Actual source code: bvimpl.h

slepc-3.14.0 2020-09-30
Report Typos and Errors
  1: /*
  2:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  3:    SLEPc - Scalable Library for Eigenvalue Problem Computations
  4:    Copyright (c) 2002-2020, Universitat Politecnica de Valencia, Spain

  6:    This file is part of SLEPc.
  7:    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
  8:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  9: */

 11: #if !defined(SLEPCBVIMPL_H)
 12: #define SLEPCBVIMPL_H

 14: #include <slepcbv.h>
 15: #include <slepc/private/slepcimpl.h>

 17: SLEPC_EXTERN PetscBool BVRegisterAllCalled;
 18: SLEPC_EXTERN PetscErrorCode BVRegisterAll(void);

 20: SLEPC_EXTERN PetscLogEvent BV_Create,BV_Copy,BV_Mult,BV_MultVec,BV_MultInPlace,BV_Dot,BV_DotVec,BV_Orthogonalize,BV_OrthogonalizeVec,BV_Scale,BV_Norm,BV_NormVec,BV_Normalize,BV_SetRandom,BV_MatMult,BV_MatMultVec,BV_MatProject;

 22: typedef struct _BVOps *BVOps;

 24: struct _BVOps {
 25:   PetscErrorCode (*mult)(BV,PetscScalar,PetscScalar,BV,Mat);
 26:   PetscErrorCode (*multvec)(BV,PetscScalar,PetscScalar,Vec,PetscScalar*);
 27:   PetscErrorCode (*multinplace)(BV,Mat,PetscInt,PetscInt);
 28:   PetscErrorCode (*multinplacetrans)(BV,Mat,PetscInt,PetscInt);
 29:   PetscErrorCode (*dot)(BV,BV,Mat);
 30:   PetscErrorCode (*dotvec)(BV,Vec,PetscScalar*);
 31:   PetscErrorCode (*dotvec_local)(BV,Vec,PetscScalar*);
 32:   PetscErrorCode (*dotvec_begin)(BV,Vec,PetscScalar*);
 33:   PetscErrorCode (*dotvec_end)(BV,Vec,PetscScalar*);
 34:   PetscErrorCode (*scale)(BV,PetscInt,PetscScalar);
 35:   PetscErrorCode (*norm)(BV,PetscInt,NormType,PetscReal*);
 36:   PetscErrorCode (*norm_local)(BV,PetscInt,NormType,PetscReal*);
 37:   PetscErrorCode (*norm_begin)(BV,PetscInt,NormType,PetscReal*);
 38:   PetscErrorCode (*norm_end)(BV,PetscInt,NormType,PetscReal*);
 39:   PetscErrorCode (*normalize)(BV,PetscScalar*);
 40:   PetscErrorCode (*matmult)(BV,Mat,BV);
 41:   PetscErrorCode (*copy)(BV,BV);
 42:   PetscErrorCode (*copycolumn)(BV,PetscInt,PetscInt);
 43:   PetscErrorCode (*resize)(BV,PetscInt,PetscBool);
 44:   PetscErrorCode (*getcolumn)(BV,PetscInt,Vec*);
 45:   PetscErrorCode (*restorecolumn)(BV,PetscInt,Vec*);
 46:   PetscErrorCode (*getarray)(BV,PetscScalar**);
 47:   PetscErrorCode (*restorearray)(BV,PetscScalar**);
 48:   PetscErrorCode (*getarrayread)(BV,const PetscScalar**);
 49:   PetscErrorCode (*restorearrayread)(BV,const PetscScalar**);
 50:   PetscErrorCode (*restoresplit)(BV,BV*,BV*);
 51:   PetscErrorCode (*gramschmidt)(BV,PetscInt,Vec,PetscBool*,PetscScalar*,PetscScalar*,PetscReal*,PetscReal*);
 52:   PetscErrorCode (*getmat)(BV,Mat*);
 53:   PetscErrorCode (*restoremat)(BV,Mat*);
 54:   PetscErrorCode (*duplicate)(BV,BV);
 55:   PetscErrorCode (*create)(BV);
 56:   PetscErrorCode (*setfromoptions)(PetscOptionItems*,BV);
 57:   PetscErrorCode (*view)(BV,PetscViewer);
 58:   PetscErrorCode (*destroy)(BV);
 59: };

 61: struct _p_BV {
 62:   PETSCHEADER(struct _BVOps);
 63:   /*------------------------- User parameters --------------------------*/
 64:   Vec                t;            /* template vector */
 65:   PetscInt           n,N;          /* dimensions of vectors (local, global) */
 66:   PetscInt           m;            /* number of vectors */
 67:   PetscInt           l;            /* number of leading columns */
 68:   PetscInt           k;            /* number of active columns */
 69:   PetscInt           nc;           /* number of constraints */
 70:   BVOrthogType       orthog_type;  /* the method of vector orthogonalization */
 71:   BVOrthogRefineType orthog_ref;   /* refinement method */
 72:   PetscReal          orthog_eta;   /* refinement threshold */
 73:   BVOrthogBlockType  orthog_block; /* the method of block orthogonalization */
 74:   Mat                matrix;       /* inner product matrix */
 75:   PetscBool          indef;        /* matrix is indefinite */
 76:   BVMatMultType      vmm;          /* version of matmult operation */
 77:   PetscBool          rrandom;      /* reproducible random vectors */

 79:   /*---------------------- Cached data and workspace -------------------*/
 80:   Vec                buffer;       /* buffer vector used in orthogonalization */
 81:   Mat                Abuffer;      /* auxiliary seqdense matrix that wraps the buffer */
 82:   Vec                Bx;           /* result of matrix times a vector x */
 83:   PetscObjectId      xid;          /* object id of vector x */
 84:   PetscObjectState   xstate;       /* state of vector x */
 85:   Vec                cv[2];        /* column vectors obtained with BVGetColumn() */
 86:   PetscInt           ci[2];        /* column indices of obtained vectors */
 87:   PetscObjectState   st[2];        /* state of obtained vectors */
 88:   PetscObjectId      id[2];        /* object id of obtained vectors */
 89:   PetscScalar        *h,*c;        /* orthogonalization coefficients */
 90:   Vec                omega;        /* signature matrix values for indefinite case */
 91:   PetscBool          defersfo;     /* deferred call to setfromoptions */
 92:   BV                 cached;       /* cached BV to store result of matrix times BV */
 93:   PetscObjectState   bvstate;      /* state of BV when BVApplyMatrixBV() was called */
 94:   BV                 L,R;          /* BV objects obtained with BVGetSplit() */
 95:   PetscObjectState   lstate,rstate;/* state of L and R when BVGetSplit() was called */
 96:   PetscInt           lsplit;       /* the value of l when BVGetSplit() was called */
 97:   PetscInt           issplit;      /* >0 if this BV has been created by splitting (1=left, 2=right) */
 98:   BV                 splitparent;  /* my parent if I am a split BV */
 99:   PetscRandom        rand;         /* random number generator */
100:   Mat                Acreate;      /* matrix given at BVCreateFromMat() */
101:   Mat                Aget;         /* matrix returned for BVGetMat() */
102:   PetscBool          cuda;         /* true if GPU must be used in SVEC */
103:   PetscScalar        *work;
104:   PetscInt           lwork;
105:   void               *data;
106: };

108: /*
109:   BV_SafeSqrt - Computes the square root of a scalar value alpha, which is
110:   assumed to be z'*B*z. The result is
111:     if definite inner product:     res = sqrt(alpha)
112:     if indefinite inner product:   res = sgn(alpha)*sqrt(abs(alpha))
113: */
114: PETSC_STATIC_INLINE PetscErrorCode BV_SafeSqrt(BV bv,PetscScalar alpha,PetscReal *res)
115: {
117:   PetscReal      absal,realp;

120:   absal = PetscAbsScalar(alpha);
121:   realp = PetscRealPart(alpha);
122:   if (absal<PETSC_MACHINE_EPSILON) {
123:     PetscInfo(bv,"Zero norm, either the vector is zero or a semi-inner product is being used\n");
124:   }
125: #if defined(PETSC_USE_COMPLEX)
126:   if (PetscAbsReal(PetscImaginaryPart(alpha))>10*PETSC_MACHINE_EPSILON && PetscAbsReal(PetscImaginaryPart(alpha))/absal>100*PETSC_MACHINE_EPSILON) SETERRQ1(PetscObjectComm((PetscObject)bv),1,"The inner product is not well defined: nonzero imaginary part %g",PetscImaginaryPart(alpha));
127: #endif
128:   if (bv->indef) {
129:     *res = (realp<0.0)? -PetscSqrtReal(-realp): PetscSqrtReal(realp);
130:   } else {
131:     if (realp<-10*PETSC_MACHINE_EPSILON) SETERRQ(PetscObjectComm((PetscObject)bv),1,"The inner product is not well defined: indefinite matrix");
132:     *res = (realp<0.0)? 0.0: PetscSqrtReal(realp);
133:   }
134:   return(0);
135: }

137: /*
138:   BV_IPMatMult - Multiply a vector x by the inner-product matrix, cache the
139:   result in Bx.
140: */
141: PETSC_STATIC_INLINE PetscErrorCode BV_IPMatMult(BV bv,Vec x)
142: {

146:   if (((PetscObject)x)->id != bv->xid || ((PetscObject)x)->state != bv->xstate) {
147:     if (!bv->Bx) {
148:       MatCreateVecs(bv->matrix,&bv->Bx,NULL);
149:       PetscLogObjectParent((PetscObject)bv,(PetscObject)bv->Bx);
150:     }
151:     MatMult(bv->matrix,x,bv->Bx);
152:     PetscObjectGetId((PetscObject)x,&bv->xid);
153:     PetscObjectStateGet((PetscObject)x,&bv->xstate);
154:   }
155:   return(0);
156: }

158: /*
159:   BV_IPMatMultBV - Multiply BV by the inner-product matrix, cache the
160:   result internally in bv->cached.
161: */
162: PETSC_STATIC_INLINE PetscErrorCode BV_IPMatMultBV(BV bv)
163: {

167:   BVGetCachedBV(bv,&bv->cached);
168:   if (((PetscObject)bv)->state != bv->bvstate || bv->l != bv->cached->l || bv->k != bv->cached->k) {
169:     BVSetActiveColumns(bv->cached,bv->l,bv->k);
170:     if (bv->matrix) {
171:       BVMatMult(bv,bv->matrix,bv->cached);
172:     } else {
173:       BVCopy(bv,bv->cached);
174:     }
175:     bv->bvstate = ((PetscObject)bv)->state;
176:   }
177:   return(0);
178: }

180: /*
181:   BV_AllocateCoeffs - Allocate orthogonalization coefficients if not done already.
182: */
183: PETSC_STATIC_INLINE PetscErrorCode BV_AllocateCoeffs(BV bv)
184: {

188:   if (!bv->h) {
189:     PetscMalloc2(bv->nc+bv->m,&bv->h,bv->nc+bv->m,&bv->c);
190:     PetscLogObjectMemory((PetscObject)bv,2*bv->m*sizeof(PetscScalar));
191:   }
192:   return(0);
193: }

195: /*
196:   BV_AllocateSignature - Allocate signature coefficients if not done already.
197: */
198: PETSC_STATIC_INLINE PetscErrorCode BV_AllocateSignature(BV bv)
199: {

203:   if (bv->indef && !bv->omega) {
204:     if (bv->cuda) {
205: #if defined(PETSC_HAVE_CUDA)
206:       VecCreateSeqCUDA(PETSC_COMM_SELF,bv->nc+bv->m,&bv->omega);
207: #else
208:       SETERRQ(PetscObjectComm((PetscObject)bv),1,"Something wrong happened");
209: #endif
210:     } else {
211:       VecCreateSeq(PETSC_COMM_SELF,bv->nc+bv->m,&bv->omega);
212:     }
213:     PetscLogObjectParent((PetscObject)bv,(PetscObject)bv->omega);
214:     VecSet(bv->omega,1.0);
215:   }
216:   return(0);
217: }

219: /*
220:   BVAvailableVec: First (0) or second (1) vector available for
221:   getcolumn operation (or -1 if both vectors already fetched).
222: */
223: #define BVAvailableVec (((bv->ci[0]==-bv->nc-1)? 0: (bv->ci[1]==-bv->nc-1)? 1: -1))

225: /*
226:     Macros to test valid BV arguments
227: */
228: #if !defined(PETSC_USE_DEBUG)

230: #define BVCheckSizes(h,arg) do {} while (0)
231: #define BVCheckOp(h,arg,op) do {} while (0)

233: #else

235: #define BVCheckSizes(h,arg) \
236:   do { \
237:     if (!(h)->m) SETERRQ1(PetscObjectComm((PetscObject)(h)),PETSC_ERR_ARG_WRONGSTATE,"BV sizes have not been defined: Parameter #%d",arg); \
238:   } while (0)

240: #define BVCheckOp(h,arg,op) \
241:   do { \
242:     if (!(h)->ops->op) SETERRQ1(PetscObjectComm((PetscObject)(h)),PETSC_ERR_SUP,"Operation not implemented in this BV type: Parameter #%d",arg); \
243:   } while (0)

245: #endif

247: SLEPC_INTERN PetscErrorCode BVView_Vecs(BV,PetscViewer);

249: SLEPC_INTERN PetscErrorCode BVAllocateWork_Private(BV,PetscInt);

251: SLEPC_INTERN PetscErrorCode BVMult_BLAS_Private(BV,PetscInt,PetscInt,PetscInt,PetscInt,PetscScalar,const PetscScalar*,const PetscScalar*,PetscScalar,PetscScalar*);
252: SLEPC_INTERN PetscErrorCode BVMultVec_BLAS_Private(BV,PetscInt,PetscInt,PetscScalar,const PetscScalar*,const PetscScalar*,PetscScalar,PetscScalar*);
253: SLEPC_INTERN PetscErrorCode BVMultInPlace_BLAS_Private(BV,PetscInt,PetscInt,PetscInt,PetscInt,PetscInt,PetscScalar*,const PetscScalar*,PetscBool);
254: SLEPC_INTERN PetscErrorCode BVMultInPlace_Vecs_Private(BV,PetscInt,PetscInt,PetscInt,Vec*,const PetscScalar*,PetscBool);
255: SLEPC_INTERN PetscErrorCode BVAXPY_BLAS_Private(BV,PetscInt,PetscInt,PetscScalar,const PetscScalar*,PetscScalar,PetscScalar*);
256: SLEPC_INTERN PetscErrorCode BVDot_BLAS_Private(BV,PetscInt,PetscInt,PetscInt,PetscInt,const PetscScalar*,const PetscScalar*,PetscScalar*,PetscBool);
257: SLEPC_INTERN PetscErrorCode BVDotVec_BLAS_Private(BV,PetscInt,PetscInt,const PetscScalar*,const PetscScalar*,PetscScalar*,PetscBool);
258: SLEPC_INTERN PetscErrorCode BVScale_BLAS_Private(BV,PetscInt,PetscScalar*,PetscScalar);
259: SLEPC_INTERN PetscErrorCode BVNorm_LAPACK_Private(BV,PetscInt,PetscInt,const PetscScalar*,NormType,PetscReal*,PetscBool);
260: SLEPC_INTERN PetscErrorCode BVNormalize_LAPACK_Private(BV,PetscInt,PetscInt,const PetscScalar*,PetscScalar*,PetscBool);
261: SLEPC_INTERN PetscErrorCode BVMatCholInv_LAPACK_Private(BV,Mat,Mat);
262: SLEPC_INTERN PetscErrorCode BVMatTriInv_LAPACK_Private(BV,Mat,Mat);
263: SLEPC_INTERN PetscErrorCode BVMatSVQB_LAPACK_Private(BV,Mat,Mat);
264: SLEPC_INTERN PetscErrorCode BVOrthogonalize_LAPACK_TSQR(BV,PetscInt,PetscInt,PetscScalar*,PetscScalar*,PetscInt);
265: SLEPC_INTERN PetscErrorCode BVOrthogonalize_LAPACK_TSQR_OnlyR(BV,PetscInt,PetscInt,PetscScalar*,PetscScalar*,PetscInt);

267: /* reduction operations used in BVOrthogonalize and BVNormalize */
268: SLEPC_EXTERN MPI_Op MPIU_TSQR, MPIU_LAPY2;
269: SLEPC_EXTERN void MPIAPI SlepcGivensPacked(void*,void*,PetscMPIInt*,MPI_Datatype*);
270: SLEPC_EXTERN void MPIAPI SlepcPythag(void*,void*,PetscMPIInt*,MPI_Datatype*);

272: #if defined(PETSC_HAVE_CUDA)

274: /* complex single */
275: #if defined(PETSC_USE_COMPLEX)
276: #if defined(PETSC_USE_REAL_SINGLE)
277: #define cublasXgemm(a,b,c,d,e,f,g,h,i,j,k,l,m,n) cublasCgemm((a),(b),(c),(d),(e),(f),(cuComplex*)(g),(cuComplex*)(h),(i),(cuComplex*)(j),(k),(cuComplex*)(l),(cuComplex*)(m),(n))
278: #define cublasXgemv(a,b,c,d,e,f,g,h,i,j,k,l) cublasCgemv((a),(b),(c),(d),(cuComplex*)(e),(cuComplex*)(f),(g),(cuComplex*)(h),(i),(cuComplex*)(j),(cuComplex*)(k),(l))
279: #define cublasXscal(a,b,c,d,e) cublasCscal(a,b,(const cuComplex*)(c),(cuComplex*)(d),e)
280: #define cublasXnrm2(a,b,c,d,e) cublasScnrm2(a,b,(const cuComplex*)(c),d,e)
281: #define cublasXaxpy(a,b,c,d,e,f,g) cublasCaxpy((a),(b),(cuComplex*)(c),(cuComplex*)(d),(e),(cuComplex*)(f),(g))
282: #define cublasXdotc(a,b,c,d,e,f,g) cublasCdotc((a),(b),(const cuComplex *)(c),(d),(const cuComplex *)(e),(f),(cuComplex *)(g))
283: #else /* complex double */
284: #define cublasXgemm(a,b,c,d,e,f,g,h,i,j,k,l,m,n) cublasZgemm((a),(b),(c),(d),(e),(f),(cuDoubleComplex*)(g),(cuDoubleComplex*)(h),(i),(cuDoubleComplex*)(j),(k),(cuDoubleComplex*)(l),(cuDoubleComplex*)(m),(n))
285: #define cublasXgemv(a,b,c,d,e,f,g,h,i,j,k,l) cublasZgemv((a),(b),(c),(d),(cuDoubleComplex*)(e),(cuDoubleComplex*)(f),(g),(cuDoubleComplex*)(h),(i),(cuDoubleComplex*)(j),(cuDoubleComplex*)(k),(l))
286: #define cublasXscal(a,b,c,d,e) cublasZscal(a,b,(const cuDoubleComplex*)(c),(cuDoubleComplex*)(d),e)
287: #define cublasXnrm2(a,b,c,d,e) cublasDznrm2(a,b,(const cuDoubleComplex*)(c),d,e)
288: #define cublasXaxpy(a,b,c,d,e,f,g) cublasZaxpy((a),(b),(cuDoubleComplex*)(c),(cuDoubleComplex*)(d),(e),(cuDoubleComplex*)(f),(g))
289: #define cublasXdotc(a,b,c,d,e,f,g) cublasZdotc((a),(b),(const cuDoubleComplex *)(c),(d),(const cuDoubleComplex *)(e),(f),(cuDoubleComplex *)(g))
290: #endif
291: #else /* real single */
292: #if defined(PETSC_USE_REAL_SINGLE)
293: #define cublasXgemm cublasSgemm
294: #define cublasXgemv cublasSgemv
295: #define cublasXscal cublasSscal
296: #define cublasXnrm2 cublasSnrm2
297: #define cublasXaxpy cublasSaxpy
298: #define cublasXdotc cublasSdot
299: #else /* real double */
300: #define cublasXgemm cublasDgemm
301: #define cublasXgemv cublasDgemv
302: #define cublasXscal cublasDscal
303: #define cublasXnrm2 cublasDnrm2
304: #define cublasXaxpy cublasDaxpy
305: #define cublasXdotc cublasDdot
306: #endif
307: #endif

309: SLEPC_INTERN PetscErrorCode BV_CleanCoefficients_CUDA(BV,PetscInt,PetscScalar*);
310: SLEPC_INTERN PetscErrorCode BV_AddCoefficients_CUDA(BV,PetscInt,PetscScalar*,PetscScalar*);
311: SLEPC_INTERN PetscErrorCode BV_SetValue_CUDA(BV,PetscInt,PetscInt,PetscScalar*,PetscScalar);
312: SLEPC_INTERN PetscErrorCode BV_SquareSum_CUDA(BV,PetscInt,PetscScalar*,PetscReal*);
313: SLEPC_INTERN PetscErrorCode BV_ApplySignature_CUDA(BV,PetscInt,PetscScalar*,PetscBool);
314: SLEPC_INTERN PetscErrorCode BV_SquareRoot_CUDA(BV,PetscInt,PetscScalar*,PetscReal*);
315: SLEPC_INTERN PetscErrorCode BV_StoreCoefficients_CUDA(BV,PetscInt,PetscScalar*,PetscScalar*);

317: #endif /* PETSC_HAVE_CUDA */

319: /*
320:    BV_CleanCoefficients_Default - Sets to zero all entries of column j of the bv buffer
321: */
322: PETSC_STATIC_INLINE PetscErrorCode BV_CleanCoefficients_Default(BV bv,PetscInt j,PetscScalar *h)
323: {
325:   PetscScalar    *hh=h,*a;
326:   PetscInt       i;

329:   if (!h) {
330:     VecGetArray(bv->buffer,&a);
331:     hh = a + j*(bv->nc+bv->m);
332:   }
333:   for (i=0;i<bv->nc+j;i++) hh[i] = 0.0;
334:   if (!h) { VecRestoreArray(bv->buffer,&a); }
335:   return(0);
336: }

338: /*
339:    BV_AddCoefficients_Default - Add the contents of the scratch (0-th column) of the bv buffer
340:    into column j of the bv buffer
341: */
342: PETSC_STATIC_INLINE PetscErrorCode BV_AddCoefficients_Default(BV bv,PetscInt j,PetscScalar *h,PetscScalar *c)
343: {
345:   PetscScalar    *hh=h,*cc=c;
346:   PetscInt       i;

349:   if (!h) {
350:     VecGetArray(bv->buffer,&cc);
351:     hh = cc + j*(bv->nc+bv->m);
352:   }
353:   for (i=0;i<bv->nc+j;i++) hh[i] += cc[i];
354:   if (!h) { VecRestoreArray(bv->buffer,&cc); }
355:   return(0);
356: }

358: /*
359:    BV_SetValue_Default - Sets value in row j (counted after the constraints) of column k
360:    of the coefficients array
361: */
362: PETSC_STATIC_INLINE PetscErrorCode BV_SetValue_Default(BV bv,PetscInt j,PetscInt k,PetscScalar *h,PetscScalar value)
363: {
365:   PetscScalar    *hh=h,*a;

368:   if (!h) {
369:     VecGetArray(bv->buffer,&a);
370:     hh = a + k*(bv->nc+bv->m);
371:   }
372:   hh[bv->nc+j] = value;
373:   if (!h) { VecRestoreArray(bv->buffer,&a); }
374:   return(0);
375: }

377: /*
378:    BV_SquareSum_Default - Returns the value h'*h, where h represents the contents of the
379:    coefficients array (up to position j)
380: */
381: PETSC_STATIC_INLINE PetscErrorCode BV_SquareSum_Default(BV bv,PetscInt j,PetscScalar *h,PetscReal *sum)
382: {
384:   PetscScalar    *hh=h;
385:   PetscInt       i;

388:   *sum = 0.0;
389:   if (!h) { VecGetArray(bv->buffer,&hh); }
390:   for (i=0;i<bv->nc+j;i++) *sum += PetscRealPart(hh[i]*PetscConj(hh[i]));
391:   if (!h) { VecRestoreArray(bv->buffer,&hh); }
392:   return(0);
393: }

395: /*
396:    BV_ApplySignature_Default - Computes the pointwise product h*omega, where h represents
397:    the contents of the coefficients array (up to position j) and omega is the signature;
398:    if inverse=TRUE then the operation is h/omega
399: */
400: PETSC_STATIC_INLINE PetscErrorCode BV_ApplySignature_Default(BV bv,PetscInt j,PetscScalar *h,PetscBool inverse)
401: {
402:   PetscErrorCode    ierr;
403:   PetscScalar       *hh=h;
404:   PetscInt          i;
405:   const PetscScalar *omega;

408:   if (!(bv->nc+j)) return(0);
409:   if (!h) { VecGetArray(bv->buffer,&hh); }
410:   VecGetArrayRead(bv->omega,&omega);
411:   if (inverse) for (i=0;i<bv->nc+j;i++) hh[i] /= PetscRealPart(omega[i]);
412:   else for (i=0;i<bv->nc+j;i++) hh[i] *= PetscRealPart(omega[i]);
413:   VecRestoreArrayRead(bv->omega,&omega);
414:   if (!h) { VecRestoreArray(bv->buffer,&hh); }
415:   return(0);
416: }

418: /*
419:    BV_SquareRoot_Default - Returns the square root of position j (counted after the constraints)
420:    of the coefficients array
421: */
422: PETSC_STATIC_INLINE PetscErrorCode BV_SquareRoot_Default(BV bv,PetscInt j,PetscScalar *h,PetscReal *beta)
423: {
425:   PetscScalar    *hh=h;

428:   if (!h) { VecGetArray(bv->buffer,&hh); }
429:   BV_SafeSqrt(bv,hh[bv->nc+j],beta);
430:   if (!h) { VecRestoreArray(bv->buffer,&hh); }
431:   return(0);
432: }

434: /*
435:    BV_StoreCoefficients_Default - Copy the contents of the coefficients array to an array dest
436:    provided by the caller (only values from l to j are copied)
437: */
438: PETSC_STATIC_INLINE PetscErrorCode BV_StoreCoefficients_Default(BV bv,PetscInt j,PetscScalar *h,PetscScalar *dest)
439: {
441:   PetscScalar    *hh=h,*a;
442:   PetscInt       i;

445:   if (!h) {
446:     VecGetArray(bv->buffer,&a);
447:     hh = a + j*(bv->nc+bv->m);
448:   }
449:   for (i=bv->l;i<j;i++) dest[i-bv->l] = hh[bv->nc+i];
450:   if (!h) { VecRestoreArray(bv->buffer,&a); }
451:   return(0);
452: }

454: /*
455:   BV_GetEigenvector - retrieves k-th eigenvector from basis vectors V.
456:   The argument eigi is the imaginary part of the corresponding eigenvalue.
457: */
458: PETSC_STATIC_INLINE PetscErrorCode BV_GetEigenvector(BV V,PetscInt k,PetscScalar eigi,Vec Vr,Vec Vi)
459: {

463: #if defined(PETSC_USE_COMPLEX)
464:   if (Vr) { BVCopyVec(V,k,Vr); }
465:   if (Vi) { VecSet(Vi,0.0); }
466: #else
467:   if (eigi > 0.0) { /* first value of conjugate pair */
468:     if (Vr) { BVCopyVec(V,k,Vr); }
469:     if (Vi) { BVCopyVec(V,k+1,Vi); }
470:   } else if (eigi < 0.0) { /* second value of conjugate pair */
471:     if (Vr) { BVCopyVec(V,k-1,Vr); }
472:     if (Vi) {
473:       BVCopyVec(V,k,Vi);
474:       VecScale(Vi,-1.0);
475:     }
476:   } else { /* real eigenvalue */
477:     if (Vr) { BVCopyVec(V,k,Vr); }
478:     if (Vi) { VecSet(Vi,0.0); }
479:   }
480: #endif
481:   return(0);
482: }

484: /*
485:    BV_OrthogonalizeColumn_Safe - this is intended for cases where we know that
486:    the resulting vector is going to be numerically zero, so normalization or
487:    iterative refinement may cause problems in parallel (collective operation
488:    not being called by all processes)
489: */
490: PETSC_STATIC_INLINE PetscErrorCode BV_OrthogonalizeColumn_Safe(BV bv,PetscInt j,PetscScalar *H,PetscReal *norm,PetscBool *lindep)
491: {
492:   PetscErrorCode     ierr;
493:   BVOrthogRefineType orthog_ref;

496:   PetscInfo1(bv,"Orthogonalizing column %D without refinement\n",j);
497:   orthog_ref     = bv->orthog_ref;
498:   bv->orthog_ref = BV_ORTHOG_REFINE_NEVER;  /* avoid refinement */
499:   BVOrthogonalizeColumn(bv,j,H,NULL,NULL);
500:   bv->orthog_ref = orthog_ref;  /* restore refinement setting */
501:   if (norm)   *norm  = 0.0;
502:   if (lindep) *lindep = PETSC_TRUE;
503:   return(0);
504: }

506: #if defined(PETSC_HAVE_CUDA)
507: #define BV_CleanCoefficients(a,b,c)   ((a)->cuda?BV_CleanCoefficients_CUDA:BV_CleanCoefficients_Default)((a),(b),(c))
508: #define BV_AddCoefficients(a,b,c,d)   ((a)->cuda?BV_AddCoefficients_CUDA:BV_AddCoefficients_Default)((a),(b),(c),(d))
509: #define BV_SetValue(a,b,c,d,e)        ((a)->cuda?BV_SetValue_CUDA:BV_SetValue_Default)((a),(b),(c),(d),(e))
510: #define BV_SquareSum(a,b,c,d)         ((a)->cuda?BV_SquareSum_CUDA:BV_SquareSum_Default)((a),(b),(c),(d))
511: #define BV_ApplySignature(a,b,c,d)    ((a)->cuda?BV_ApplySignature_CUDA:BV_ApplySignature_Default)((a),(b),(c),(d))
512: #define BV_SquareRoot(a,b,c,d)        ((a)->cuda?BV_SquareRoot_CUDA:BV_SquareRoot_Default)((a),(b),(c),(d))
513: #define BV_StoreCoefficients(a,b,c,d) ((a)->cuda?BV_StoreCoefficients_CUDA:BV_StoreCoefficients_Default)((a),(b),(c),(d))
514: #else
515: #define BV_CleanCoefficients(a,b,c)   BV_CleanCoefficients_Default((a),(b),(c))
516: #define BV_AddCoefficients(a,b,c,d)   BV_AddCoefficients_Default((a),(b),(c),(d))
517: #define BV_SetValue(a,b,c,d,e)        BV_SetValue_Default((a),(b),(c),(d),(e))
518: #define BV_SquareSum(a,b,c,d)         BV_SquareSum_Default((a),(b),(c),(d))
519: #define BV_ApplySignature(a,b,c,d)    BV_ApplySignature_Default((a),(b),(c),(d))
520: #define BV_SquareRoot(a,b,c,d)        BV_SquareRoot_Default((a),(b),(c),(d))
521: #define BV_StoreCoefficients(a,b,c,d) BV_StoreCoefficients_Default((a),(b),(c),(d))
522: #endif /* PETSC_HAVE_CUDA */

524: #endif