6. Parameter output

The print and description functions are very simple:

void StraightLine::print(std::ostream& out) const

{
out << m << ' ' << b <K< ' ' K sigma;
}
std::string StraightLine::description() const
{
return std::string("m, b, sigma");
}

The print function specifies that the parameters m, b, and o are printed in a single line (of
sample.txt) and are separated by spaces (the postprocess function assumes the delimiter
is a space).

8.7. Running the sampler

The file main. cpp contains the main () function which is executed after compiling and linking.
The contents of main.cpp for the linear regression example are:

Journal of Statistical Software

#include <iostream>

#include "Data.h"

#include "DNest4/code/DNest4.h"
#include "StraightLine.h"

using namespace std;

int main(int argc, char** argv)

{
Data::get_instance().load("road.txt");
DNest4: :start<StraightLine>(argc, argv);
return O;

}

The first line of main() loads the data into its global instance (so it can be accessed from
within the log-likelihood function) and the second line uses a start template function to
construct and run the sampler.

9. Finite mixture models with the ‘RJ0bject’ class

Mixture models are a useful way of representing realistic prior information in Bayesian data
analysis. To reduce the amount of effort needed to implement mixture models in DNS, Brewer
(2014) implemented a template class called ‘RIJ0bject’ to handle the MCMC moves required.
The RJ in ‘RJ0bject’ stands for reversible jump (Green 1995), as ‘RJObject’ implements
birth and death moves for mixture models with an unknown number of components. An
updated version of ‘RJ0bject’ is included in DNest4.

If N is the number of components, x; denotes the vector of parameters of the ith component,
and « is the vector of hyperparameters, the prior can be factorized via the product rule,
giving

p(Noa, {z}l,) = p(N)p(alN)p ({2:hL, o V).

The specific assumptions of ‘RJ0bject’ are that this simplifies to

N
p(Noa, {zi}),) = p(N)p(a) [T p (@ila). (7)
=1

That is, the prior for the hyperparameters is independent of the number of components,
and each component is independent and identically distributed given the hyperparameters.
The sampling distribution p(D|x, @) (not shown in the probabilistic graphical model) cannot
depend on the ordering of the components. A probabilistic graphical model (PGM) showing
this dependence structure is shown in Figure 3. There are no observed data nodes here, but
if such a structure forms part of a Bayesian model, an ‘RJ0bject’ object within your model
class can encapsulate this part of the model.

Brewer (2014) described the motivation for ‘RJObject’ and some details about the Metropolis
proposals underlying it. Here, we demonstrate how to implement a finite mixture model
using ‘RJObject’. This example can be found in the code/Examples/RJObject_1DMixture

17

18 DNest4: Diffusive Nested Sampling in C++ and Python

Componentsi=1,..., N

Figure 3: A PGM showing the kind of prior information the ‘RJ0bject’ template class ex-
presses. Figure created using Daft (http://daft-pgm.org/).

directory. The “SineWave” and “GalaxyField” models from Brewer (2014) are also included
in the DNest4 repository.

9.1. An example mixture model

Consider a sampling distribution for data D = {Di, Ds,..., D, } which is a mixture of N
Gaussians with means {y;}, standard deviations {o;}, and mixture weights {w;}. The like-
lihood for the ith data point is

N .
p (DZ|N7 {Nj}a {Jj}> {wj}) = Jzz:l Uj\/]% eXp [_2}‘? (DZ - ”j)2

Colloquially, one might say the data were “drawn from” a mixture of N normal distribu-
tions, and we want to infer N along with the properties (positions, widths, and weights) of
those normal distributions. The mixture weights {w;} must obey a normalization condition
>_jw;j = 1. The easiest way of implementing this is to use un-normalized weights {W;} which
do not obey such a condition and then normalize them by dividing by their sum.

Making the connection with Equation 7 and Figure 3, the “components” are the Gaussians,
the Gaussian parameters are {z;} = {(1;, 05, W;)}, and hyperparameters o may be used to
help specify a sensible joint prior for the Gaussian parameters.

We now describe the specific prior distributions we used in this example. The prior for N
was

1

N)o —
PN o
for N € {1,2,...,100}. For the conditional prior of the Gaussian parameters, we used

Laplace (biexponential) distributions?. Normal distributions would be more conventional,

2A Laplace distribution with location parameter a and scale parameter b has density p(zla,b) =
1 1
5 exp (—E\a:—a|).

http://daft-pgm.org/

Journal of Statistical Software 19

but the analytic cumulative distribution function (CDF) of the Laplace distribution makes it
easier to implement. These were:

11 ~ Laplace(ay, by,) ™
Ino; ~ Laplace(ain o, bin o) ©)
In W; ~ Laplace(0, by, w). (10)

The location parameters are denoted with a and scale parameters with b. These priors express
the idea that the centers, widths, and relative weights of the Gaussian mixture components
are probably clustered around some typical value.

We used the following priors for the hyperparameters:

a, ~ Uniform(—1000, 1000)
Inb,, ~ Uniform(—10, 10)
ay » ~ Uniform(—10, 10)
bin o ~ Uniform(0, 5)
binw ~ Uniform(0, 5).

The normalized weights are wy, = W,/ > w;.

9.2. Using the ‘RI0Object’ class

To implement this model for DNest4, the model class needs to contain an instance of an
‘RJObject’, which contains the parameters {(1;,0;, w;)}:

class MyModel
{
private:
DNest4::RJObject<MyConditionalPrior> gaussians;

where the template argument <MyConditionalPrior> is a class implementing the prior for
the hyperparameters a and the form of the conditional prior p(z;|«). The main advantage
of the ‘RJObject’ class is that we do not need to implement any proposals for {(u;, 05, W;)}.
Rather, these can be done trivially as follows:

// Generate the components from the prior
gaussians.from_prior(rng);

// Do a Metropolis proposal
double logH = gaussians.perturb(rng);

// Print to output stream 'out'
gaussians.print (out);

The ‘RI0bject’ constructor definition is:

20 DNest4: Diffusive Nested Sampling in C++ and Python

RJObject(int num_dimensions, int max_num_components, bool fixed,
const ConditionalPrior& conditional_prior,
PriorType prior_type=PriorType: :uniform);

where num_dimensions is the number of parameters needed to specify a single component
(three in this example), max_num_components is the maximum value of N allowed, fixed
determines whether NV is fixed at Ny« or allowed to vary, conditional_prior is an instance
of a conditional prior, and prior_type controls the prior for N (the default is uniform from
{0,1,2,..., Npmax}). The RIJObject_1DMixture MyModel initializes its ‘RI0bject’ as follows:

MyModel : : MyModel ()

:gaussians (3, 100, false, MyConditionalPrior(), PriorType::log_uniform)
{

}

Passing PriorType: :log_uniform for the final argument specifies the 1/(N + 1) prior for
N. One complication for this model is that ‘RJ0bject’, by default, allows N to be zero,
which makes no sense for this particular problem. Therefore, we prevent N = 0 from being
generated in MyModel: :from_prior, and assert that it should always be rejected if proposed
in MyModel: :perturb:

void MyModel: :from_prior (RNG& rng)

{
do
{
gaussians.from_prior(rng);
}while(gaussians.get_components().size() == 0);
}
double MyModel: :perturb (RNG& rng)
{
double logH = 0.0;
logH += gaussians.perturb(rng);
if (gaussians.get_components().size() == 0)
return -std::numeric_limits<double>: :max();
return logH;
}

To access the component parameters, the ‘RJ0bject’ member function get_components is
used. This was used in the above functions, but more typically it is needed in the log-
likelihood. The member function get_components returns (by const reference) a std: :vector
of std: :vectors of doubles. For example, parameter two of component zero is:

gaussians.get_components () [0] [2]

The order of {(uj,05,w;)} (i.e., which one is parameter 0, 1, and 2) is determined by the
conditional prior class, and is explained in the following section.

Journal of Statistical Software

The print function for ‘RIJ0bject’ objects prints the dimensionality of each component and
the maximum value of N, followed by the hyperparameters, then parameter zero of each
component (zero padded when N < Np.x), parameter one for each component, and so on.

9.3. Conditional priors

The ‘RI0bject’ class is used to manage the components. An additional class is needed to
define and manage the hyperparameters « (i.e., define how they are generated from the prior,
how they are proposed, and so on). The i.i.d. conditional prior p(z;|a) is also defined by
this extra class. In the example, the class is called ‘MyConditionalPrior’ and is inherited
from an abstract base class ‘DNest4: :ConditionalPrior’ which insists that certain member
functions be specified.

The member functions from_prior, perturb_hyperparameters, and print do the same
things as the similar functions in a standard model class, but for the hyperparameters c.
In addition, three functions from_uniform, to_uniform, and log_pdf together define the
form of the conditional prior for the component parameters, p(z;|a). Each of these takes a
std: :vector of doubles by reference as input.

The log_pdf function just evaluates Inp(x;|a) at the current value of . The position z;
where this is evaluated is passed in via the input vector. In the example, these were defined
using Equations 8-10. To simplify this, we have defined a class for Laplace distributions,
rather than explicitly writing out the densities. We decided (arbitrarily) that parameters 0,
1, and 2 are p, In(o), and W respectively.

// vec = {mu, log_sigma, log _weight}
double MyConditionalPrior::log_pdf (const std::vector<double>& vec) const
{

// Three Laplace distributions

Laplace 11(location_mu, scale_mu);

Laplace 12(location_log sigma, scale_log_sigma);

Laplace 13(0.0, scale_log_weight);

return 11.log_pdf (vec[0]) + 12.log_pdf(vec[1]) + 13.log_pdf(vec[2]);
}

The functions to_uniform and from_uniform must implement the cumulative distribution
function (CDF) of the conditional prior and its inverse, i.e., from_uniform, if the input
vector contains i.i.d. draws from Uniform(0, 1), these should be modified to become draws
from p(z|a), and to_uniform should be the inverse of from_uniform. Both of these functions
modify the vector argument in-place. For the example, we again used an external class to
define these functions for the Laplace distribution:

// vec (input) = {ul, u2, u3} ~ Uniform(0, 1) in the prior
// gets modified to {mu, log_sigma, log_weight}
void MyConditionalPrior::from_uniform(std::vector<double>& vec) const
{
// Three Laplace distributions
Laplace 11(location_mu, scale_mu);
Laplace 12(location_log_sigma, scale_log_sigma);

21

22 DNest4: Diffusive Nested Sampling in C++ and Python

0.35 1 0-05
0.301 0.041
0.251 &
2
= 0.031
£0.201 S
2 A~
20.15 £ 0.021
z
0.104 st
0.01 1
0.051
0.00 +— y y y y y 0.00 y y y v
0 10 20 30 40 50 0 20 40 60 80 100
Velocity (1000 km/s) Number of gaussians, N

Figure 4: Left: The galaxy data, with the posterior mean fit (equivalent to the predictive
distribution for the “next” data point). Right: The posterior distribution for N given the
galaxy data.

Laplace 13(0.0, scale_log_weight);

vec[0] = 11.cdf_inverse(vec[0]);
vec[1] = 12.cdf_inverse(vec[1]);
vec[2] = 13.cdf_inverse(vec[2]);

}

// vec (input) = {mu, log_sigma, log_weight}
// gets modified to {ul, u2, u3} using the CDF of the conditional prior
// This is the inverse of from_uniform
void MyConditionalPrior::to_uniform(std::vector<double>& vec) const
{
// Three Laplace distributions
Laplace 11(location_mu, scale_mu);
Laplace 12(location_log sigma, scale_log_sigma);
Laplace 13(0.0, scale_log_weight);

vec[0] = 11.cdf(vec[0]);
vec[1] = 12.cdf(vec[1]);
vec[2] = 13.cdf (vec[2]);

9.4. Mixture model results

The data and the posterior mean fit are shown in Figure 4 on the left and the posterior
distribution for N is shown in Figure 4 on the right. The marginal likelihood was In(Z) =
—232.1, and the information was H = 29.5 nats.

Journal of Statistical Software

1/1, log(Z) = -232.13517896407865

—200 +

8 —250 -

e Samples
—30071 o Levels

-80 =70 -60 =50 —40 -30 =20 -10 0

0.0010 A

0.0005 A

Posterior Weights

0.0000 -

Y,

-80 -70 -60 -50 —-40 -30 -20 -10 0
log(X)

Figure 5: The log-likelihood and posterior weights as a function of compression X for the
galaxy data. There are phase changes (Skilling 2006) for which nested sampling is the best
known solution. There are some points with high posterior weight at the left of the plot,
but there are so few of them that they make up a trivial fraction of the posterior mass. In
practice, however, it is worth re-running with more levels to verify that a second peak is not
forming.

10. Approximate Bayesian computation

10.1. Background

Nested sampling can be used to solve approximate Bayesian computation (ABC) problems
elegantly and efficiently. Also known (misleadingly) as likelihood-free inference, ABC is a
set of Monte Carlo techniques for approximating the posterior distribution without having
to evaluate the likelihood function L(6). Instead, the user must be able to cheaply generate
simulated datasets from the sampling distribution p(D|#, M). Since a sampling distribution
must be specified, it is not that there is no likelihood function (indeed, a sampling distribution
and a dataset imply a particular likelihood function), rather that we cannot evaluate it cheaply
and therefore cannot use MCMC.

All Bayesian updating conditions on the truth of a proposition. We sometimes speak and
use notation as if we are conditioning on the value of a variable, for example by writing the
posterior distribution as p(0|D, M). However, this is shorthand for p(0|D = Dgpserved; M).
In the prior state of knowledge, the statement D = Dgpgerveq could have been either true or
false, but it is known to be true in the posterior state of knowledge. In the case of “continuous
data” (really a continuous space of possibilities for the data before we learned it) we condition
on a proposition like (D € R) where R is a region, and then implicitly take a limit as the
size of R goes to zero.

A simple “rejection sampling” version of ABC works by sampling the joint prior distribution

23

24 DNest4: Diffusive Nested Sampling in C++ and Python

for the parameters and data
p(0, DIM) = p(0|M)p(D|0, M)
and rejecting samples for which D # Dgpserved, SO that the samples represent
p(0, D|D = Dobserved, M) o< p(6|M)p(D|0, M) [D = Dopserved] - (11)

The marginal distribution for 6 is also the conditional distribution p(6|D = Dgpserved; M),
that is, the posteriors.

This approach is rarely usable in practice because the probability of generating a dataset that
matches the observed one is extremely low. To work around this, we replace the proposition
D = Dipserved With a logically weaker one (i.e., one that is implied by D = Dgpserved but
does not imply it). The weaker proposition is defined using a discrepancy function p, which
measures how different a simulated dataset D is from the real one Dgpserved:

P (D; Dobserved) .

The discrepancy function should take a minimum value of zero when D = Dgpgerved- The
analysis then proceeds by Monte Carlo sampling the joint posterior for § and D conditional
on the logically weaker proposition

P (D7 Dobserved) < €,

where ¢ is some small number. With this proposition, the rejection rate will still typically
be very high, but lower than with D = Dgpgerved- Typically, p is defined by introducing a
few summary statistics s1(D), sa(D), ..., sp(D), which hopefully capture most of the relevant
information in the data, and then computing the Fuclidean distance between the summary
statistics of D and Dgpgerved- That is,

p(D, Dobserved) = \/Z [Sz(D) - Si(Dobserved)}Q-

The main challenges associated with ABC are:

(i) The choice of discrepancy function p(D; Dopserved), Which may involve a choice of sum-
mary statistics.

(ii) How to choose the value of €, or how to change it as a run progresses.

(iii) How to make algorithms more efficient than rejection sampling.

Challenge (i) is Bayesian in nature, i.e., it relates to the very definition of the posterior dis-
tribution itself. On the other hand, challenges (ii) and (iii) are about the computational
implementation. Most ABC analyses are done using sequential Monte Carlo (SMC; Del
Moral, Doucet, and Jasra 2012), another family of algorithms closely related to nested sam-
pling and annealing in the sense that they work with sequences of probability distributions.

3Incidentally, this usage of the joint posterior distribution for the parameters and the data provides a
bridge connecting Bayesian updating to maximum entropy updating (Caticha and Giffin 2006; Giffin and
Caticha 2007).

Journal of Statistical Software 25

10.2. ABC with nested sampling

Nested sampling can be used for ABC by noting that Equation 11 is of the same form as
a constrained prior, only instead of being the prior for the parameters p(6|M) defined on
the parameter space, it is the joint prior for the parameters and the data, p(6, D|M) =
p(0|M)p(D|6, M), defined on the product space of possible parameters and datasets. There-
fore, to implement ABC in DNest4, you implement a model class whose from_prior member
function generates parameters and simulated data from the joint prior, and whose perturb
member function proposes changes to the parameters and/or the simulated data, in a man-
ner consistent with the joint prior. The log_likelihood function of the class, instead of
actually evaluating the log-likelihood, should evaluate —p(D; Dopserved). Then, running the
sampler will create levels which systematically decrease p. The samples from a particular
level then represent the ABC posterior defined in Equation 11 with € corresponding to minus
the “log-likelihood” of the level. A single DNest4 run allows you to test sensitivity to the
value of € using a single run. The marginal likelihood reported will be the probability that
P (D; Dopserved) < € given the model, although caution should be applied if using this for
model selection (Robert, Cornuet, Marin, and Pillai 2011).

10.3. ABC example

A simple ABC example is included in the directory code/Examples/ABC. The example tries
to infer the mean p and standard deviation o of a normal distribution from a set of samples.
The sampling distribution is

x; ~ Normal(y, o%).
and the prior is

p ~ Uniform(—10, 10),
In o ~ Uniform(—10, 10).

However, instead of conditioning on the full dataset {z;}, the example uses the minimum and
maximum values in the data, min({z;}) and max({x;}), as summary statistics*.

In ABC applications the model class needs to describe a point in the joint (parameters, data)
space, and the from_prior and perturb functions need to respect the joint prior distribution.
In Bayesian inference the joint prior tends to make the parameters and data highly dependent
— otherwise the data would never be informative about the parameters. To improve efficiency,
it is helpful to use a change of variables such that the parameters and data-controlling variables
are independent. In this example we use

p ~ Uniform(—10, 10),
In o ~ Uniform(—10, 10),
n; ~ Normal(0, 1),

where each of the n; enables a data point to be calculated using

Ti = U+ on;.

4This is not a serious application of ABC, since the likelihood function can easily be evaluated. It is included
to demonstrate the principle of using nested sampling as an ABC method.

26 DNest4: Diffusive Nested Sampling in C++ and Python

A general procedure for achieving this is to imagine generating a simulated dataset from the
parameters. In this process, you would need to call a random number generator many times.
The results of the random number calls are independent of the parameters and can be used
to parameterize the dataset. In the example, the {n;} variables play this role. Therefore, the
variables in the model class are:

class MyModel
{
private:
double mu, log_sigma;
std: :vector<double> n;

The proposal involves changing either mu, 1log_sigma, or one of the ns:

double MyModel: :perturb(RNG& rng)

{
int which = rng.rand_int(3);
if(which == 0)
{
mu += 20 * rng.randh();
wrap (mu, -10.0, 10.0);
}
if(which == 1)
{
log _sigma += 20 * rng.randh();
wrap(log_sigma, -10.0, 10.0);
}
if (which == 2)
{
int i = rng.rand_int(n.size());
nl[i] = rng.randn();
}
return 0.0;
}

The “log-likelihood” is really minus the discrepancy function. Since we parameterized the
joint (parameter, data) space using the n variables instead of the data {x;} itself, we must
“assemble” the simulated dataset in order to evaluate the discrepancy function:

double MyModel::log_likelihood() const

{
double x_min = Data::get_instance().get_x_min();
double x_max = Data::get_instance().get_x_max();

double sigma = exp(log_sigma);

Journal of Statistical Software 27

// Assemble fake dataset

vector<double> x_fake = n;

for(size_t i = 0; i < x_fake.size(); i++)
x_fake[i] = mu + sigma * x_fakel[i];

// Goodness

double logL = 0.;

logL -= pow(*min_element (x_fake.begin(), x_fake.end()) - x_min, 2);
logLl -= pow(*max_element (x_fake.begin(), x_fake.end()) - x_max, 2);

return logL;

10.4. ABC example results

For ABC applications, there is an alternate postprocess function called postprocess_abc.
This generates posterior samples using the € value corresponding to level ~ 0.8x (maximum
number of levels).

dnest4.postprocess_abc ()

To try different values of ¢, you can set the argument threshold_fraction to a value other
than 0.8. For example

dnest4.postprocess_abc (threshold_fraction = 0.6)

In the example directory there is a dataset generated from a standard normal distribution.
The inference should result in a joint posterior for g and o with significant density near
(u=0,0 =1). We show posterior samples in Figure 6.

ABC Results

Posterior samples
1.4
* Truth
1.2
6 1.0 4 4‘%‘ o
0.81
L]
0.6 1

~15 —10 —05 00 05 1.0 15
0

Figure 6: Posterior samples for p and o for the ABC demonstration.

28 DNest4: Diffusive Nested Sampling in C++ and Python

11. Python bindings

In DNest4, it is also possible to specify and run models in Python. Currently, the only models
supported are ones where the parameters are a NumPy array of double precision quantities.
Only a single thread is supported, although parallelization at the level of the Python likelihood
function should work.

A model class implementing the straight line example is given below and included in the
script python/examples/straightline/straightline.py. The member functions of this
class have similar names to those used in C4++, but work slightly differently. Most notably,
an instance of the class does not represent a point in parameter space, but represents the
problem itself. The functions take NumPy arrays of parameters as input, or produce them
as output, rather than having parameters as data members as in C++.

class Model (object):

nnn

Specify the model in Python.

nnn

def __init__(self):

mmnn

Parameter values *are not* stored inside the class

nnn

pass

def from_prior(self):

nnn

Unlike in C++, this must *return* a numpy array of parameters.
m = 1E3 * rng.randn()

b = 1E3 * rng.randn()

sigma = np.exp(-10.0 + 20.0 * rng.rand())

return np.array([m, b, sigma])

def perturb(self, params):
Unlike in C++, this takes a numpy array of parameters as input,
and modifies it in-place. The return value is still logH.
mnimn
logH = 0.0
which = rng.randint (3)

if which == 0 or which == 1:
logH -= -0.5 * (params[which] / 1E3) **2
params [which] += 1E3 * dnest4.randh()
logH += -0.5 * (params[which]/1E3) **2
else:
log_sigma = np.log(params[2])
log_sigma += 20 * dnest4.randh()

Journal of Statistical Software 29

Note the difference between dnest4.wrap in Python and

DNest4::wrap in C++. The former *returns* the wrapped value.
log_sigma = dnest4.wrap(log_sigma, -10.0, 10.0)

params[2] = np.exp(log_sigma)

return logH

def log_likelihood(self, params):

nnn

Gaussian sampling distribution.
m, b, sigma = params
var = sigma ** 2
return -0.5 * data.shape[0] * np.log(2 * np.pi * var)\
- 0.5 * np.sum((data[:,1] - (m * data[:,0] + b)) **2) / var

A sampler can then be created and run using the following code. The Python sampler does not
load an OPTIONS file. Instead, the options are provided as function arguments when setting
up the sampler.

Create a model object and a sampler
model = Model()
sampler = dnest4.DNest4Sampler (model,
backend=dnest4.backends.CSVBackend(".",
sep=" "))

Set up the sampler. The first argument is max_num_levels

gen = sampler.sample(max_num_levels=30, num_steps=1000, \
new_level_interval=10000,\
num_per_step=10000, thread_steps=100, \
num_particles=5, lam=10, beta=100, seed=1234)

Do the sampling (one iteration here = one particle save)
for i, sample in enumerate(gen):
print ("# Saved {k} particles.".format (k=(i+1)))

The text file output can be analyzed using dnest4.postprocess() as usual.

Acknowledgments

Other contributors to DNest4 include Jodo Faria (Porto), Matt Pitkin (Glasgow), and Mat
Varidel (Sydney). John Veitch (Birmingham) and Jorge Alarcon Ochoa (Rensselaer Poly-
technic Institute) provided helpful comments on an early version of the manuscript. It is a
pleasure to thank Anna Pancoast (Harvard), Ewan Cameron (Oxford), David Hogg (NYU),
Daniela Huppenkothen (NYU), and Iain Murray (Edinburgh) for valuable discussions over
the years. This work was supported by a Marsden Fast-Start grant from the Royal Society
of New Zealand.

30 DNest4: Diffusive Nested Sampling in C++ and Python

References

Baldock RJN, Partay LB, Bartok AP, Payne MC, Csanyi G (2016). “Determining Pressure-
Temperature Phase Diagrams of Materials.” Physical Review B, 93(17), 174108. doi:
10.1103/physrevb.93.174108.

Behnel S, Bradshaw R, Citro C, Dalcin L, Seljebotn DS, Smith K (2011). “Cython: The Best
of Both Worlds.” Computing in Science & Engineering, 13(2), 31-39. doi:10.1109/mcse.
2010.118.

Brewer BJ (2014). “Inference for Trans-Dimensional Bayesian Models with Diffusive Nested
Sampling.” arXiv:1411.3921 [stat.CO], URL http://arxiv.org/abs/1411.3921.

Brewer BJ, Donovan CP (2015). “Fast Bayesian Inference for Exoplanet Discovery in Radial
Velocity Data.” Monthly Notices of the Royal Astronomical Society, 448(4), 3206-3214.
doi:10.1093/mnras/stv199.

Brewer BJ, Partay LB, Csanyi G (2011). “Diffusive Nested Sampling.” Statistics and Com-
puting, 21(4), 649-656. doi:10.1007/s11222-010-9198-8.

Carpenter B, Gelman A, Hoffman M, Lee D, Goodrich B, Betancourt M, Brubaker MA, Guo
J, Li P, Riddell A (2017). “Stan: A Probabilistic Programming Language.” Journal of
Statistical Software, 76(1), 1-32. doi:10.18637/jss.v076.101.

Caticha A, Giffin A (2006). “Updating Probabilities.” AIP Conference Proceedings, 872(1),
31-42. doi:10.1063/1.2423258.

Del Moral P, Doucet A, Jasra A (2012). “An Adaptive Sequential Monte Carlo Method for
Approximate Bayesian Computation.” Statistics and Computing, 22(5), 1009-1020. doi:
10.1007/s11222-011-9271-y.

Dybowski R, Restif O, Goupy A, Maskell DJ, Mastroeni P, Grant AJ (2015). “Single Passage
in Mouse Organs Enhances the Survival and Spread of Salmonella Enterica.” Journal of
the Royal Society Interface, 12(113), 20150702. doi:10.1098/rsif.2015.0702.

Feroz F, Hobson M, Bridges M (2009). “MultiNest: An Efficient and Robust Bayesian Infer-
ence Tool for Cosmology and Particle Physics.” Monthly Notices of the Royal Astronomical
5bcﬁﬁy,398(4),160171614.doi:10.1111/j.1365-2966.2009.14548.X.

Foreman-Mackey D, Hogg DW, Lang D, Goodman J (2013). “emcee: The MCMC Hammer.”
Publications of the Astronomical Society of the Pacific, 125(925), 306. doi:10.1086/
670067.

GCC (2016). Using the GNU Compiler Collection. Free Software Foundation. URL https:
//gcc.gnu.org/onlinedocs/gcc/.

Giffin A, Caticha A (2007). “Updating Probabilities with Data and Moments.” In Bayesian
Inference and Maximum Entropy Methods in Science and Engineering, volume 954, pp.
74-84.

https://doi.org/10.1103/physrevb.93.174108
https://doi.org/10.1103/physrevb.93.174108
https://doi.org/10.1109/mcse.2010.118
https://doi.org/10.1109/mcse.2010.118
http://arxiv.org/abs/1411.3921
https://doi.org/10.1093/mnras/stv199
https://doi.org/10.1007/s11222-010-9198-8
https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.1063/1.2423258
https://doi.org/10.1007/s11222-011-9271-y
https://doi.org/10.1007/s11222-011-9271-y
https://doi.org/10.1098/rsif.2015.0702
https://doi.org/10.1111/j.1365-2966.2009.14548.x
https://doi.org/10.1086/670067
https://doi.org/10.1086/670067
https://gcc.gnu.org/onlinedocs/gcc/
https://gcc.gnu.org/onlinedocs/gcc/

Journal of Statistical Software 31

Green PJ (1995). “Reversible Jump Markov Chain Monte Carlo Computation and Bayesian
Model Determination.” Biometrika, 82(4), 711-732. doi:10.1093/biomet/82.4.711.

Handley WJ, Hobson MP, Lasenby AN (2015). “POLYCHORD: Next-Generation Nested
Sampling.” Monthly Notices of the Royal Astronomical Society, 453(4), 4384-4398. doi:
10.1093/mnras/stv1911.

Hansmann UHE (1997). “Parallel Tempering Algorithm for Conformational Studies of Biolog-
ical Molecules.” Chemical Physics Letters, 281(1), 140-150. doi:10.1016/s0009-2614(97)
01198-6.

Huijser D, Goodman J, Brewer BJ (2015). “Properties of the Affine Invariant Ensemble
Sampler in High Dimensions.” arXiv:1509.02230 [stat.CO], URL http://arxiv.org/abs/
1509.02230.

Hunter JD (2007). “Matplotlib: A 2D Graphics Environment.” Computing in Science &
Engineering, 9(3), 90-95. doi:10.1109/mcse.2007.55.

Huppenkothen D, Brewer BJ, Hogg DW, Murray I, Frean M, Elenbaas C, Watts AL, Levin Y,
Van Der Horst AJ, Kouveliotou C (2015). “Dissecting Magnetar Variability with Bayesian
Hierarchical Models.” The Astrophysical Journal, 810(1), 66. doi:10.1088/0004-637x/
810/1/66.

Lam SK, Pitrou A, Seibert S (2015). “Numba: A LLVM-based Python JIT compiler.” In
Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC, pp.
1-7. ACM.

Neal RM (2001). “Annealed Importance Sampling.” Statistics and Computing, 11(2), 125—
139. doi:10.1023/a:1008923215028.

Neal RM (2003). “Slice Sampling.” The Annals of Statistics, pp. 705-741. doi:10.1214/
aos/1056562461.

O’Hagan A, Forster JJ (2004). Kendall’s Advanced Theory of Statistics, Volume 2B: Bayesian
Inference, volume 2. Arnold.

Pancoast A, Brewer BJ, Treu T (2014). “Modelling Reverberation Mapping Data — I. Im-
proved Geometric and Dynamical Models and Comparison with Cross-Correlation Re-
sults.” Monthly Notices of the Royal Astronomical Society, 445(3), 3055-3072. doi:
10.1093/mnras/stul809.

Partay LB, Barték AP, Csanyi G (2010). “Efficient Sampling of Atomic Configurational
Spaces.” The Journal of Physical Chemistry B, 114(32), 10502-10512. doi:10.1021/
jp1012973.

Plummer M (2003). “JAGS: A Program for Analysis of Bayesian Graphical Models Us-
ing Gibbs Sampling” In K Hornik, F Leisch, A Zeileis (eds.), Proceedings of the 3rd
International Workshop on Distributed Statistical Computing (DSC 2003). Technische
Universitdt Wien, Vienna, Austria. URL https://www.R-project.org/conferences/
DSC-2003/Proceedings/Plummer . pdf.

https://doi.org/10.1093/biomet/82.4.711
https://doi.org/10.1093/mnras/stv1911
https://doi.org/10.1093/mnras/stv1911
https://doi.org/10.1016/s0009-2614(97)01198-6
https://doi.org/10.1016/s0009-2614(97)01198-6
http://arxiv.org/abs/1509.02230
http://arxiv.org/abs/1509.02230
https://doi.org/10.1109/mcse.2007.55
https://doi.org/10.1088/0004-637x/810/1/66
https://doi.org/10.1088/0004-637x/810/1/66
https://doi.org/10.1023/a:1008923215028
https://doi.org/10.1214/aos/1056562461
https://doi.org/10.1214/aos/1056562461
https://doi.org/10.1093/mnras/stu1809
https://doi.org/10.1093/mnras/stu1809
https://doi.org/10.1021/jp1012973
https://doi.org/10.1021/jp1012973
https://www.R-project.org/conferences/DSC-2003/Proceedings/Plummer.pdf
https://www.R-project.org/conferences/DSC-2003/Proceedings/Plummer.pdf

32 DNest4: Diffusive Nested Sampling in C++ and Python

Robert CP, Cornuet JM, Marin JM, Pillai NS (2011). “Lack of Confidence in Approximate
Bayesian Computation Model Choice.” Proceedings of the National Academy of Sciences,
108(37), 15112-15117. doi:10.1073/pnas.1102900108.

Sivia D, Skilling J (2006). Data Analysis: A Bayesian Tutorial. OUP Oxford.

Skilling J (2006). “Nested Sampling for General Bayesian Computation.” Bayesian Analysis,
1(4), 833-859. doi:10.1214/06-bal27.

Stroustrup B (2013). The C++ Programming Language, Fourth Edition. Pearson Education.

Van der Walt S, Colbert SC, Varoquaux G (2011). “The NumPy Array: A Structure for
Efficient Numerical Computation.” Computing in Science & Engineering, 13(2), 22-30.
doi:10.1109/mcse.2011.37.

Van Rossum G, et al. (2011). Python Programming Language. URL https://www.python.
org/.

https://doi.org/10.1073/pnas.1102900108
https://doi.org/10.1214/06-ba127
https://doi.org/10.1109/mcse.2011.37
https://www.python.org/
https://www.python.org/

Journal of Statistical Software 33

A. Command line options

The following command line options are available.

-0 <filename>
This option loads the DNest4 options from the specified file, allowing an alternative to the
default OPTIONS.

-s <seed>
This seeds the random number generator with the specified value. If unspecified, the system
time is used.

-d <filename>
Load data from the specified file, if required.

-c <value>

Standard DNS creates levels with a volume ratio of approximately e ~ 2.71828. To use a
different value, such as 10, use this option. In our experience, —c 10 tends to work better than
the default value on problems with a large information H. The output units remain in nats.
This option is incompatible with setting the maximum number of levels to 0 (automatic) in
the OPTIONS file.

-t <num_threads>

Run on the specified number of threads. The default is 1. Be aware that the number of
particles specified in the OPTIONS file is actually the number of particles per thread. Therefore,
if running on 8 or more cores, we recommend setting the number of particles per thread to
1, so the number of particles equals the number of threads.

Affiliation:

Brendon J. Brewer

Department of Statistics

The University of Auckland

Private Bag 92019

Auckland, 1142, New Zealand

E-mail: bj.brewer@auckland.ac.nz

URL: https://www.stat.auckland.ac.nz/~brewer/

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/
August 2018, Volume 86, Issue 7 Submitted: 2016-09-05

doi:10.18637/jss.v086.107 Accepted: 2017-02-24

mailto:bj.brewer@auckland.ac.nz
https://www.stat.auckland.ac.nz/~brewer/
http://www.jstatsoft.org/
http://www.foastat.org/
https://doi.org/10.18637/jss.v086.i07

	Introduction
	Relation to other algorithms
	Markov chain Monte Carlo
	Dependencies and installation
	Running DNest4
	Output files
	Post-processing
	Options
	Number of particles
	New level interval
	Save interval
	Thread steps
	Maximum number of levels
	Backtracking scale length
	Equal weight enforcement
	Maximum number of saves

	Implementing models
	Generating from the prior
	Proposal moves
	Proposals for single parameters
	Consistency of prior and proposal
	Log-likelihood
	Parameter output
	Running the sampler

	Finite mixture models with the `RJObject' class
	An example mixture model
	Using the `RJObject' class
	Conditional priors
	Mixture model results

	Approximate Bayesian computation
	Background
	ABC with nested sampling
	ABC example
	ABC example results

	Python bindings
	Command line options

