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1 INTRODUCTION

1 Introduction
quantity

1.1 Notations

We introduce here some notations. Let p and p be two probability distributions on RY,
q € N*, let

tr(A) = 2L, aii.

1B = (3, 58, 02)

Sft={MeMgy|M=M",(VeeRI, Mz =X zx) = X>0}

[ ]
D=

KL(p[5) = B, [log (23]

e BOC = (dij)i<i<m,1<j<ks dij = bij X ¢ij

1.2 Problem

In ecology or genomics, it is usual to deal with non Gaussian observations (number of
species, number of genes, etc.). A typical example is the raw single-cell transcriptomic
count distribution, aiming to understand the co-variations between the activity of each
gene (number of times the gene is expressed) in the cell. The Gaussian setting provides
a canonical way to model such dependencies, but cannot be applied to count data. The
Poisson lognormal model allows us to do so. We focus on two different inference approaches:
a variational algorithm that infer an approximate maximum likelihood in Section 2 and a
Monte-Carlo approach that estimates the gradients of the log likelihood in Section 3. The
variational inference has already been studied in Chiquet et al. (2018), we study it again with
the aim of finding the better maximum likelihood approximation in the shortest possible
time.

1.3 Previous work

The following two paragraphs can be found in Chiquet et al. (2018).

The Gaussian setting is obviously convenient as the dependency structure is entirely encoded in the
covariance matriz. In many applications (Royle and Wikle (2005), Srivastava and Chen (2010)) Gaussian
models need to be adapted to handle specific measurement types, such as binary or count data. For count
data, the multivariate Poisson distribution seems a natural counterpart of the multivariate normal. However,
no canonical form exist for this distribution (N. L. Johnson, 1997), and several alternatives have been
proposed in the literature including Gamma-Poisson (Nelson, 1985) and lognormal Poisson (Aitchison and
Ho, 1989). The latter takes advantage of the properties of the Gaussian distribution to display a larger

panel of dependency structure than the former, but maximum likelihood-based inference raises some issues
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as the MLE of the covariance matriz is not always positive definite. One main issue of non-Gaussian
setting arises from the fact that their conditional distribution is often intractable which hampers the use of
an Expectation-Minimization (Dempster et al., 1977) (EM) strategy.

Variational approzimations (Jordan et al. (1999) Wainwright and Jordan (2008)) have become a stan-
dard tool to approzimate such conditional distributions. Karlis (2005) uses such an approzimation for the
inference of the one-dimensional Poisson-lognormal model and derives a variational EM (VEM) algorithm.
Hall et al. (2011) provide a theoretical analysis of this approzimation for the same model and prove the con-
sistency of the estimators. Indeed, even the conditional distribution of one single hidden coordinate (given
allothers) is unknown, which makes regular Gibbs sampling inaccessible. As a consequence, Lee and Seung
(2001) use moment estimates, whereas, in a Bayesian context, Li and Tao (2010) resort to a variational
approximation of the conditional distribution.

Looking for the Maximum likelihood Estimator (MLE) is an alternative to variational
approximation. It is challenging since the denominator of the conditional distribution (dis-
tribution of the latent variables given the observations) is unknown. Numerical integration
is possible for small dimensions (Williams and Ebel (2012), Izsak (2008)) but unreachable
for dimensions bigger than 4. Aitchison and Ho (1989) used Newton-Raphson algorithm
to obtain the MLE in dimension 4. Silva et al. (2019) used the PLN model for clustering
Transcriptome Sequencing Data using MCMC methods in dimension 18 but the running
time has not been made public. In a bayesian setting, Wang et al. (2020) used it for
crash prediction, applying the Integrated Nested Laplace Approximation (INLA) approach
proposed by Rue et al. (2009) to carry out the Bayesian inference.

1.4 The Poisson lognormal (PLN) model

We introduce here the Poisson lognormal (PLN) model (Aitchison and Ho, 1989). Let
n,p,d,q € N4, We consider:

encels(i=1,...,n)
e pgenes (j=1,...,p)
e n measures X; = (ZTin);<p<q : Xin = given descriptor (covariate) for cell 4.

e n measures Y; = (Yjj)1<j<p @ Yij corresponds to the number of times the gene j is
expressed in cell 7.

We assume that for all 1 <1i < n, the observed abundances (Yj;) are independent

conditionally on a latent variable Z; € RP such that :

I<j<p

Wi ~ N (07 Iq)
Zi = BT X; + CW; (1)
(Yij | Zij) ~ P (exp (0ij + Zij))
where O = (0;5)1<i<n,1<j<p are known offsets, 5 = (Br;j)1<k<d,1<j<p is an unknown re-
gression parameter and C' € RP*? (unknown) sends the latent variable W; from a space of
dimension ¢ to a space of dimension p. For iy # i1, we assume W, L W;, so that Y;, L Y.

We denote Y € R™*P (resp. X € R"*?, Z € R"*P) the matrix obtained by stacking the Y;’s
(resp. X;, Z;) in line.
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Note that mulitplying C' by an orthogonal matrix does not modify the model, so that C
is not identifiable. The unknown (and identifiable) parameter is = (X, 3), where ¥ = CC'T
is the covariance matrix of each Z;. The dimension ¢ < p is a hyperparameter that also
needs to be tuned. We will consider two very different cases :

¢ pb—q
® q<p
When p < ¢, the model is called PLN-PCA (PCA for Principal-Composent-Analysis)

since ¥ is a rank ¢ matrix in a space of dimension p (X = CCT has rank at most ¢ since
C' € RP*?). We can either see the latent variables as Z; or Wj;, both being equivalent since
the variables Z; are (unseen and) directly derived from W;. An equivalent model that would
see Z as latent variables would be the following:

Zi ~N(BTX;, %)
Yij | Zij ~ P (exp (015 + Zij))

(2)

When p = ¢, we will prefer to see Z; as latent variables, since Z; will be Gaussian with
a positive definite covariance matrix, whereas when p < ¢, we will prefer to see W as latent
variables.

1.5 Inference approaches
Our goal is to infer the model parameter by maximizing the log likelihood. We want to
compute

0 = argmax, log pp(Y) = argmax, logf po(Y, W)dW (3)
R4

where pg(Y) = po(Y1,Y2,...,Ys) = [ [ pe(Yi). Since the model depends on unobserved
latent variables, we want to apply the EM algorithm. However, the integral in (3) being
intractable, we can neither rely on the EM algorithm nor simple gradient ascent methods.
We consider two different approaches to address the issue:

e Variational EM (Section 2)

o Gradient ascent methods based on Monte-Carlo (MC) Estimation (Section 3)

2 Variational Expectation Maximisation

A variational inference for the PLN model has already been studied in Chiquet et al. (2018).
We study it once again aiming at finding a good approximation for large n and large p,
such as n = 10000, p = 2000 in the shortest possible time.

For this section, we will suppose p = q.
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2.1 Expectation-Maximisation

Given an initalisation §°, the Expectation-Maximisation (Dempster et al., 1977) (EM)
algorithm alternates between two steps : the E step and the M step. The E step aims at
computing some moments of the complete log likelihood given the data:

Egt [logpe(Y, Z) | Y]

The M step consists in maximizing this quantity with respect to 6 :
0"+ = argmax Eg: [log pe(Y, Z) | Y]
0

The main property of this algorithm is the following :

log pge+1(Y) = log pye (V)

EM requires to compute the following :

Egt [logpg(Y,Z) | Y] = Egt [logpg(Y | Z) | Y] + Eg: [log pp(Z) | Y]

The resulting integral is intractable because of the unknown density py(Z; | Y;). Karlis
(2005) suggests numerical integration but this approach is computationally too demanding
when dealing with even a moderate number of variables. Monte-Carlo integration is possible
but we don’t deal with it in this thesis. We thus choose a variational strategy to compute
it.

2.2 Variational EM

Variationnal inference (Jordan et al., 1999) aims at approximating pg(Z | Y) with some
law ¢*(Z) € Q from which we can compute the expectation, where Q is a set of probability
distributions we define. Variational inference makes it possible to do inference, but we are
giving up some accuracy substituting pg(Z | Y') with ¢*(Z2).

We find ¢* by maximizing the Evidence Lower BOund (ELBO), that is :

7 = argmaxJy (0, q)
qeQ
Jy(0,q) : =logpe(Y) — KL [q(Z)|pe(Z | Y)]
where KL is the Kullback-Leibler divergence between two probabilities. We can rewrite
the the ELBO as :

Jy(0,q) =logpe(Y) — KL [q(Z)|pe(Z | V)]
= logpe(Y) — Eq [log [¢(Z)/pe(Z | Y)]]
q(Z)pe(Y)
10gP0(Y) { gm]

= logpg(Y) — Ey[log q(Z)] — Eq [log pg(Y)] + Eq [log pe(Y, Z)]
= [E, [log pg(Y, Z)] —E4[log ¢(Z)]
[
entropy H(q)

The Variational EM (VEM) consists in alternating between two steps :
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e VE step: update ¢

¢ = argmaxJy (0", q) = argmin KL [¢(Z)|pen (Z | V)]
qeQ qeQ

o M step: update 6

0+ — arg maxJy (0, ¢"V) = arg max E i+ [logpe(Y, Z)]
0 0

2.3 Variational EM for PLN
2.3.1 Choice of the class distribution

To apply Variational EM for the PLN model, we only need to define the set of distributions
Q and derive the corresponding VE and M steps. Intuitively, should be complicated enough
to approximate the data, but easy enough to have a computable ELBO. The Z; are gaussians
in the latent space, so it stands to reason that Z;|Y; would be well Gaussian-approximated.
We thus consider

QGauss = 1q¢ = (q1,---qn) ¢ ~ N (M;,diag(S; © S;), M; € RP| S; € RP)} (4)

where diag(S; ® S;) denotes a diagonal matrix where the diagonal is S; ® S;. Choosing
a diagonal covariance in (4) implies that the (Z;j)1<j<p are independant under g;. It
is natural to have this property since it is already the case under py(Z;). However, the
dependency inherent to Y; may incur dependency in Z;|Y;, but adding dependencies inside
the variational parameters would be considerably more costly and wouldn’t improve much
the accuracy of the approximation.

Fig 1 displays the density of the posterior for some random parameter C' and f3, to show
that a Gaussian approximation would fit. We can do so since we can derive the density
distribution, ignoring a multiplication factor. Let 1 < ¢ < n. Thanks to the Bayes rule :

vy P (Yi | Zi) p(Zi)
polZi | Y) = po(Ys)

o po (Yi | Zi) p(Z;)

/4 1 B
oC exp (Z —exp (Oij + Zij) + Yij (Oij + Zij) — §(Zz — ﬁTXi)TZ I(Zi — BTXZ)
j=1

2.3.2 Explicit expressions

2.3.2.1 ELBO Once we have chosen the class Q, we only need to derive the M et VE
step. To derive the M (resp. VE) step, we will compute the gradients of the ELBO and
look for the maximum when ¢ (resp. ) is fixed. Let 6 = (X,3),% € S,, 8 € R¥*P. Let’s
compute the ELBO Jy ,(Y). We split the ELBO in three terms :

Jo.q(Y) = Eq[logpg(Y | Z)] +Eq [logpe(2)] + H(q)
J1 Jo J3
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Posterior distribution Gaussian approximation distribution

Figure 1: Comparison of the posterior distribution and Gaussian approximation in two di-
mensions. On the left the posterior distribution, on the right, the Gaussian approximation.
We took p = q = 2.

07

06

05

04

03

02

01

Figure 2: Two examples of Gaussian approximation in one dimension. On the left, the
density is very spiked, on the right it is more smooth. We took p = ¢ = 1 and used scipy
integration (Virtanen et al., 2020) to compute the normalizing factor for similar scales in
both plots.

10
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Ji = ZEq [logpo (Y; | Z)]
= ZIEq [log pe (Yi | Zi)]
= ZEq [log po (Yij | Zij)]
5]
= > Eq[Yij (05 + Zij) — exp (0i; + Zij)] + cst
i,J

where cst denotes some amount that does not depend on the parameter 6 or q.

Since under ¢, Z;; ~ N (M;;, S’?j)

)2
Bq[Zij] = Mij - Eq[exp (Zij)] = %exp (M + (S;) >

So that

1 Sij)?
J1 :Z}/Z-j (Oij +Mij) — §exp <0ij +Mij + ( Z2j) ) + cst

.3

1
=1 <Y®(O—|—M)—2exp <O+M—|— SC;S>> 1, +cst

Where we have denoted M = (M;j)i<i<ni<j<p, S = (Sij)i<i<ni<j<p-, and 1, is a
vector of dimension n full of ones. The exponential is applied component-wise on the last
equation.

To compute (3), note that if X ~ Ny (u,X), and f its probability density, then

H(f) = E [log f(X)] = log ( <2we>N\zr)

So that
Js=H(q) = ZH(%)

= Ylog <\/(27re)1” |diag(S; © sl-)|)
1
=3 Zlog |diag(S; © S;)| + est
1
= §Zlog5i2j + cst
ij

1
= 51; log(S ® S)1, + cst

where the log is applied component-wise on the last equation.

Jo = Eq [log py(Z)] ZEq [log pe (Z:)]

1
_% log |2] + ZE‘I {—2(21- — ﬁTXi)TEfl(Zi - BTXZ-)} + cst

11
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We introduce V' ~ N (p,A), pe RP, A € S, and we want to compute E [VTE_IV]
We denote =12 the square root Matrix of £ 1. It exists since ¥~ ! € S;Jr.

E[VIS V] —E|v s e 12y |
_E {(E_WV)T (2—1/2v)]
~ B[z Y2y
Let V =212V, V~N (z—l/m 2—1/2/\2*%)
E[V's~V] = E|V|3
- SE7;
j
= Zvar (173)2 +E [‘7]]2
;

B B B 2
:;(2 12\ 1/2) n (Z‘, 1/2u>j

—tr (271/21\2*1/2) " Z ((Ej—"l/Q)TM>2
SCCRUED) (=) )

Since under q, Zz' — X;ﬁ ~ N(MZ — 5TX1', Sz ® SZ)

JJ

2
- _721:1" 1Sie8) - ;2 <<E;'1/2>T (M; — BTXz‘)> - glog|2| + cst

4,7

- _,tr ( (25 @S)) Z (2*1/2(M - Xﬁ))L (2*1/2(M _ X,B))i’j - glog S| + cst

2%
I YSieS| | - L (2—1/2(M - XB)T(M - Xﬁ)E_m) — D log D] + est
2 — 2 2

= —% tr (7! (diag(1, (S©S)) + (M — XB)" (M — XB))) — glog |3S| + est

We then have :

Jo, (V) =1] <Y®(O+M)—;exp <O+M+ S;)S) +;log(S®S)) 1
(5)

— —tr (27! (diag(1](S® S)) + (M — XB)T (M — XB))) — g log |%| + est

This function is concave with respect to 6 when (M, S) are fixed, and concave with
respect to (M, S) when 6 is fixed. See Chiquet et al. (2018) for a proof.

12



2.3 Variational EM for PLN 2 VARIATIONAL EXPECTATION MAXIMISATION

2.3.2.2 M and VE steps To derive the VE and M step, we thus need to compute the
gradients and perform a gradient ascent if we do not have an analytical form.
The parameters of this function are (3,3, M,S). Taking S as parameter instead of
52 = S S allows us to avoid constraints of positiveness.
The M-step is straightforward as we have analytical forms for § and X:
1

t+1) 2 1 O _ X, (MO — x5)T + 59
) = 23 (O - X8y (M - xB)] +5(")

,8(t+1) _ (XTX>_1XTM(t)

We don’t have any closed form for the VE step. Here are the gradients with respect to
the variational parameters.

VMJz—MZl—exp(O—i-M—i—S(;S)—i-Y
SOS 11
©) >+

1 T
VSJ:_ilnlpDEfl_SG)eXp (O+M+ 2 §§

We denoted Dy—1 the diagonal matrix composed of the diagonal of ¥~!. The exponen-

tial is applied component-wise, as well as the division %

2.3.3 Different parametrisations

We can define another model equivalent to (1) :

Wi ~ N (O) Iq)
Zi = CW; (6)
Yvij | Zij ~ P (exp (OU + BTJXZ + Zij))
This model is stricly equivalent from a mathematical point of view, but different from
an algorithmic point of view. Indeed, the variational approximation is done on the variable
Z;, and it can either be centered in 0 or BT X;. In other words, the variational parameter

M does not approximate the same mean. Here is the ELBO for Parametrisation (6) (the
computation is the same as in Parametrisation (1)):

n 1 _ B
Joq(y) = — 9 log |¥] — ixmjil Ui + tr (E 15’2-)
i

1
+ Z —5 exp <Oij + $fﬁj + mg; + [51]3] /2) + }/ij (Oij + QZITﬁ] + mij) (7)
17]

1
+2;log|(S®S)i|+cst.

One major difference that comes up is the non-existence of an analytic form for 5. Thus,
if we chose the parametrisation centered in 0,, the M-step must be done with a (costly)
gradient ascent. We saw here two differents parametrisations, but we can also change the

13
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arguments of the ELBO as (C, 8, M, S) instead of (X, 8, M, S). If we do so, we can have
another parametrisation :

Zi ~ N(0p, Ip)
Yij | Zi ~ P (exp (03 + 2] B + CjTZi))

This parametrisation does not admit any analytical forms.

(8)

2.3.4 Analytical forms importance and Gradient Ascent

Depending on the parametrisation and the parameter choice, we can have none, one or two
analytical forms. We want to find the faster and more accurate one.

The function defined in (5) is only jointly concave. We can show that it is the case
for any parametrisation. This being said, we did not know if we would find a maximum
and if we do, would it be a global one 7 Playing with all the different parametrisations,
we were hoping to find one that finds better local maxima. After some tests, we found out
that a rigorous VEM was quite inefficient. Doing each VE and M step very accurately is
not productive. Doing between 1 and 15 gradient iterations for each step is enough, we
do not need to spend precious time finding the maximum at each step, a rough estimate
works well. As a result, we added an hyper-parameter that controls the number of gradient
iterations we do at each step.

One interesting model would consists in updating all parameters simultaneously, com-
pletely forgetting the alternation of steps. We believed that the smooth trajectory of a
gradient ascent would be more efficient. In other words, we believed that the analytical
forms updates would be too jerky and end up in a bad local maxima.

2.3.5 Framework used

We used Pytorch Framework (Paszke et al., 2017) to compute the gradients using automatic
differentiation. However we also implemented the gradients ourselves as a sanity check.
Once the algorithms were implemented, we needed an optimiser, such as the Stochastic
Gradient Descent. There exists more sophisticated optimisers that are faster than others,
depending on the data. We had to find the better one. We tried every optimiser of
Pytorch and found out that Rprop (Riedmiller and Braun, 1993) was the faster one for
every parametrisation.

2.4 Data simulation and evaluation
2.4.1 Data simulation

We simulated data according to (1). The latent variables are thus available since simulated,
which is not the case in practice:

Zi ~N(BTX;,cCT)

The Maximum Likelihood Estimator (MLE) in the latent layer of the model parameters,
namely SyrpE1at and X g lat, are thus available. Here are the explicit expressions :

Burels = (XTX)71XTZ

14
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- MMLE,lat)T

1 n
Y MLEJat = — Z — pmre)(Z;

3

where pypEat = %Z?:l Z;. The simulated data coming from (1) is only noisy latent
variables. Thus maximising the likelihood of the simulated data will probably end up
with parameters further from the true parameter than (Sa/1E lat, M LE lat). Moreover, the
exponential makes it more difficult to distinguish low latent variables values due to the
exponential. For example, let 1 <i<n,1<jg<j1 <p

P(Yij, ~ 0.95

=0,Y; =0|Z;, = —3,Z;j, = —12) = exp(—exp(—3) — exp(—12))
However, the accuracy is improved for large latent variables values. For example, it is

easier to distinguish 3 and 3.5 after an exponential transformation :
E[Y;J’Zz] = 3] ~ 20
2.4.2 Evaluation of performances

We choose the Mean Squared Error (MSE) between our estimate 0 and the true parameters
0* to evaluate the estimates :

1 &2

MSE(8" - 8) = o Z Z Bii — Brj)”
1 P P

MSE(X* —3%) = = Z Z Sk — Sks)?
k=1j=1

Note that when the data is not simulated, we cannot compute those errors since we
don’t know #* = (5*,X*). A more natural metric would be the log likelihood. we cannot
compute it but we can estimate it, as we will see later in 18.

2.5 Results and discussion

We discriminate two models comparing their ELBO. We tried 6 different models in total.
Note that only the model number 1 does the M step perfectly, as it updates the model
parameters with an analytical form. Also, the number 2 and 5 update the four parameters
alltogether, forgeting the alternation of VE and M step. The other ones uses between 1
and 15 gradient steps for each M and VE steps. Here is the summary of our trials :

Parametrisation Model Mean of the | Variance of the Argument Analytical form | Analytical
ID latent variable | latent variables | for the variance for g form

both closed, X3, % Xp ccT by v v

1 No closed, X3,C XA cC' C X X

Y closed, 0,2 0 O b v X

6 Y closed, X3, % Xp ccT by v X

No closed, 0, I, 0 1 C X X

8 B closed, X3,C XpB cct C X v

15
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We launched all the model first for n = 1000,p = ¢ = 200 to compare them. We first needed
to choose the right hyperparameters for each model such as :

e optimiser
e Learning rate
e Number of gradients steps required for each M and VE steps (if needed).

Fig 3 displays the result of the algorithm for each optimiser. The optimiser choice is straight-
forward since we found that Rprop (Riedmiller and Braun, 1993) was much faster than the other
ones for every model. We then performed a grid search to find both other best hyperparameters.

Fig 4 displays the result of the algorithm for each parametrisation. Looking at the first two
rows, we see clearly two groups. It turns out that using a parametrisation centered in X3 is much
more efficient. Every model that uses this parametrisation converges in more or less the same
amount of time.

On the one hand, bad estimation of the parameter does not mean low ELBO. Indeed, we can
see a much higher ELBO for some models ("X closed, 0,X" and "No closed, 0,I," at about 55
s) than other ("No closed, X3,C", "Y closed, X3,%X" and " f closed, X3,C " at about 4s),
whereas the MSE is much lower for the second group. On the other hand, if models share the same
parametrisation, then high ELBO means good estimation of the parameters. This means that we
can compare the ELBO between models that shares the same parametrisation.

As we can see, using analytical forms for both ¥ and  performs very well. The one that uses
a gradient ascent on all the parameters and thus no analytical forms performs badly. We were
expecting the opposite. On (a) we see clearly the analytical updates, since "X closed, X3, X" does
a big step towards the true parameter. It is also true for 8 in (b) for "j closed, X3,C". As a
result, "both closed, X3, %" is very fast since doing both big steps. It does not fall into bad local
maxima. Note that if we launch the models for 500 more seconds, the parameters of each model
converges close to the true parameter. We launch the same models for n = 10000 and p = 2000,
but most of them were not very robust to large p, so we decided to plot only the one that performs
best (Fig 6) ("X closed, X3,%"). "both closed, X3, X" performs very well for large n and large p
as we can see on Fig 6. It reaches rapidly a local maximum, close to the MLE in the latent layer.
The time of convergence is about a hundred seconds, which is great for this amount of data. Note
that a GPU has been used.

2.6 PCA parametrisation

When p becomes large, computing and inverting a p X p matrix becomes costly. Switching to a PCA
parametrisation with ¢ < p seems to be a good idea to bypass this issue. However, from all the
models, only "No closed, 0,I," is easily adaptable to the PLN-PCA case (p < ¢). Indeed, all the
other ones requires CC'T invertible, and thus preventing us to compute the log of the determinant
(such as in (5)) since X = CCT has rank at most ¢ and is thus not invertible. Unfortunately, this
model converges to the true parameter very slowly, even when p is low. We thus need to change
the inference approaches. Moreover, the variational approach does not try to infer the M LE, but
something close to the M LE (in practice, since we don’t have any theoretical results of convergence
for variational inference). Thus, we cannot have any confidence intervals. Looking for the MLE
would allow us to do so.
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2.6 PCA parametrisation 2 VARIATIONAL EXPECTATION MAXIMISATION
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Figure 3: Simulation with n = 1000,p = ¢ = 200,d = 2 with the parametrisation "both
closed, X j3,%’ with different optimiser.The learning rate of each optimiser has been tuned.
We see that Rprop performs better than the others.
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2.6 PCA parametrisation 2 VARIATIONAL EXPECTATION MAXIMISATION

MSE (Z — )
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MSE (8 — B)
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—— Iclosed 0,I
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No closed, 0,1,
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00 - No closed, 0,1,
ok - B closed, XB,C
D 10 0 30 40 50 &0
Seconds

Figure 4: Comparison of all the different models for simulated data (n = 1000, p = 200,d =
2). We took blockwise symmetric matrices for 3 (see Fig 5), and Gaussians random numbers
for 5. (a) and (b) show the error evolution evolution with respect to the model parameters.
(c) shows the ELBO, the only metric available in practice. We applied a log transformation
for a clear plot. A GPU has been used.
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3 GRADIENT METHODS

Figure 5: True parameter ¥ took for the simulation of the data. In practice the matrix
contains blocks, similar to this matrix.

3 Gradient methods

In this section, we will try to infer the MLE, that is :

argmax log pg(Y') = argmax Z log po(Y2) 9)
0 0

i=1
We will infer the MLE using gradient methods, based on the estimation of the gradients of the
objective function.

3.1 Gradient computation

We set
bo : RIR*
Wi po(W;|Y;)
the posterior law. In the following, |.| denotes ||.||2.

Proposition 3.1. The gradient of the log likelihood has the following form :

X [Yi —exp (0; + BT X,) By, [¢€W+]]" )
YiEs, [W'] — exp(O; + BT X;)Ejp, [exp (CW;) W,T]

7

Vo logps(Y;) = (

Proof 3.1. We assume we can swap integral and gradient in the following computation.
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MSE (Z — %)
—— both closed, X, T
=== MLE latent layer
0 0 40 &0 ) 100
Seconds
MSE (B —B)
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Figure 6: Simulation for n = 10000, p = 2000 for "> closed, X5, %". A log transformation
has been applied on (c).
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3.1 Gradient computation 3 GRADIENT METHODS

Vo logpy(Yi) v;fé(,?)
Vo §po(Yi | Wi)p(W;)dW
po(Y)
_ § Vope (Y[ Wi)p(W;)dW,
po(Yi)
_ § (Vologpe(Yi | W3)) pe(Yi|W:)p(W;)dW;
po(Y:)

_ o P (Ya W) p(W3)dW;
= J(Va log pe(Yi | W2)) Po (Yo

_ f Vo log po(Y; | W)pe(W,)dIV,

=E;, [Vologpe(Yi | Wi)]

We used the Bayes rules at the second last line. The gradients with respect to 0 is only the
concatenation of the gradients with respect to 8 and C'.

Vo logpy(Y;) = <§§112§2;Z((Y)))

_ (Eﬁe [V logpe(Y | Wi)])
Eg, [V logpe(Yi | Wi)]

Let us justify the swap between integral and gradients. We need to justify two swaps :

/\

s

Vi [ pal¥s | WpW)Ws = [ Vool | WopW Y, (10)

Ve [ pal¥s | WOpWdw; = [ Sape(¥: | Wop(w:)aw; ()
Now, note that
~ 1
pg()/i | Wz)p(Wl) = Cexp (2”Wz|2 — 1; exp(Oi + ﬂTXi + CWz) + )/ZT(Oz + ﬂTXi + CWZ))
where C € RT. We will use the dominated convergence theorem to justify the swap. Since
0 — pe(Y; | W)p(W) is C for all W € R? (all the functions are either linear or exponential),to
gustify (10) (the same is true for (11), substituting 8 with C in the following inequation), we only

need to prove the existence of a function h € L' such that :

po(Yi | W)p(W) < h(W) VB, W

log(pe (Yi|W)p(W)) + %HWHQ = log(C) — 1) exp(0; + BT X; + CW) +Y;" (0; + BT X; + CW)
p

IOg Z ij Oz] + XTﬁJ + CTW) - exp(Oij + XlTﬂJ + CJTW)

For a = 0, the function x — ax — exp(x) being bounded from above on R by some constant K, ,
we get (setting x = O;; + X' B.; + C’JTVV,oz =Y, :

p
1
po(Yi|[W)p(W) < C exp( Z v, —5IWI*) e L!
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3.1 Gradient computation 3 GRADIENT METHODS

so that (10) (and (11)) holds.
Now, we need to derive the log likelihood of Y; given W; in order to compute its gradient and
then the expectation. First,

Do (Yi | Wz) = Do (Yij | Wl)

s

<.
I
ful

1

v &P (—exp (O35 + Zij)) exp Oy + Zij)"
ij

Il
'::]@

1

J

So that the log likelihood given the latent variable is the following :

p
log po (Yi | W;) = Z —log (Vi) — exp (0 + Zij) + Yij (Oij + Zi)

Let’s compute the gradient with respect to 3. We see the vectors of size n as a matriz of dimension
(n,1).
We set A = O; + CW; and

h:ﬁngeXp(ﬁTXi—&—A)
Letl1<k<d1<Ii<p

oh o
260" = 3B @e"p A0 '”Aj))

_ 0 T
= % exp (X, B+ Ap)

0
aﬂkl exp (Al + 2X1555l>

(aIB " <Al + 2X15551>> exp <Al + Zleisle>

= X exp <Al + ZXisle>
= Xinexp (X[ B+ A)
_ (Xi exp (BT X, + A)T)M

So that -
Vgh = X, exp (Oz + ﬂTXi + OWZ)

where the exponential is applied component-wise.
A similar computation for

]~1 . ﬁ — Zy;j (O” + Xi—rﬁ;)j + ch—!—])
J
shows that

Vsh = X;Y;"
So that :
Vi logps (Vi | Wi) = Vgh — Vsh = X; [Y; — exp (0; + 87 X; + CW;)]
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A similar computation for C shows that :

Velogpe (Y | Wi) = [Yi —exp (0; + BT X; + CW;) | W,"
Vaoepv) = (5 (5 oete | )
_ <]E;59 X; [Y; — exp (Oz + ,BTX,' + CWZ)]T >
Eﬁe
Xi }/z — exp (01 + ﬁTXZ) Eﬁg [GCWi]]

[}/z — exp (Oz + BTXi + CWl)] WZT
¥ o
YiEz, [W;'] — exp(O; + BT X;)Ep, [exp (CW;) W]

Now,
Ez, [Vologpe(Yi | Wi)])

T

which concludes the proof.
Thus, computing the gradients boils down to compute those 3 expectations

Eg, [e“™7] Ez, [exp (CW;) W, ] Eg, [W;'] (13)

K3

Each of these expectations are multi-dimensional. The dimensions are p, (p,q) and ¢ respectively.
We look closer to the first integral as an example :

Eﬁe [e(CWi)1 ]

Eﬁe [€C'Wi] = = (Eﬁe [eu;CWi])
] 1<m<p
By, [elO]

where u,, is the m'" canonical vector of RP. Each of those expectations are intractable, once again
because of the unknown posterior pg. We want to use Monte Carlo simulation to get an estimate
but we neither know how to sample from the posterior nor its density. What we do know is the

unnormalized density ﬁé,“):

i RY - RE
W= pp(Yi[W)p(W)

We can use the self-normalize importance sampling to get an estimate of this integral, which
we introduce in the following section.
3.2 Importance sampling

3.2.1 Basic importance sampling

Let ¢ be a measurable function. Let pg and g be two probability densities such that supp(g) =
supp(pg) = R?. We want to find p = Ez, [¢(X)].

- P(x)pe(7) #(X)pe(X)
n= o(x)pg(x)dx = ——=——g(x)dx =E, | —F———=
R4 ( (=) re  9(x) (=) I 9(X)
Let ns € N, ng is called the sampling efforts. We denote (Vi)1<k<n. id g.

We set

o po(X) q
w(X) = 7(0) XeR

w(Vy) is called the weight associated to sample Vj,. Note that

Efw)] = [ 2oy = [ oyt -1
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3.2 Importance sampling 3 GRADIENT METHODS

The estimate of p is

favg == 3 w(V)6(Vi)

n
S k=1

Since E,[¢(X)w(X)] = u, from the large law of numbers :
jng,g __as I
) ng——+00
The 1mportance law ¢ is very important since the variance of the estimator is directly linked to it

s var(l,, ,) = Z—g where

2 _ (p(x)po(x))? z— 112
=] e

Choosing the law ¢ is the difficult part. How do we choose a good importance law 7 Assuming ¢
to be non negative, we find one optimal law.

S g
ILL )

The estimator based on this law is called the zero variance estimator since the variance of the
estimator associated to gopt, is null. Indeed,

2 :f (45(33)]59(30))2(1 2
Ra

Gopt () =

o

Gopt gopt(w) I
—u f () (x)da — 112
_ ,[142 - MZ — 0

Finding such a law is difficult since the denominator is what we are trying to reach. However,
we can try to find a law that is close to this. If ¢ has non constant sign, then one can still get a
zero variance estimator. We only need to get the zero variance estimator for

¢+ (x) = max(¢(x),0)
¢— () = max(—¢(x),0)

which are non negative and then using
Eps [0(X)] = Epy [¢4(X)] — Eg, [0 (X)]

3.2.2 Self-normalized importance sampling

Basic importance sampling is not always reachable, especially When we don’t know py but only an
unnormalized version of it, ﬁéu) (z) = C x pg(x), where C' = §, p p(9 (z)dz. Estimating this constant
is an alternative that allows us to use basic importance sampling. However, we can avoid this

estimation and use the self-normalized importance sampling. We define for 1 < k < n, :

w _ By (Vi)

w, ’ = 14

k g (Vk) ( )
(u)

B = —k (15)

Ze 1 wz
(w)

Note that mutliplying all the w,"’ by some constant in (14) does not change the result since
this constant vanishes when we take the ratio in (15). Then,
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3.2 Importance sampling 3 GRADIENT METHODS

i, Zw(%vk fqa W)AW = Ep, [6(1)]

See Owen (2013) chapter 9 page 8 for a proof.
This estimator is not unbiased in general. Indeed,

Eg g,g = lZ ](cu)¢ Vk

w(V1)p(V1)
= Tl [2 _1wk<vk>]
Eg[wi(V1)o(V1)]
o[ 2t wi (Vi)
= Ey[wr(V1)o(V1)]
=

# Ng

=

The variance of the estimator is given by

c 1 Eg [(d)(X
r (0fa) =5 E, [w(X)] T,

gsn - E [ (X)2(¢(X) - NJ)2]
We used Eg[w(X)] = 1.The optimal density has the form

|p(x) — plpe(x)
SRQ |p(x) — plpe(x)dw

Unfortunately, this density does not give a zero variance estimator. It is even more difficult to get
close to this optimal density since we don’t know the numerator (we know the numerator of gopt
but do not know the numerator of gops, sn). However, we will be able to get a rough estimate. Note
that taking gopt instead of gopt sn in self-normalized importance sampling does not change much
the variance, so that getting a rough estimate will be enough.

J=4
>
NS
g
>
e
[ S—
Q
QN
w
=

, xeRY

YGopt,sn (J?) =

3.2.3 Importance law choice

As we said, the main difficulty in importance sampling is to find an importance law which yields a
zero variance estimator. We know which density to look for but we don’t know how to sample from
it. However, we know that the posterior is well gaussian approximated, it stands to reason that the
target density g* too (the target density is either gops sn in self-normalize importance sampling or
Jopt, in basic importance sampling). We will thus sample from a gaussian distribution, but how do
we choose the mean and covariance ? For the mean, we will take the mode of the target density
(i.e. the argmax of the density). We will find it through optimization techniques. For the variance,
we will take (minus) the inverse of the hessian of the log target density, evaluated in the mode (this
process has been found in Owen (2013) chapter 9). If g* has mode m, then
'\2
2*71 = a a T logg( ) |z:m

Indeed, if ¢ is a gaussian density with mean p and covariance X, then taking the hessian of the
log density gives (minus) the inverse covariance matrix :

& ? (1 Tet 5
—WIOgQ(JJ):—W —5(1‘—#) Y (z—p)) =%

If the density is almost gaussian, we can expect that it would be a good approximation when
evalutated in the mode.
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3.3 Application

We can use self-importance sampling to estimate the integrals in (12). We need to estimate
E;, [¢(W)] for ¢ that takes the following forms

1. ¢1.m(7) = exp(u,),Cx), 1<m<
2. ¢ ma(z) = exp(u,,Co)u)z, 1
3. dsu(x) =u/z, 1<I<q

where x € R?

3.3.1 Estimation of u

When trying to reach the optimal density gopt,sn, We need to know p, or at least get an estimate.
If gopt, A is & gaussian that is close to pg, we know that :

= Epy [9(X)] ~ B, v [#(X)]

To get a good gaussian estimate we will do as in 3.2.3 for py (i.e. taking the mode of the
unnormalized density for the mean and the hessian of the log density evaluated in the mode for the
covariance matrix).

3.3.2 Gradient ascent of the log likelihood

We can now estimate the integrals, compute the gradients of the log likelihood and perform a
gradient ascent. The resulting algorithm is quite costly. Indeed, we need to estimate (p + 1)(¢ + 1)
integrals. For each integral, we need to perform a gradient ascent on the likelihood to reach the
mode and compute the covariance matrix, which is very costly. We simulated data according to
1 for n = 100,p = 4,9 = 3,d = 2. Fig 7 displays the result of the algorithm, Fig 9 displays
the covariance matrix found by the algorithm and the true covariance matrix. Fig 7 displays the
normalized variance of the weights used to estimate the integral required for the gradient of 5. A
low variance means that our importance law targets the right area. We want the variance as low
as possible. If (w; k)1<k<n, are the weights used to estimate the it" coordinate of the integral,

samples

then the normalized variance Vj is

1 p

Vg = — Z o; (16)
P

1 Nsamples

O = —5—— Z (wi,k — wi)Q (17)
samples ;=1

It almost finds the structure back as we see in Fig 9. The sample size grows with ¢, so that the
algorithm does not work for ¢ > 3 for reasonable sampling effort (about 25000). It fails to find the
parameter or even the structure of the covariance matrix.

We took 25000 samples to estimate each integral. This is a lot, but necessary. Indeed, we show
in 8 the result of the algorithm when taking less samples (100 samples). The MSE is greater, and
the log likelihood is lower. This may explain why the algorithm does not work for larger q. The
larger ¢, the spiker the density. We need 25000 samples to get a good estimate for ¢ = 3, thus it
stands to reason that we need more samples for ¢ > 3. But getting more samples is very costly. An
alternative would be to estimate only ps(Y) and derive the gradients directly from it, which we do
in the following section.
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Figure 7: Simulation for n = 100,p = 4,q = 3,d = 2. Number of samples used for each
integral : 25000. Estimation of (p+ 1)(¢+ 1) integrals. We remove the max on (c) that we
computed the MSE and the log likelihood with the mean of the last 100 parameters for a

clearer plot.
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Figure 8: Simulation for n = 100,p = 4,q = 3,d = 2. Number of samples used for each
integral : 100. Estimation of (p + 1)(¢ + 1) integrals. We remove the max on (c) and
computed the MSE and the log likelihood with the mean of the last 100 parameters for a
clearer plot.
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Figure 9: On the left, the covariance matrix estimated when the model is launched for
= 1000,p = 30,q = 10, the gradients were estimated with 13. On the right, the true
parameter.

3.4 Approximating the likelihood with importance sampling

Estimating (p + 1)(g + 1) integrals costs too much, and the integrals in 13 need too much samples
to get a good approximation. An alternative is to estimate py(Y;) with importance sampling :

pe(Yi):fp( W)dw ~ — Zp‘9 k, (Vi)i<hen, < g
3t

We then take the log of this approximation and derive the gradients. The approximation is the
following :

L&y (Vi)
Velogps(Y;) ~ Vglog (ns kZl o) ) (18)

3.4.1 Importance law choice

The function p(*) (.) is a product of two densities which results in an unnormalized density. However,
here we only need to estimate the normalization factor. Thus we can (only) use importance sampling
to estimate it. We need to find the right importance law. We will do as in 3.2.3, with ¢(z) = 1.
A major improvement is the zero variance estimator. Indeed, if we take the mean and covariance
matrix as in 3.2.3, we are very close to the zero variance estimator. As a result, taking only 10
samples gives a very good estimation.

To sum up, this alternative has two benefits:

1. Estimation of only one integral.
2. Zero variance estimator reached.

However, it has one major disadvantage. We need to estimate py(Y;) which can be very low, and
take the log after. we cannot estimate the logarithm directly due to the integral (we cannot swap
logarithm and integral). This being said, py(Y;) becomes lower as p grows, and becomes numerical
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zero for p > 30. We thus can’t take a large p, but at least we can infer the MLE for low p, which
was not possible with variational inference.

3.4.2 Application

We simulate data according to 1 and perform a gradient ascent, taking as optimiser Rprop. The
result is displayed in Fig 10. We did not plot the MSE of ¥ in the latent layer since it is a full rank
matrix. We did not want to compare a full rank matrix with a rank ¢ matrix. However, we plot
the structure of the matrix in 11. It finds the structure back, even with a low rank estimation and
B is well approximated, not far from the MLE in the latent layer. Note that the MSE of Sis quite
high but the structure is the right one. This may be explain by the low rank approximation. It is
reasonable to think that we will have a better approximation of ¥ when taking p = ¢q. Note that
the variance of the weights are very low (the logarithm has order -10?), which indicates that we are
reaching the zero variance estimator.

4 Conclusion and discussion

4.1 Conclusion

We managed to infer quickly the parameters for large n and large p (about 2000) with variational
inference. However, for very large p (> 100000), there is a need to perform a dimension reduction as
a matrix of size (p,p) would be too demanding, both in time calculus and memory. But variational
inference does not adjust very well to dimension reduction as seen in 2.6. Moreover, it does not
try to infer the MLE, which is not very convenient to get confidence intervals. We switched to a
Monte-Carlo approach to fix those two problems. Unfortunately, we could only infer the MLE for
low p (< 30).

4.2 Discussion

Variational inference does not adjust very well to dimension reduction only because it cannot
compute the log of a determinant since the latter is null. Modifying this determinant to make it
non-zero would be a good lead. For the importance sampling part, we cannot estimate pg(Y;) =
§ Do(W)dW when p becomes large. However, we may be able to estimate C' x py(Y;) for the right
constant C. We need to tune this constant C' in order to get a computable probability. Else, the
importance law used to estimate the (p + 1)(q + 1) integrals

Eﬁe [eCWi] Eﬁe [exp (CW%) WiT] Eﬁe [WzT] (19>

does not seem to be very good since we need 25000 samples to get a good estimation. Finding a
better one would be a good idea.
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