
DRAFT
ParquetDB: A Lightweight Python Parquet-Based1

Database2

Logan L. Lang 1, Eduardo R. Hernandez 2, Kamal Choudhary 3, and3

Aldo H. Romero 1
4

1 Department of Physics, West Virginia University, Morgantown, United States 2 Instituto de Ciencia de5

Materiales de Madrid, Madrid, Spain 3 National Institute of Standards and Technology, Gaithersburg,6

United States7

DOI: 10.xxxxxx/draft

Software
• Review
• Repository
• Archive

Editor: Open Journals
Reviewers:

• @openjournals

Submitted: 01 January 1970
Published: unpublished

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary8

ParquetDB is a Python library serving as a “middleware” solution, bridging the gap between9

file-based storage and full database systems. A key driver for its development was the need10

to support iterative research workflows, requiring schema evolvability, the ability to manage11

complex and evolving nested data structures without predefined rigidity, and the ability to12

handle-table and field-level metadata. Additionally, its “classically serverless” nature was13

a crucial design point for deployment in environments such as HPC clusters with limited14

connectivity. Leveraging Apache Parquet (“Parquet,” n.d.; Apache Software Foundation,15

n.d.), it combines file storage portability with advanced querying capabilities, enabling efficient16

compression and read performance without dedicated server overhead. ParquetDB addresses17

limitations in both traditional approaches by seamlessly handling complex data types (arrays,18

nested structures, Python objects), simplifying data interaction compared to direct file19

manipulation or manual serialization. Performance benchmarks show competitive read/write20

speeds and effective query performance via predicate pushdown, demonstrating its utility for21

managing medium-to-large datasets where database complexity is unwarranted but basic file22

I/O is insufficient.23

Statement of need24

The demand for efficient, scalable, and adaptable data storage solutions is critical across25

research domains. Traditional file formats (e.g., CSV, JSON, TXT) offer simplicity but suffer26

from inefficiencies, particularly with numerical data due to ASCII/UTF encoding overhead,27

leading to larger files and slower I/O. While binary formats like HDF5 (HDF5, n.d.) improve28

efficiency for large numerical datasets, they function primarily as structured file containers,29

lacking the rich querying APIs and transactional integrity features common in databases. These30

file-based approaches often require manual data relationship management and lack built-in31

indexing, hindering agility as projects scale or require rapid iteration.32

Database systems like SQLite (Allen & Owens, 2010) or MongoDB (Guo, 2017) provide33

robust encoding, indexing, and querying. Relational databases ensure integrity via structured34

schemas but can be rigid when data models evolve (Pascal, 2000). NoSQL options offer35

flexibility but may introduce consistency challenges or require complex optimization (Pivert,36

2018). Furthermore, many databases involve server configurations or lack transparent file-based37

portability, adding overhead unsuitable for lightweight experimentation or simpler deployment38

scenarios. While SQLite is serverless and ubiquitous, its row-based nature can be less performant39

for analytical queries scanning wide datasets compared to columnar formats, and managing40

complex nested data can be cumbersome.41

Lang et al. (2025). ParquetDB: A Lightweight Python Parquet-Based Database. Journal of Open Source Software, ¿VOL?(¿ISSUE?), ¿PAGE?
https://doi.org/10.xxxxxx/draft.

1

https://orcid.org/0000-0003-2867-1706
https://orcid.org/0000-0002-1164-2856
https://orcid.org/0000-0001-9737-8074
https://orcid.org/0000-0001-5968-0571
https://doi.org/10.xxxxxx/draft
https://github.com/openjournals
https://github.com/openjournals
https://doi.org/10.5281
https://joss.theoj.org
https://github.com/openjournals
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.xxxxxx/draft


DRAFT
Directly using libraries like Apache Arrow (PyArrow) to work with Parquet files offers access42

to columnar efficiency and querying primitives like predicate pushdown. However, this still43

requires developers to build abstractions for database-like operations (CRUD), manage schema44

consistency across multiple files, handle serialization of complex Python objects, and orchestrate45

data updates or deletions manually.46

While powerful dataframe manipulation libraries like Pandas (Pandas, n.d.), Dask (Dask,47

n.d.), and Polars (Polars, n.d.), or embedded analytical databases such as DuckDB (DuckDB,48

n.d.), are invaluable for many tasks, they may not holistically address the specific needs that49

motivated ParquetDB. For researchers dealing with evolving, complexly nested scientific data,50

ParquetDB offers a more streamlined approach to schema evolvability and native Python object51

persistence directly within a serverless Parquet-based ecosystem. This focus distinguishes it52

from tools that might require more manual setup for schema management across multiple files,53

or lack the same emphasis on integrated metadata handling and a ‘classically serverless’ model54

for environments like HPC clusters.55

ParquetDB addresses this gap, providing a “middleware” layer built upon Python and the56

Parquet format. It offers a familiar database-like interface (CRUD operations) while leveraging57

columnar storage for compression and read performance benefits. Crucially, ParquetDB adds58

value beyond direct Parquet file manipulation by automating schema management (including59

evolution), simplifying the storage/retrieval of complex Python objects, and providing a unified60

API to manage collections of Parquet files as a single logical datastore. It supports predicate61

and column pushdown for optimization within a lightweight, serverless architecture, offering a62

pragmatic balance for scenarios demanding more than basic files but less than a full database63

system, particularly where schema flexibility and ease of use are paramount. For a comprehensive64

feature list, visit our documentation (https://parquetdb.readthedocs.io/en/latest/).65

Benchmarks66

We evaluated ParquetDB’s performance against SQLite and MongoDB using synthetic datasets67

(100 integer columns, varying record counts). Our first experiment compared write and read68

performance. ParquetDB’s creation times are competitive, performing second best behind69

SQLite as dataset size increases. For bulk read operations, ParquetDB initially lags slightly but70

significantly outperforms both competitors on larger datasets (beyond several hundred/thousand71

rows), benefiting from Parquet’s columnar efficiency (see Figure 1).72

Lang et al. (2025). ParquetDB: A Lightweight Python Parquet-Based Database. Journal of Open Source Software, ¿VOL?(¿ISSUE?), ¿PAGE?
https://doi.org/10.xxxxxx/draft.

2

https://doi.org/10.xxxxxx/draft


DRAFTFigure 1: Benchmark Create and Read Times for Different Databases. Create time is plotted on the left
y-axis, read time on the right y-axis, and the number of rows on the x-axis. A log plot is shown in the
inset.

A “needle-in-a-haystack” benchmark assessed specific record retrieval. While lacking traditional73

B-tree indexes, ParquetDB uses predicate pushdown leveraging Parquet’s field-level statistics74

for efficient filtering without full scans. It is important to note that performance advantages75

depend on the workload; for instance, complex analytical queries involving aggregations or76

returning small, highly filtered results might favor the mature query engine and indexing of77

systems like SQLite. ParquetDB excels when querying or returning substantial portions of wide78

datasets. Detailed benchmarks are in our extended paper (Lang et al., 2025).79

Installation80

For installation, please use pip:81

pip install parquetdb

For more details, please visit the GitHub repository: (https://github.com/lllangWV/ParquetDB).82

The repository contains additional examples, API documentation, and guidelines for contributing83

to the project.84

Acknowledgements85

We thank the Pittsburgh Supercomputer Center (Bridges2) and San Diego Supercomputer86

Center (Expanse) through allocation DMR140031 from the Advanced Cyberinfrastructure87

Coordination Ecosystem: Services & Support (ACCESS) program, which is supported by88

National Science Foundation grants #2138259, #2138286, #2138307, #2137603, and89

#2138296. We gratefully acknowledge the computational resources provided by the WVU90

Research Computing Dolly Sods HPC cluster, partially funded by NSF OAC-2117575.91

Additionally, we recognize the support from the West Virginia Higher Education Policy92

Commission through the Research Challenge Grant Program 2022 (Award RCG 23-007), as93

well as NASA EPSCoR (Award 80NSSC22M0173), for their contributions to this work. The94

work of E.R.H. is supported by MCIN/AEI/ 10.13039/501100011033/FEDER, UE through95

Lang et al. (2025). ParquetDB: A Lightweight Python Parquet-Based Database. Journal of Open Source Software, ¿VOL?(¿ISSUE?), ¿PAGE?
https://doi.org/10.xxxxxx/draft.

3

https://doi.org/10.xxxxxx/draft


DRAFT
projects PID2022-139776NB-C66. K.C. thanks funding from the CHIPS Metrology Program,96

part of CHIPS for America, National Institute of Standards and Technology, U.S. Department97

of Commerce. Certain commercial equipment, instruments, software, or materials are identified98

in this paper in order to specify the experimental procedure adequately. Such identifications99

are not intended to imply recommendation or endorsement by NIST, nor are they intended100

to imply that the materials or equipment identified are necessarily the best available for the101

purpose.102

References103

Allen, G., & Owens, M. (2010). The Definitive Guide to SQLite. Apress. https://doi.org/10.104

1007/978-1-4302-3226-1105

An in-process SQL OLAP database management system. (n.d.). https://duckdb.org/.106

Dask | Scale the Python tools you love. (n.d.). https://www.dask.org/.107

Guo, R. (2017). MongoDB’s JavaScript fuzzer. Commun. ACM, 60(5), 43–47. https:108

//doi.org/10.1145/3052937109

HDF5 for Python — H5py 3.13.0 documentation. (n.d.). https://docs.h5py.org/en/stable/index.html.110

Lang, L., Hernandez, E., Choudhary, K., & Romero, A. H. (2025). ParquetDB: A Lightweight111

Python Parquet-Based Database (No. arXiv:2502.05311). arXiv. https://doi.org/10.112

48550/arXiv.2502.05311113

Pandas - Python Data Analysis Library. (n.d.). https://pandas.pydata.org/.114

Parquet. (n.d.). In Apache Parquet. https://parquet.apache.org/.115

Pascal, F. (2000). Practical Issues in Database Management: A Reference for the Thinking116

Practitioner (1st edition). Addison-Wesley Professional. ISBN: 978-0-201-48555-4117

Pivert, O. (Ed.). (2018). NoSQL Data Models: Trends and Challenges (1st edition).118

Wiley-ISTE. ISBN: 978-1-78630-364-6119

Polars. (n.d.). https://www.pola.rs/.120

Welcome to the Apache Software Foundation. (n.d.). https://www.apache.org/.121

Lang et al. (2025). ParquetDB: A Lightweight Python Parquet-Based Database. Journal of Open Source Software, ¿VOL?(¿ISSUE?), ¿PAGE?
https://doi.org/10.xxxxxx/draft.

4

https://doi.org/10.1007/978-1-4302-3226-1
https://doi.org/10.1007/978-1-4302-3226-1
https://doi.org/10.1007/978-1-4302-3226-1
https://doi.org/10.1145/3052937
https://doi.org/10.1145/3052937
https://doi.org/10.1145/3052937
https://doi.org/10.48550/arXiv.2502.05311
https://doi.org/10.48550/arXiv.2502.05311
https://doi.org/10.48550/arXiv.2502.05311
https://doi.org/10.xxxxxx/draft

	Summary
	Statement of need
	Benchmarks
	Installation
	Acknowledgements
	References

