
Modelling at-bats in baseball
using the generalised Pareto

distribution
A report created using bibat version 0.0.7

Teddy Groves

I used to do a lot of statistical analyses of sports data where
there was a latent parameter for the player’s ability. You can
see an example here.

It was a natural choice to use a Bayesian hierarchical model
where the abilities have a location/scale type distribution with
support on the whole real line, and in fact this worked pretty
well! You would see the kind of players at the top and bottom
of the ability scale that you would expect.

Still, there were a few problems. In particular the data were
typically unbalanced because better players tended to fproduce
more data than worse players. The result of this was that
my models would often inappropriately think the bad players
were like the good players: they would not only tend to be
too certain about the abilities of low-data players, but also be
biased, thinking that these players are probably a bit better
than they actually are. I never came up with a good way to
solve this problem, despite trying a lot of things!

Even though I don’t work with sports data very much any more,
the problem still haunted me, so when I read this great case
study about geomagnetic storms it gave me an idea for yet
another potential solution.

The idea was this: just as data about intense storms that cause
electricity problems tell us about a tail of the bigger solar mag-

1

https://github.com/teddygroves/cricket
https://mc-stan.org/users/documentation/case-studies/gpareto_functions.html#conclusion-on-the-data-analysis
https://mc-stan.org/users/documentation/case-studies/gpareto_functions.html#conclusion-on-the-data-analysis


netism distribution, maybe data about professional sportspeo-
ple is best thought about as coming from a tail of the general
sports ability distribution. If so, maybe something like the gen-
eralised pareto distribution might be better than the bog stan-
dard normal distribution for describing the pros’ abilities.

I thought I’d test this out with some sports data, and
luckily there is a really nice baseball example on the Stan
case studies website, complete with [data from the 2006
Major league season])https://github.com/stan-dev/example-
models/blob/master/knitr/pool-binary-trials/baseball-hits-
2006.csv). After I posted some early results on the Stan
discourse forum, other users suggested that it might be inter-
esting to model similar data from different seasons. This data
can now be found quite easily on the baseball databank.

With a few datasets and at least two different statistical models
to consider, the full analysis looked like it would be a little
too big to fit in a trivial file structure, so it seemed like a
good opportunity to showcase my batteries-included Bayesian
analysis template package bibat.

The rest of this vignette describes how I used bibat to (rela-
tively) painlessly see if my generalised Pareto distribution idea
would work.

Check out the analysis’s github repository for all the details.

Setup

First I installed bibat in my global Python 3.11 environment
with this command:

$ pip install bibat

Next I started bibat’s wizard like this:

bibat

After I answered the wizard’s questions bibat creted a new
folder called baseball that looked like this:

2

https://en.wikipedia.org/wiki/Generalized_Pareto_distribution
https://en.wikipedia.org/wiki/Generalized_Pareto_distribution
https://mc-stan.org/users/documentation/case-studies/pool-binary-trials.html
https://mc-stan.org/users/documentation/case-studies/pool-binary-trials.html
https://discourse.mc-stan.org/t/baseball-analysis-using-latent-generalised-pareto-distribution/29222
https://discourse.mc-stan.org/t/baseball-analysis-using-latent-generalised-pareto-distribution/29222
https://baseballdb.lawlesst.net/
https://github.com/teddygroves/bibat
https://github.com/teddygroves/baseball


baseball
��� CODE_OF_CONDUCT.md
��� LICENSE
��� Makefile
��� README.md
��� bibat_version.txt
��� data
�   ��� raw
�   ��� raw_measurements.csv
�   ��� readme.md
��� docs
�   ��� bibliography.bib
�   ��� img
�   �   ��� example.png
�   �   ��� readme.md
�   ��� report.qmd
��� inferences
�   ��� fake_interaction
�   �   ��� config.toml
�   ��� interaction
�   �   ��� config.toml
�   ��� no_interaction
�   ��� config.toml
��� investigate.ipynb
��� plots
�   ��� posterior_ll_comparison.png
�   ��� posterior_predictive_comparison.png
��� prepare_data.py
��� pyproject.toml
��� requirements-tooling.txt
��� requirements.txt
��� sample.py
��� src
�   ��� __init__.py
�   ��� data_preparation_functions.py
�   ��� inference_configuration.py
�   ��� prepared_data.py
�   ��� readme.md
�   ��� stan
�   �   ��� custom_functions.stan

3



�   �   ��� multilevel-linear-regression.stan
�   �   ��� readme.md
�   ��� stan_input_functions.py
�   ��� util.py
��� tests

��� test_integration
�   ��� test_data_preparation.py
��� test_unit

��� test_inference_configuration.py
��� test_util.py

This folder implements bibat’s example analysis - a comparison
of linear regression with two different design matrices. To check
that everything was working correctly I ran the analysis like
this:

$ cd baseball
$ make analysis

Some cogs turned, some new lines appeared in my terminal and
some new files were created - nice, the setup worked!

Getting raw data

To fetch raw data from the internet, I wrote a new script called
fetch_data.py:

"""Fetch raw data from the internet."""

import os

import pandas as pd

URLS = {
"2006": "https://raw.githubusercontent.com/stan-dev/"
"example-models/master/knitr/pool-binary-trials/baseball-hits-2006.csv",
"bdb-main": "https://raw.githubusercontent.com/chadwickbureau/"

4



"baseballdatabank/master/core/Batting.csv",
"bdb-post": "https://raw.githubusercontent.com/chadwickbureau/"
"baseballdatabank/master/core/BattingPost.csv",
"bdb-apps": "https://raw.githubusercontent.com/chadwickbureau/"
"baseballdatabank/master/core/Appearances.csv"

}
OUT_FILES = {

"2006": os.path.join("data", "raw", "2006.csv"),
"bdb-main": os.path.join("data", "raw", "bdb-main.csv"),
"bdb-post": os.path.join("data", "raw", "bdb-post.csv"),
"bdb-apps": os.path.join("data", "raw", "bdb-apps.csv"),

}

if __name__ == "__main__":
for name, url in URLS.items():

print(f"Fetching {name} data from {url}")
data = pd.read_csv(url, comment="#")
print(f"Writing {name} data to {OUT_FILES[name]}")
data.to_csv(OUT_FILES[name])

To get the files I ran the script:

$ source .venv/bin/activate
$ python fetch_data.py

Since this worked, I added a new makefile target for the raw
data files:

RAW_DATA = data/raw/2006.csv data/raw/bdb-main.csv data/raw/bdb-post.csv data/raw/bdb-apps.csv
...
$(RAW_DATA): $(ACTIVATE_VENV) && python fetch_data.py

Finally I removed the example analysis’s raw data:

$ rm data/raw/raw_measurements.csv

5



Preparing the data

The first step in preparing data is to decide what prepared
data looks like for the purposes of our analysis. Bibat provides
dataclasses called PreparedData and MeasurementsDF in the
file src/prepared_data.py which can help get us started with
this.

As it happens, prepared data looks very similar in our
analysis and the example. All we need to do is change the
MeasurementsDF definition a little1: 1 note that this class uses pandera,

a handy library for defining what a
pandas dataframe should look likefrom typing import Optional

import pandera as pa

# ...

class MeasurementsDF(pa.SchemaModel):
"""A PreparedData should have a measurements dataframe like this.

Other columns are also allowed!
"""

player_season: pa.typing.Series[str]
season: pa.typing.Series[str]
n_attempt: pa.typing.Series[int] = pa.Field(ge = 1)
n_success: pa.typing.Series[int] = pa.Field(ge = 0)

Next we can write some functions that create PreparedData ob-
jects. These should live in the file data_preparation_functions.py.
In this case we write a couple of data preparation functions:
prepare_data_2006 and prepare_data_bdb:

"""Provides functions prepare_data_x.

These functions should take in a dataframe of measurements and return a
PreparedData object.

"""

6

https://pandera.readthedocs.io


import pandas as pd
from src.prepared_data import PreparedData

def prepare_data_2006(measurements_raw: pd.DataFrame) -> PreparedData:
"""Prepare the 2006 data."""
measurements = measurements_raw.rename(

columns={"K": "n_attempt", "y": "n_success"}
).assign(

season="2006",
player_season=lambda df: [f"2006-player-{i+1}" for i in range(len(df))],

)
return PreparedData(

name="2006",
coords={

"player_season": measurements["player_season"].tolist(),
"season": measurements["season"].tolist(),

},
measurements=measurements,

)

def prepare_data_bdb(
measurements_main: pd.DataFrame,
measurements_post: pd.DataFrame,
appearances: pd.DataFrame,

) -> PreparedData:
"""Prepare the baseballdatabank data.

There are a few substantive data choices here.

First, the function excludes players who have a '1' in their position as
these are likely pitchers, as well as players with fewer than 20 at bats.

Second, the function defines a successes and attempts according to the
'on-base percentage' metric, so a success is a time when a player got a hit,
a base on ball/walk or a hit-by-pitch and an attempt is an at-bat or a
base-on-ball/walk or a hit-by-pitch or a sacrifice fly. This could have
alternatively been calculated as just hits divided by at-bats, but my

7



understanding is that this method underrates players who are good at getting
walks.

"""
pitchers = appearances.loc[

lambda df: df["G_p"] == df["G_all"], "playerID"
].unique()

def filter_batters(df: pd.DataFrame):
return (

(df["AB"] >= 20)
& (df["season"].ge(2017))
& (~df["player"].isin(pitchers))

)

measurements_main, measurements_post = (
m.rename(columns={"yearID": "season", "playerID": "player"})
.assign(

player_season=lambda df: df["player"].str.cat(
df["season"].astype(str)

),
n_attempt=lambda df: df[["AB", "BB", "HBP", "SF"]]
.fillna(0)
.sum(axis=1)
.astype(int),
n_success=lambda df: (

df[["H", "BB", "HBP"]].fillna(0).sum(axis=1).astype(int)
),

)
.loc[

filter_batters,
["player_season", "season", "n_attempt", "n_success"],

]
.copy()
for m in [measurements_main, measurements_post]

)
measurements = (

pd.concat([measurements_main, measurements_post])
.groupby(["player_season", "season"])
.sum()

8



.reset_index()
)
return PreparedData(

name="bdb",
coords={

"player_season": measurements["player_season"].tolist(),
"season": measurements["season"].tolist(),

},
measurements=measurements,

)

Finally we need to update prepare_data.py, the script that
runs the data preparation functions. Again there isn’t much to
change from the example analysis.

"""Read the data in RAW_DIR and save prepared data to PREPARED_DIR."""

import os

import pandas as pd
from src import data_preparation_functions
from src.prepared_data import write_prepared_data

DATA_PREPARATION_FUNCTIONS_TO_RUN = {
"2006": data_preparation_functions.prepare_data_2006,
"bdb": data_preparation_functions.prepare_data_bdb,

}

DATA_DIR = os.path.join(os.path.dirname(__file__), "data")
RAW_DIR = os.path.join(DATA_DIR, "raw")
PREPARED_DIR = os.path.join(DATA_DIR, "prepared")
RAW_DATA_FILES = {

"2006": [os.path.join(RAW_DIR, "baseball-hits-2006.csv")],
"bdb": [

os.path.join(RAW_DIR, "bdb-main.csv"),
os.path.join(RAW_DIR, "bdb-post.csv"),
os.path.join(RAW_DIR, "bdb-apps.csv"),

]
}

9



def main():
"""Save prepared data in the PREPARED_DIR."""
print("Reading raw data...")
raw_data = {

k: [pd.read_csv(f, index_col=None) for f in v]
for k, v in RAW_DATA_FILES.items()

}
print("Preparing data...")
for name, dpf in DATA_PREPARATION_FUNCTIONS_TO_RUN.items():

print(f"Running data preparation function {dpf.__name__}...")
prepared_data = dpf(*raw_data[name])
output_dir = os.path.join(PREPARED_DIR, prepared_data.name)
print(f"\twriting files to {output_dir}")
if not os.path.exists(PREPARED_DIR):

os.mkdir(PREPARED_DIR)
write_prepared_data(prepared_data, output_dir)

if __name__ == "__main__":
main()

To check that all this works, we can run the script
prepare_data.py manually or using make analysis. Now if
we look in the file data/prepared/bdb/measurements.csv we
should see some lines that look like this:

,player_season,season,n_attempt,n_success
0,abreujo02,2018,553,180
1,acunaro01,2018,487,178
3,adamewi01,2018,322,112
6,adamsla01,2018,29,10
7,adamsma01,2018,337,104
8,adamsma01,2018,277,92
9,adamsma01,2018,60,12

10



Specifying statistical models

I wanted to test two statistical models: one with the modelling
the distribution of per-player logit-scale at-bat success rates
as a normal distbution with unknown mean and standard de-
viation, and another where the same logit-scale rates have a
generalised pareto distribution.

So, genve a table of 𝑁 player profiles, with each player has 𝑦
successes out of 𝐾 at-bats and an unknown latent success rate
𝛼, I wanted to use this measurement model:

𝑦 ∼ binomial logit(𝐾, 𝛼)

In the generalised pareto model I would give the 𝛼s this prior
model, with the hyperparameter min 𝛼 assumed to be known
exactly and 𝑘 and 𝜎 given prior distributions that put the 𝛼s in
the generally plausible range of between roughly 0.1 and 0.4.

𝛼 ∼ 𝐺𝑃 𝑎𝑟𝑒𝑡𝑜(min 𝛼, 𝑘, 𝜎)

In the normal model I would use a standard hierarchical regres-
sion model with an effect for the log-scale number of at-bats to
attempt to explicitly model the tendency of players with more
appearances to be better:

𝛼 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇 + 𝑏𝐾 ⋅ ln𝐾, 𝜏)

Again I would choose priors for the hyperparameters that put
most of the alphas between 0.1 and 0.4.

To implement these models using Stan I first added the fol-
lowing function to the file custom_functions.stan. This was
simply copied from the relevant part of the geomagnetic storms
case study.

11

https://mc-stan.org/users/documentation/case-studies/gpareto_functions.html#conclusion-on-the-data-analysis
https://mc-stan.org/users/documentation/case-studies/gpareto_functions.html#conclusion-on-the-data-analysis


real gpareto_lpdf(vector y, real ymin, real k, real sigma) {
// generalised Pareto log pdf
int N = rows(y);
real inv_k = inv(k);
if (k<0 && max(y-ymin)/sigma > -inv_k)
reject("k<0 and max(y-ymin)/sigma > -1/k; found k, sigma =", k, ", ", sigma);

if (sigma<=0)
reject("sigma<=0; found sigma =", sigma);

if (fabs(k) > 1e-15)
return -(1+inv_k)*sum(log1p((y-ymin) * (k/sigma))) -N*log(sigma);

else
return -sum(y-ymin)/sigma -N*log(sigma); // limit k->0

}

Next I wrote a file gpareto.stan:

functions {
#include custom_functions.stan
}
data {

int<lower=0> N; // items
array[N] int<lower=0> K; // trials
array[N] int<lower=0> y; // successes
real min_alpha; // noone worse than this would be in the dataset
real max_alpha;
array[2] real prior_sigma;
array[2] real prior_k;
int<lower=0,upper=1> likelihood;

}
parameters {

real<lower=0.001> sigma; // scale parameter of generalised pareto distribution
real<lower=-sigma/(max_alpha-min_alpha)> k; // shape parameter of generalised pareto distribution
vector<lower=min_alpha,upper=max_alpha>[N] alpha; // success log-odds

}
model {

sigma ~ normal(prior_sigma[1], prior_sigma[2]);
k ~ normal(prior_k[1], prior_k[2]);
alpha ~ gpareto(min_alpha, k, sigma);
if (likelihood){

12



y ~ binomial_logit(K, alpha);
}

}
generated quantities {

vector[N] yrep;
vector[N] llik;
for (n in 1:N){
yrep[n] = binomial_rng(K[n], inv_logit(alpha[n]));
llik[n] = binomial_logit_lpmf(y[n] | K[n], alpha[n]);

}
}

Finally I wrote a file normal.stan:

data {
int<lower=0> N; // items
array[N] int<lower=0> K; // trials
array[N] int<lower=0> y; // successes
array[2] real prior_mu;
array[2] real prior_tau;
array[2] real prior_b_K;
int<lower=0,upper=1> likelihood;

}
transformed data {

vector[N] log_K = log(to_vector(K));
vector[N] log_K_std = (log_K - mean(log_K)) / sd(log_K);

}
parameters {

real mu; // population mean of success log-odds
real<lower=0> tau; // population sd of success log-odds
real b_K;
vector[N] alpha_std; // success log-odds (standardized)

}
model {

b_K ~ normal(prior_b_K[1], prior_b_K[2]);
mu ~ normal(prior_mu[1], prior_mu[2]);
tau ~ normal(prior_tau[1], prior_tau[2]);
alpha_std ~ normal(0, 1);
if (likelihood){

13



y ~ binomial_logit(K, mu + b_K * log_K_std + tau * alpha_std);
}

}
generated quantities {

vector[N] alpha = mu + b_K * log_K_std + tau * alpha_std;
vector[N] yrep;
vector[N] llik;
for (n in 1:N){
yrep[n] = binomial_rng(K[n], inv_logit(alpha[n]));
llik[n] = binomial_logit_lpmf(y[n] | K[n], alpha[n]);

}
}

Generating Stan inputs

Next we need to tell our analysis how to turn some prepared
data into a dictionary that can be used as input for Stan. Bibat
assumes that this task is handled by functions that live in the
file src/stan_input_functions.py, each of which takes in a
PreparedData and returns a Python dictionary. You can write
as many Stan input functions as you like and choose which one
to run for any given inference.

We can start by defining some Stan input functions that pass
arbitary prepared data on to each of the models:

"""General function for creating a Stan input."""
return {

"N": len(ppd.measurements),
"K": ppd.measurements["n_attempt"].values,
"y": ppd.measurements["n_success"].values,
"prior_mu": [logit(0.25), 0.2],
"prior_tau": [0.2, 0.1],
"prior_b_K": [0, 0.03],

}

def get_stan_input_gpareto(ppd: PreparedData) -> Dict:

14



"""General function for creating a Stan input."""
return {

"N": len(ppd.measurements),
"K": ppd.measurements["n_attempt"].values,
"y": ppd.measurements["n_success"].values,
"min_alpha": logit(0.07),
"max_alpha": logit(0.5),
"prior_sigma": [1.5, 0.4],
"prior_k": [-0.5, 1],

}

But why stop there? It can also be useful to generate Stan
inputs consistently with a model, based on some hardcoded
hyperparameter values. Here are some functions that do this
for both of our models:

"""Generate fake Stan input consistent with the normal model."""
N = len(ppd.measurements)
rng = np.random.default_rng(seed=1234)
true_param_values = {

"mu": logit(0.25),
"tau": 0.18, # 2sds is 0.19 to 0.32 batting average
"b_K": 0.04, # slight effect of more attempts
"alpha_std": rng.random.normal(loc=0, scale=1, size=N),

}
K = ppd.measurements["n_attempt"].values
log_K_std = (np.log(K) - np.log(K).mean()) / np.log(K).std()
alpha = (

true_param_values["mu"]
+ true_param_values["b_K"] * log_K_std
+ true_param_values["tau"] * true_param_values["alpha_std"]

)
y = rng.random.binomial(K, expit(alpha))
return {"N": N, "K": K, "y": y} | true_param_values

def get_stan_input_gpareto_fake(ppd: PreparedData) -> Dict:
"""Generate fake Stan input consistent with the gpareto model."""
N = len(ppd.measurements)

15



K = ppd.measurements["n_attempt"].values
min_alpha = 0.1
rng = np.random.default_rng(seed=1234)
true_param_values = {"sigma": -1.098, "k": 0.18}
true_param_values["alpha"] = gpareto_rvs(

rng,
N,
min_alpha,
true_param_values["k"],
true_param_values["sigma"],

)
y = rng.binomial(K, expit(true_param_values["alpha"]))
return {"N": N, "K": K, "y": y, "min_alpha": min_alpha} | true_param_values

def gpareto_rvs(
rng: np.random.Generator, size: int, mu: float, k: float, sigma: float

):
"""Generate random numbers from a generalised pareto distribution.

See https://en.wikipedia.org/wiki/Generalized_Pareto_distribution for
source.

"""
U = rng.uniform(size)
if k == 0:

return mu - sigma * np.log(U)
else:

return mu + (sigma * (U**-k) - 1) / sigma

Specifying inferences

Now all the building blocks for making statistical inferences -
raw data, data preparation rules, statistical models and recipes
for turning prepared data into model inputs - are in place. The
last step before actually running Stan is to write down how
put these blocks together. Bibat has another concept for this,
called ‘inferences’.

16



An inference in bibat is a folder containing a special file called
config.toml. This file sets out what inferences you want to
make: which statistical model, which prepared data function,
which Stan input function, which parameters have which di-
mensions, which sampling modes to use and how to configure
the sampler. The folder will later be filled up with the results
of performing the specified inferences.

I started by deleting the example inferences and creating two
fresh folders, leaving me with an inferences folder looking like
this:

.
��� gpareto2006
�   ��� config.toml
��� normal2006

��� config.toml

Here is the file inferences/gpareto2006/config.toml:

name = "gpareto2006"
stan_file = "gpareto.stan"
prepared_data_dir = "2006"
stan_input_function = "get_stan_input_gpareto"
modes = ["prior", "posterior"]

[dims]
alpha = ["player"]

[stanc_options]
warn-pedantic = true

[sample_kwargs]
save_warmup = false
iter_warmup = 2000
iter_sampling = 2000

[sample_kwargs.prior]
chains = 2
iter_warmup = 1000
iter_sampling = 1000

17



Here is the file inferences/normal2006/config.toml:

name = "normal2006"
stan_file = "normal.stan"
prepared_data_dir = "2006"
stan_input_function = "get_stan_input_normal"
modes = ["prior", "posterior"]

[dims]
alpha = ["player"]

[stanc_options]
warn-pedantic = true

[sample_kwargs]
save_warmup = false
iter_warmup = 2000
iter_sampling = 2000

Note that: * The Stan file, prepared data folder and stan input
function are referred to by strings. The analysis should raise an
error if you enter a non-existing value. * Both inferences are set
to run in “prior” and “posterior” modes - the other pre-defined
mode is “kfold”, but you can also write your own! * You can en-
ter arbitrary arguments to cmdstanpy’s CmdStanModel.sample
method in the [sample_kwargs] table. * You can enter mode-
specific overrides in [sample_kwargs.<MODE>]. This can be
handy if you want to run more or fewer iterations for a certain
mode.

Now when I ran make analysis again, I saw messages indicat-
ing that Stan had run, and found that the inferences subfold-
ers had been populated:

inferences
��� gpareto2006
�   ��� config.toml
�   ��� idata.json
��� normal2006

��� config.toml

18



��� idata.json

Investigating the inferences

Now that the inferences are ready it’s time to check them out.
Bibat provides a jupyter notebook called investigate.ipynb
for exactly this purpose.

A lot of code from the example analysis’s notebook was
reusable, so I largely followed its structure, with a few
tweaks.

Choosing priors using push-forward
calibration

The trickiest thing about my analysis was setting prior distri-
butions for the parameters 𝑘 and 𝜎 in the generalised Pareto
models. To choose some more or less plausible values I did
a few prior-mode model runs and checked the distributions of
the resulting alpha variables. I wanted to make sure that they
all lay in the range corresponding to batting averages between
about 0.15 and a little over 0.4. Here is a graph that shows
the 1% to 99% prior quantiles for each player’s latent success
percentage in the 2006 dataset alongside their actually realised
success rate.

19



Extending the analysis to the
baseballdatabank data

To model the more recent data, all I had to do was create some
new inference folders with appropriate prepared_data_dir
fields in their config.toml files. For example, here is the
config.toml file for the gparetobdb inference:

name = "gparetobdb"
stan_file = "gpareto.stan"
prepared_data_dir = "bdb"
stan_input_function = "get_stan_input_gpareto"
modes = ["prior", "posterior"]

[dims]
alpha = ["player"]

[stanc_options]
warn-pedantic = true

[sample_kwargs]
save_warmup = false
iter_warmup = 2000
iter_sampling = 2000

[sample_kwargs.prior]
chains = 2
iter_warmup = 2000
iter_sampling = 1000

After running make analysis one more time, I went back to
the notebook investigate.ipynb and made plots of both mod-
els’ posterior 1%-99% success rate intervals for both datasets:

20



I think this is very interesting. Both models’ prior distributions
had similar regularisation levels, and they more or less agree
about the abilities of the players with the most at-bats, both in
terms of locations and the widths of the plausible intervals for
the true success rate. However, the models ended up with dra-
matically different certainty levels about the abilities of players
with few at-bats. This pattern was true both for the small 2006
dataset and the much larger baseballdatabank dataset.

21


	Setup
	Getting raw data
	Preparing the data
	Specifying statistical models
	Generating Stan inputs
	Specifying inferences
	Investigating the inferences
	Choosing priors using push-forward calibration
	Extending the analysis to the baseballdatabank data

