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Abstract

The growing interest in the use of algorithms-based Machine Learning for pre-
dictive tasks has generated a large and diverse development of algorithms.
However, it is widely known that not all of these algorithms are adapted to
efficient solutions in certain datasets that are in a tidy data format. For this
reason, novel techniques are currently being developed to convert tidy data
into images in order to use CNNs. TINTO offers new opportunities to con-
vert tidy data into images through the representation of characteristic pixels
by implementing two-dimensional reduction algorithms: PCA and ¢-SNE.
Our proposal also includes a blurring technique, which adds more ordered
information to the image and can improve the classification task in CNNs.

Keywords: Synthetic images, Tabular data into image, Convolutional
neural networks, Image blurring technique, Image generationk

1. Motivation and Significance

Nowadays, there is great interest in being able to use data for predictive
purposes in any field and area of application. For this purpose, there are
a large number of classical Machine Learning (ML) algorithms or based on
deep neural networks such as the classic Multilayer Perceptron (MLP), or
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the more advanced Convolutional Neural Networks (CNN) [I]. For the ML
and MLP case, a series of structured data, such as tabular or tidy data (here
on in referred to as tidy data) format, is needed [2]; and for CNNs, the data
has to be non-structured, specifically in image format [3].

In this context, one of the main contributions of this work lies in the
transposition of tidy data [2] into images with a novel preprocessing tech-
nique that represents the behaviour of tidy data in the image construction
process [4]. Similarly, there are many problems in which the development of
an MLP for tidy data does not establish a good fit and generalisation of the
model; then the use of this type of neural network for predictive purposes
is discarded [5]. For this reason, a series of frameworks are being developed
to convert tidy data into images in order to be able to use CNNs [6l [5, [7].
Extending the use of CNNs in tidy data problem solving would allow for
improved model fitting and generalisation [§].

Therefore, the use of techniques that aim to convert tidy data into images
is part of an open research area that has been developing in recent years to
extend problem solving with more advanced techniques [9], e.g., CNN [5].
Consequently, TINTO software has been created for this purpose and to
allow the academic and professional community to solve tidy data problems
with images [8]. Moreover, TINTO is primarily used to solve classification
problems in ML, i.e., binary or multiclass. This means that tidy data must
have a target that is categorical, e.g., well-known datasets such as the IRIS
dataset [10] or the indoor localisation dataset [11] used in the previous work
as successful use-case [0].

In other words, our proposal starts by transforming tidy data, consisting
of samples spatially distributed in a target, i.e., in a classical classification
problem in ML, into images to enable the implementation of the classification
process to be performed by a CNN [12] 13]. The proposal uses the methods
and mechanisms of the articles [0, [7] as the starting point for developing
the overall processing schema. In the first step of our proposed schema,
two-dimensional reduction techniques [14] are used to transform tidy data
into images: t-SNE [9] [I5] and PCA [16]. Moreover, TINTO has added the
classical painting technique known as blurring in order to represent more
ordered contextual information in the resulting image and thus improve the
process of feature extraction and generalisation of CNNs [17, 1§].

Accordingly, the main contributions of TINTO software are presented
below:

e Use of two-dimensionality reduction algorithms to convert tidy data
into images, spatial distributed data readings, namely, the t-SNE and
PCA algorithms.



e Use of the blurring painting technique to introduce contextual infor-
mation to the image, which can improve the classification process.

e Use CNNs models for binary or multiclass classification problems in
classical ML as the TINTO software allows the conversion of Tidy
Data into images.

2. Software Description

This section describes the software architecture and specifications for TINTO
framework.

2.1. Software Architecture

One of the first translations to be performed is to convert tidy data into image
data format, i.e., the corresponding sample (row) in the sampling phase (see
Table . The reader can learn more about the mathematical foundations of
the transformation process and the characteristics of the sample dataset used
in this example by consulting the scientific article [6] and by downloading the
dataset from Zenodo [I1]. The following considerations should be taken into
account when creating the images:

e The input dataset must be in CSV, taking into account the tidy data
format [2].

e The target (variable to be predicted), Y, should be set as the last
column of the dataset. Therefore, the first columns will be the features,
X.

e All data must be in numerical data type. TINTO does not accept data
in string or any other non-numeric data type.

e TINTO will create as many folders with their corresponding images in
each folder as there are targets. For example, in this case, we have 15
different targets, so TINTO will create 15 different folders, one for each
class.

Therefore, Figure [1| depicts the tidy data to image translation process.
As can be seen, tidy data are converted into image data through a two-
dimensional space in X and Y. This translation to two-dimensional space
enables us to build an image of characteristic pixels for each sample of the
dataset, i.e., each data sample is converted to a two-dimensional space.

As seen in Figure [I], the pipeline for converting each sample in tidy data
format into a two-dimensional space consists of five main processing tasks:



Table 1: Structure of the dataset in tidy data format. The first 5 columns would be the
features (Fe) and the last column would be the target. The first row is the heading of each
column.
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Figure 1: Process for obtaining the feature coordinates from the transpose matrix. It can
be seen that the tidy data are converted into a two-dimension matrix through the different
phases with their respective techniques, i.e., delimitation, translation, and so on.

1. Data dimensionality reduction: The initial matrix is transposed. Note
that each feature is represented with a different colour for presentation
purposes, although the resulting figure will consist of two channels, i.e.,
black and white. This task makes use of a dimensionality reduction
algorithm. In this case, TINTO explored two such algorithms: PCA
and t-SNE.

2. Centre of mass and delimitation: Having obtained the coordinates, the
centre of gravity of the points is determined, and the area is subse-
quently delimited.

3. Scaling and pixel positions. The matrix is transposed, scaled and the
values are rounded to integer values.

4. Characteristic pixel positions: The values obtained would be the posi-
tions of the characteristic pixels for the creation of the image pattern.

The authors from [6] provide a formal specification of the steps to obtain
the positions of the characteristic pixels from the initial tidy data. In the
following paragraphs, we describe the main software specifications in which
TINTO has been coded and analyse them.




2.2. Image Rendering Techniques

As the procedure used was to convert tidy data into images, two rendering
techniques were developed as case studies to be evaluated: one with and one
without blurring of the characteristic pixel.

Case 1: Characteristic pixels without blurring

In this case, TINTO fills in the data A,.. at their corresponding cha-
racteristic pixel positions in the matrix M. The matrix M is then converted
into an image. This is done for each A,.,. sample. All other values of the
matrix M are zeros, so they are not significant in this case.

For the creation of images from the tidy data, the characteristic pixel
position and the scale generated by the normalisation are used. Figure
shows an example of the results without the blurring technique.

Case 2: Characteristic pizels with blurring

This procedure was created empirically, based on the technique of blurring
used in the plastic arts, specifically in drawing and painting. This technique
is often used to soften and extend strokes so that the transition from intense
to faint is uniform. Then, by making an analogy with the characteristic
pixels as spots on a canvas, these spots can be blurred so that they cover
more area without losing the intensity of the original characteristic pixel.

Therefore, the use of the blurring technique of the characteristic pixels is
proposed to enlarge their area. To do this, the thickness, number, and inten-
sity of the strokes must be defined. Each stroke would be a circumference
around the pixel and the previous stroke with a thickness called distance,
represented as r; and the number of strokes or circles would be denoted
as steps, represented as C,, see Figure 2 Moreover, the intensity of this
stroke or circumference would be determined by the encompassed area of
the circumference, with the centre (the characteristic pixel) being the initial
intensity, represented as P. Additionally, the intensity fades as you move
away from the characteristic pixel.

Finally, by using this technique, it is possible to determine the step size in
which the blurring of two characteristic pixels overlaps. In this case, TINTO
experimented with two possible solutions for the representation of the scene
with overlapping pixels:

e Average value: An alternative to the above is to average the intensity
of both, being the one already in the matrix and the new one (see

Figure [3(b))).
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Figure 2: Representation of the blurring technique, where r would be the distance, P the
localisation of the characteristic pixel, and the colours would represent the intensity for
each stroke or circumference.

e Maximum: The highest scoring value pixel of the overlapping pixels
is chosen, i.e., if the value of the pixel in the matrix is lower than the
value of the incoming pixel, it is replaced; otherwise, it is kept (see

Figure [3(c)).
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(a) Without blurring.  (b) Blurring with maximum (¢) Blurring with average
value. value.

Figure 3: Image samples generated by TINTO using PCA.

2.8. Software Specifications

Having seen the steps in which TINTO performs a conversion from tidy data
into images, this section will describe the main implementation design with
the algorithmic specifications. Note that this section will expose the most
relevant Python code of TINTO framework, therefore all the Python code
and its functionality can be found in the repository [19].
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A first function in TINTO has the purpose of being able to create the
square delimitation of the resulting image, i.e., return the values, coordinates
and vertices (see Alg. [1)).

1 def square(coord):

2
3
!

1

m = np.mean(coord , axis=0).reshape ((1,2))

coord_new = coord — m

dista = (coord_-new [:,0]*%2+ coord_new [:,1]*%2) %x0.5

maxi = math. ceil (max(dista))

vertices = np.array ([[—maxi,maxi],[— maxi,—maxi]| ,[maxi,—maxi
|, [maxi,maxi]])

coord_new = coord_new — vertices [0]

vertices = vertices — vertices [0]

return coord_new , vertices

Algorithm 1: Square Delimitation

On the other hand, a function is also created to obtain the coordinates
of the matrix and fill in the positions of the features (see Alg. [2)). Note that
a conditional is created if the features are grouped in the same position.

def m_imagen (coord , vertices ,filename ,pixeles=24):

size = (pixeles ,pixeles)

matriz = np.zeros(size)

coord-m = (coord/vertices[2,0])*(pixeles —1)

coord_m = np.round(abs(coord-m))

for i,j in zip(coord_m|[:,1],coord_m[:,0]) :
matriz [int (i),int(j)] =1

if (np.count_nonzero (matriz!=0)!=coord.shape[0]) :
return coord_m, matriz, True

else:
return coord_.m, matriz, False

Algorithm 2: Coordinates in the matrix

Finally, one of the main functions of TINTO is defined, which is to be able
to add more ordered contextual information to the image through the classi-
cal painting technique called blurring (see Alg. . This function develops
the following main steps: (i) Take the coordinate matrix of the characteristic
pixels; and (ii) Create the blurring according to the number of steps taken
in a loop.

def blurring (matriz, coordinate, distance=0.1, steps=3,

amplification=np.pi, option="maximum'):
x = int (coordinate [1])
y = int (coordinate [0])
core_value = matriz[x,y]
for p in range(steps):
r_actual = int (matriz.shape[0]* distance*(p+1))



intensity=min(amplification*core_value /(np.pixr_actual
*x%2) , core_value)

lim_inf_i = max(x—r_actual —1,0)
lim_sup_i = min(x+r_actual+1,matriz.shape[0])
lim_inf_j = max(y—r_actual —1,0)

lim_sup_j = min(y+r_actual+1,matriz.shape[1])
for i in range(lim_inf_i, lim_sup_i):
for j in range(lim_inf_j, lim_sup_j):
if ((x—1)*%2 + (y—j)#*x2 <= r_actual*x2):
if (matriz[i,j]==0):
matriz [i,j]=intensity
elif (x!=i and y!=j):
if (option=—="mean'):
matriz [i,j]=(matriz[i,j]+intensity)
/2
elif (option=—"maximum"') :
matriz [i,j]=max(matriz[i,]],
intensity)
return matriz

Algorithm 3: Blurring specification

3. Illustrative Examples

In this section we will present the results that TINTO has in the generation
of images given as input a dataset in tidy data format. Therefore, first the
basic commands to launch the script in the terminal are exposed, and then
the generated images are shown.

3.1. Command Execution

Before visualising the images generated according to a dataset as shown in
Table [T} the basic guidelines for running TINTO in the command terminal
are outlined. Note that the data must be in tidy data format, all samples
must be of numerical type, and the last column must be the target [2].

TINTO has a parameter to be able to visualise all the different options
for the generation of images:

$ python tinto.py -h
where,
e python: Python run command.
e tinto.py: TINTO Python script.

e -h: Show the TINTO parameters and exit.



Therefore, the following command shows what the basic execution would
look like with the default values, i.e., the generation of images with the
characteristic pixels (no blurring), PCA as the dimensionality reduction al-
gorithm, and the image size of 20220 pixels:

$ python tinto.py "dataset.csv" "folder"

where,

e "dataset.csv": Set the path where the dataset is located in CSV
format.

e "folder": Set the path where the folder with the images will be cre-
ated.

Finally, a more complex example of image generation is shown below:

$ python tinto.py "dataset.csv" "folder" -B -alg t-SNE \
-oB maximum -px 30 -sB 5

where,

e -B: Create images with the blurring technique.
e —alg t-SNE: Select ¢-SNE as the dimension reduction algorithm.

e -0B maximum: Create the images with maximum value of overlapping
pixel.

e -px 30: Create images with a size of 30230 pixels.

e -sB 5: Expand to 5 pixels the blurring.

3.2. Image Generation

In the following, TINTO will present the samples generated using PCA and
t-SNE in each dataset, with and without the blurring technique. The same
seed was used in all evaluations for the separation of train and test data,
i.e., for the same dataset, the same conditions are used, varying only the
use of blurring and the type of overlapping. Note that we can observe the
images generated by the script. An important aspect is that it will create as
many folders as different targets that have the dataset where each folder will
contain the images generated by each sample.

Therefore, Figures [3| and 4] show the generation of three sample images
for the different cases under study, for PCA and ¢-SNE, respectively. These
sample images are clear examples of the resulting images that can be the
input to CNN.
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Figure 4: Image samples generated by TINTO using ¢-SNE.

4. Impact

As has been discussed in the previous sections, TINTO is a novel software
that has the main purpose of converting tidy data into images. Accordingly,
TINTO creates the possibility of being able to develop CNN-based models
to solve classification problems in classical ML in which either there were
solutions with very little convergence of the models or, as was the case in
many cases, they could not be solved due to poor generalisation and model
fitting. In fact, the following major impacts are expected:

TINTO is an open source software that can be easily extended or mo-
dified.

TINTO has an object-orientated structure consisting of multiple Python
modules that allow for easier debugging and reuse of codes through in-
heritance.

TINTO provides a framework for the conversion of tidy data format
into images that can be used by academia or businesses.This saves the
time needed for coding and manipulating data, and thus finding direct
solutions by extending tidy data format solutions to CNNs.

TINTO allows to convert tidy data into images mainly for classifica-
tion problems in classical ML. Hence, TINTO allows us to extend the
search for solutions of complex problems to CNNs when classical ML
algorithms or MLP did not generalise or did not approach an acceptable
solution.

TINTO uses well-documented dimensionality reduction algorithms such
as PCA and ¢-SNE in the image construction process. Note that these
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are not the only algorithms, and more of these algorithms or other
techniques can be added and studied to represent characteristic pixels
in images. With TINTO framework, this could be done very quickly
and easily by adding a few additional lines of code.

e TINTO also presents the classical painting technique called Blurring,
which allows contextual information to be added to the image in an or-
derly manner. This allows to improve, in many cases, the classification
process and, therefore, the generalisation and fitting in CNNs [6].

e TINTO performs the training and validation process of image conver-
sion in a fairly acceptable time. For example, for the Iris dataset [11]
it takes about 10 minutes, and for the data used as an example in this
paper [I1] it takes 15 minutes. Note that datasets with large amounts
of samples can take hours, this is due to the training process of the
dimensionality reduction algorithms, i.e., in this case t-SNE and PCA.

e TINTO is among the first software created to convert tidy data into
images and is based on [7] and is extended and tested as a use-case
in [6]. Moreover, another software that performs this task is the one
presented in [5]. To the authors’ knowledge, there are no further re-
levant publications and/or code on this open research line. TINTO is
left at the disposal of the community to further develop the research
line.

5. Conclusions and Open Challenges

This paper explored as its main work the development of software, called
TINTO, that allows the conversion of tidy data into images. This conversion
of structured data into unstructured data allows the use of CNNs to solve
complex problems where classical ML algorithms or a customised MLP had
shortcomings in fitting and generalisation.

To this end, two-dimensionality reduction algorithms such as ¢-SNE and
PCA were evaluated. In this context, two cases of image generation were
tested, namely: (i) using the characteristic pixels; and (ii) applying the blur-
ring painting technique.

Finally, one of the main points to develop is to be able to set up more
dimensionality reduction algorithms and to study the impact of each of them
on the generation of images. Additionally, one of the main challenges that
should be studied is the impact on the generation of patterns based on the
types of data and the distribution of these data in a dataset.
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Nr. | Code metadata description Please fill in this column

C1 | Current code version v1.1.0

C2 | Permanent link to code/repository | https://github.com/oeg-upm/
used for this code version TINTO/releases/tag/v1.1.0

C3 | Permanent link to Reproducible | https://github.com/oeg-upm/
Capsule TINTO

C4 | Legal Code License Apache License, 2.0

C5 | Code versioning system used git

C6 | Software code languages, tools, and | Python
services used

C7 | Compilation requirements, operat- | scipy, sklearn, pandas, matplotlib,
ing environments & dependencies argparse, numpy, math, pickle

C8 | If available Link to developer docu- | https://github.com/oeg-upm/
mentation /manual TINTO

C9 | Support email for questions jeastillo@fi.upm.es

Table 2: Code metadata: TINTO software-specific information

15


https://github.com/oeg-upm/TINTO/releases/tag/v1.1.0
https://github.com/oeg-upm/TINTO/releases/tag/v1.1.0
https://github.com/oeg-upm/TINTO
https://github.com/oeg-upm/TINTO
https://github.com/oeg-upm/TINTO
https://github.com/oeg-upm/TINTO
mailto: jcastillo@fi.upm.es

	Motivation and Significance
	Software Description
	Software Architecture
	Image Rendering Techniques
	Software Specifications

	Illustrative Examples
	Command Execution
	Image Generation

	Impact
	Conclusions and Open Challenges

