
McStasScript

Mads Bertelsen

January 4, 2021

1 Introduction

This document serves as the documentation for the McStasScript scripting language for python. The
purpose of McStasScript is to generate McStas/McXtrace instrument files from python which is simply
another way of writing an instrument file. The main advantages are the possibility of using for-loops
and that it can be used directly from a python terminal. The simulation described by the instrument
can be executed from the scripting language and the data can be manipulated before plotting. It
is possible to convert existing McStas/McXtrace instruments to a python version using an included
converter.

2 Installation

The package can be installed/updated through pip with the following terminal command.

1 python3 −m pip i n s t a l l McStasScript −−upgrade

Examples are available in the github repository (link). The package can also be obtained directly
from github, but in this case the python path has to be set manually before importing, for example:

1 import sys
2 sys . path . append (’ /Users /madsberte l sen /PaNOSC/McStasScript ’) # Path to package

3 Importing the package

The code is structured as a python package where the classes and functions meant for the user are
to be imported. The important classes and functions are contained in the interface package, and are
called instr, plotter, functions and reader.

1 from mcs ta s s c r i p t . i n t e r f a c e import i n s t r , p l o t t e r , func t i ons , r eader

4 Configuration

McStasScript needs to know where to find the McStas installation it should use. This information
is stored in a configuration file located with the python package, but can be updated through a
Configurator class. This configuration is permanent and is only performed for first use or when
updating McStas. The default values are for a Mac running McStas version 2.5 and are shown here.
The line length is also set for comfortable use in jupyter notebooks.

1

https://github.com/PaNOSC-ViNYL/McStasScript
https://jupyter.org

variable default
mcstas path /Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/
mcrun path /Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/bin/
mcxtrace path /Applications/McXtrace-1.5.app/Contents/Resources/mcxtrace/1.5/
mxrun path /Applications/McXtrace-1.5.app/Contents/Resources/mcxtrace/1.5/bin/
characters per line 93

The values are updated using the Configurator class which is loaded from the interface package. This
can be done from a python file or a Jupyter Notebook. Here they are updated to values appropriate
for an Ubuntu system.

1 from mcs ta s s c r i p t . i n t e r f a c e import i n s t r , p l o t t e r , f un c t i on s
2 my conf igurator = func t i on s . Conf igurator ()
3 my conf igurator . set mcrun path (”/ usr / bin /”)
4 my conf igurator . s e t mcs ta s path (”/ usr / share /mcstas /2 .5/ ”)
5 my conf igurator . set mxrun path (”/ usr / bin /”)
6 my conf igurator . s e t mcxtrace path (”/ usr / share /mcxtrace /1 .5/ ”)
7 my conf igurator . s e t l i n e l e n g t h (120)

For a Windows system, paths use backslash instead of forward slash, and as this is the escape character,
double backslashes are necessary. A default Windows McStas installation would require these paths.

1 my conf igurator . set mcrun path (”\\mcstas −2.6\\ bin \\”)
2 my conf igurator . s e t mcs ta s path (”\\mcstas −2.6\\ l i b \\”)
3 my conf igurator . set mxrun path (”\\mcxtrace −1.5\\ bin \\”)
4 my conf igurator . s e t mcxtrace path (”\\mcxtrace −1.5\\ l i b \\”)

5 Documentation

This section describes how to use the package by going through the available classes and their methods.

class McStas instr/ McXtrace instr

Holds methods for creating a McStas or McXtrace instrument file

Initiating an instance of the class requires a name to be given as the first argument, but it is possible
to add more information using optional keyword arguments. In this manual McStas instr will be used
for the examples, but the syntax is identical for the McXtrace instr class. The author and origin can
be specified, and the package path from the configuration can be overwritten if necessary. In the table
below the positional arguments are above the dashed line and the keyword arguments are below.

input type explanation
first argument string name of the instrument
author string name of the author
origin string origin of the work
input path string path work directory (default is current work directory)
executable path string path to local binary (overwrites default from config file)
package path string path to package directory (overwrites default from config file)

Below two instrument objects are created, one called detector with an instrument named ”LOKI detector”
that has its origin set to ”DMSC”, and another called example with an instrument named ”test” with
the author specified as ”Mads Bertelsen”. When instrument files are written, they will have the
specified instrument names with the ”.instr” extension.

2

1 de t e c t o r = i n s t r . McStas ins t r (”LOKI detector ” , o r i g i n=”DMSC”)
2 example = i n s t r . McStas ins t r (” t e s t ” , author=”Mads Ber t e l s en ”)

When the instrument object is created, components in the current work directory are loaded. It
is possible to define a work directory different from the python work directory using the input path
keyword argument. Instrument files are written to the McStasScript work directory, and mcrun is
executed within that folder.

McStas instr method add parameter

Adds input parameter to instrument, uses class parameter variable

input type explanation
first argument (optional) string variable type
second argument string name of the parameter
value any default value for the parameter
comment string comment that will be displayed with the variable

Here four different parameters are added to the instrument file using the different allowed keywords.

1 de t e c t o r . add parameter (”wavelength”)
2 de t e c t o r . add parameter (”double ” , ” he ight ” , va lue =1.0 , comment=”Height in [m] ”)
3 de t e c t o r . add parameter (” s t r i n g ” , ” r e f l e c t i o n f i l e n am e ” , comment=”Stored r e f l e c t i o n s ”)
4 de t e c t o r . add parameter (” s t r i n g ” , ” data f i l ename ” , va lue=”\”data . dat \”” , comment=”Data”

)

The two first variables called wavelength and height are of the default type because no type was given.
In McStas the default type is a double. The height variable was given a default value and a comment.
The reflection filename and data filename are both specified to be strings and the latter was given a
default value. Note the \” needed to insert the quotation marks into strings.

McStas instr method show parameters

Shows currently defined parameters in the instrument

This method is useful when running the simulation to get an overview of the available instrument
parameters.

1 de t e c t o r . show parameters ()
2 wavelength
3 double he ight = 1 .0 // Height in [m]
4 s t r i n g r e f l e c t i o n f i l e n am e // Stored r e f l e c t i o n s
5 s t r i n g data f i l ename = ”data . dat” // Data

McStas instr method add declare var

Adds declared variable to the instrument file

input type explanation
first argument string variable type
second argument string name of the parameter
value any value for the parameter (can be array)
array int length of array
comment string comment that will be displayed with the variable

Here four different variables are added to the instrument file using some of the different allowed
keywords.

3

1 de t e c t o r . add dec l a r e va r (” double ” , ” energy ”)
2 de t e c t o r . add dec l a r e va r (” i n t ” , ” f l a g ”)
3 de t e c t o r . add dec l a r e va r (” double ” , ” tube rad iu s ” , va lue =0.013)
4 de t e c t o r . add dec l a r e va r (” double ” , ” d i sp lacements ” , array=7)
5 de t e c t o r . add dec l a r e va r (” double ” , ” t a r r ay ” , array=3, va lue =[0.65E−6, 0 .65E−6, 1E−6])

When declaring an array the array keyword must be used even when setting the values. The values
are given as a python array as shown in the last example. The declared variables will appear in the
declare section of the instrument file.

McStas instr method append declare

Adds line of code to declare section

Most declarations can be handled using the add declare var method, but for more advanced use such
as adding structures or functions, lines of code can be added directly.

1 de t e c t o r . append dec lare (” double square (double x) ”)
2 de t e c t o r . append dec lare (”{”)
3 de t e c t o r . append dec lare (” re turn x∗x ; ”)
4 de t e c t o r . append dec lare (”}”)

McStas instr method append initialize

Adds line of code to initialize section

This methods adds a line of code to the initialize section of the McStas file and has no keyword
arguments. A similar method called append initialize no new line exists for adding to the same line
with multiple calls.

1 de t e c t o r . a p p e n d i n i t i a l i z e (” energy=pow(2∗PI/wavelength∗K2V, 2) ∗VS2E ; ”)

McStas instr method show components

Shows currently available McStas components

Before adding components to our instrument, it is nice to get an overview of the available components.
The method show components can be called without arguments, and will show the available categories
of McStas components such as sources, optics and samples.

input type explanation
first argument (optional) string name of category to show components in

By specifying a category, the components in that category is shown.

1 de t e c t o r . show components (” samples ”)

1 Here are a l l components in the samples category .
2 Incoherent Phonon simple Res sample S i n g l e c r y s t a l
3 I so t rop i c Sqw Powder1 Sans sphere s TOFRes sample
4 Magnon bcc PowderN SasView model Tunnel ing sample

McStas instr method component help

Shows parameters, their defaults and an explanation for given component

input type explanation
first argument string name of component

4

The text is shown with some additional formatting highlighting which parameters are required and
optional, along with what the default values are. This information is loaded directly from the local
component file, and any component in the work directory will take priority over the standard version.

1 de t e c t o r . component help (”Phonon simple ”)

1 Help Phonon simple
2 rad iu s [m] // Outer rad iu s o f sample in (x , z) plane
3 yhe ight [m] // Height o f sample in y d i r e c t i o n
4 s igma abs [barns] // Absorption c r o s s s e c t i o n at 2200 m/ s per atom
5 s igma inc [barns] // Incoherent s c a t t e r i n g c r o s s s e c t i o n per atom
6 a [AA] // f c c La t t i c e constant
7 b [fm] // Sca t t e r i ng l ength
8 M [a . u .] // Atomic mass
9 c [meV/AAˆ(−1)] // Ve loc i ty o f sound

10 DW [1] // Debye−Waller f a c t o r
11 T [K] // Temperature
12 t a r g e t x = 0 [m] // po s i t i o n o f t a r g e t to f o cus at . Transverse coo rd inate
13 t a r g e t y = 0 [m] // po s i t i o n o f t a r g e t to f o cus at . Ve r t i c a l coo rd inate
14 t a r g e t z = 0 [m] // po s i t i o n o f t a r g e t to f o cus at . S t r a i gh t ahead .
15 t a r g e t i nd ex = 0 [1] // r e l a t i v e index o f component to f o cus at , e . g . next i s +1
16 f o c u s r = 0 [m] // Radius o f sphere conta in ing ta r g e t .
17 focus xw = 0 [m] // ho r i z . dimension o f a r e c t angu l a r area
18 f o cus yh = 0 [m] // ver t . dimension o f a r e c tangu l a r area
19 focus aw = 0 [deg] // ho r i z . angular dimension o f a r e c t angu l a r area
20 f o cus ah = 0 [deg] // ver t . angular dimension o f a r e c tangu l a r area
21 gap = 0 [meV] // Bandgap energy (unphys i ca l)
22 −−−

McStas instr method add component

Method for adding a new component to the instrument file

A McStas component describes a part of the instrument including its position and rotation in space.
When adding a new component in McStasScript, the name and type must be specified. The add component
method returns the appropriate component object that can be manipulated directly, but it is also pos-
sible to manipulate through methods in McStas Instr. Most commonly a component is added to the
end of an instrument file, but the keyword arguments before or after can be used to place the compo-
nent before/after a previously specified component. All component classes are dynamically generated
based on components in your local McStas installation and in the python work directory, and in this
way have all input parameters as class attributes.

5

input type explanation
first argument string name of the component instance
second argument string name of the component to use
AT float list[3] position in (x,y,z) [m]
AT RELATIVE string name of earlier component used as reference for position
ROTATED float list[3] rotation angles around (x,y,z) [deg]
ROTATED RELATIVE string name of earlier component used as reference for rotation
RELATIVE string name of earlier component used as reference
before string name of component this component should be before
after string name of component this component should be after
WHEN string WHEN statement (McStas keyword)
EXTEND string EXTEND c code (McStas keyword)
GROUP string GROUP name (McStas keyword)
JUMP string JUMP string (McStas keyword)
SPLIT int SPLIT value (McStas keyword)
c code before str c code inserted before component (for exmaple %include)
c code after str c code inserted after component
comment string comment that will be displayed with the variable

A component in McStas needs a name, which is the first argument. The second argument select what
component should be used from the component library. Below are some examples of simple use.

1 de t e c t o r . add component (”Orig in ” , ”Arm”)
2 s r c = de t e c t o r . add component (” source ” , ” Source s imple ” , RELATIVE=”Orig in ”)
3 de t e c t o r . add component (” beam extract ion ” , ”Guide grav i ty ” ,
4 AT=[0 , 0 , 2] , RELATIVE=” source ”)

Here src would be a python object that can be modified to change the source. If one wishes to insert
another component between the source and beam extraction it can be done with the before or after
keyword.

1 de t e c t o r . add component (” p r e g u i d e s l i t ” , ” S l i t ” , b e f o r e=” beam extract ion ” ,
2 AT=[0 , 0 , 1] , RELATIVE=” source ” , comment=” S l i t b e f o r e the guide ”)

McStas instr method print components

Method for printing current list of components to the terminal

To check that the components defined in the documentation so far are in the expected order, the
print components method is demonstrated. Data on the rotation of components is normally included
but is omitted for clarity. This method has no arguments.

1 de t e c t o r . pr int components ()

1 Orig in Arm AT [0 , 0 , 0] ABSOLUTE
2 source Source s imple AT [0 , 0 , 0] RELATIVE Orig in
3 p r e g u i d e s l i t S l i t AT [0 , 0 , 1] RELATIVE Orig in
4 beam extract ion Guide grav i ty AT [0 , 0 , 2] RELATIVE source

McStas instr method set component parameter

Method for setting parameters of a component using a dictionary

This method sets the parameters of a defined component using a python dictionary.

6

input type explanation
first argument string name of the component instance to modify
second argument dict dictionary with parameter names and values

It is possible to add several parameters in one call, and new calls add further parameters.

1 de t e c t o r . set component parameter (” source ” , {”xwidth” : 0 . 12 , ”E0” : ” energy ” })
2 de t e c t o r . set component parameter (” source ” , {” yhe ight ” : 0 . 12})

An error will occur if the given parameter name does not match a parameter in the component type.

McStas instr method print component

Method for printing information contained in defined component

This method takes the name of a component and prints the current information. We can check that
the parameters and position of a component have been registered correctly.

1 de t e c t o r . print component (” source ”)

1 COMPONENT source = Source s imple
2 yhe ight = 0.12 [m]
3 xwidth = 0.12 [m]
4 E0 = energy [meV]
5 AT [0 , 0 , 0] RELATIVE Orig in
6 ROTATED [0 , 0 , 0] RELATIVE Orig in

Note that this is not intended for copy-pasting into McStas instruments as the syntax is not correct.
Generation of the instrument file is covered later in the documentation. The units are collected from
the header file of the component definition. If a required parameter has not yet been specified, the
user will be reminded when using this method.

McStas instr method set component AT

Method for updating position of a component

There is a range of methods for updating information on a component after it has been defined. The
syntax is similar to the original call for add component in all cases.

input type explanation
first argument string name of component to modify
first argument float list[3] position in (x,y,z)
RELATIVE string name of earlier component used as reference for position

1 de t e c t o r . set component AT (” source ” , [0 . 0 1 , 0 , 0])

McStas instr method set component ROTATED

Method for updating rotation of a component

input type explanation
first argument string name of component to modify
second argument float list[3] rotation angle around (x,y,z) [deg]
RELATIVE string name of earlier component used as reference for rotation

The rotation will only be written to the McStas instrument file if specified. When no rotation is
present, McStas defaults to no rotation being applied.

7

1 de t e c t o r . set component ROTATED(” beam extract ion ” , [0 , 2 . 0 , 0] , RELATIVE=”Orig in ”)

McStas instr method set component RELATIVE

Method for updating RELATIVE reference for both position and rotation

This method will override both positional relative and rotational relative. It has no keyword argu-
ments.

1 de t e c t o r . set component RELATIVE(” beam extract ion ” , ” p r e g u i d e s l i t ”)

After these updates the output from print components is shown again to see the changes. The Origin
component show the default settings.

1 Orig in Arm AT [0 , 0 , 0] ABSOLUTE
2 source Source s imple AT [0 . 0 1 , 0 , 0] RELATIVE Orig in
3 p r e g u i d e s l i t S l i t AT [0 , 0 , 1] RELATIVE Orig in
4 beam extract ion Guide grav i ty AT [0 , 0 , 2] RELATIVE p r e g u i d e s l i t

1 Orig in Arm ROTATED [0 , 0 , 0] ABSOLUTE
2 source Source s imple ROTATED [0 , 0 , 0] RELATIVE Orig in
3 p r e g u i d e s l i t S l i t ROTATED [0 , 0 , 0] RELATIVE Orig in
4 beam extract ion Guide grav i ty ROTATED [0 , 2 . 0 , 0] RELATIVE p r e g u i d e s l i t

McStas instr method set component WHEN

Method for setting WHEN condition on component

The input for this method is a string, which should be a C logical expression involving variables
defined in declare and the state parameters of the neutron.

1 de t e c t o r . set component WHEN(” beam extract ion ” , ”vx > 0”)

McStas instr method append component EXTEND

Method for adding a line to the extend section of a component

The EXTEND section adds code to a McStas component and its scope includes variables declared
in the instrument file and the component. The number of scattering events in a component can
for example be saved to an external parameter using the SCATTERED keyword. Two events are
subtracted since entering and leaving the guide counts as a scattering event.

1 de t e c t o r . append component EXTEND(” beam extract ion ” , ” n s c a t t e r i n g = SCATTERED − 2”)

McStas instr method set component GROUP

Method for setting GROUP name of a component

The GROUP keyword is used to make a number of components parallel in the execution, however the
order still matters. It could for example be used if several guides were simulated after the source, and
each of them would be in the same group.

1 de t e c t o r . set component GROUP(” beam extract ion ” , ” gu ides ”)

McStas instr method set component JUMP

Method for setting JUMP statement of a component

8

The JUMP keyword is an advanced feature of McStas that is similar to a goto. The string given to
the method should contain what follows the JUMP keyword in a McStas component. An example
with the correct syntax is shown below, but there is no point in iterating over a guide in this case.

1 de t e c t o r . set component JUMP (” beam extract ion ” , ”myse l f i t e r a t e 3”)

McStas instr method set component SPLIT

Method for setting SPLIT value of a component

The McStas SPLIT keyword will split the ray going into a component evenly into a given number
of rays whose total weight is equal to the initial weight. This is useful for example when a complex
guide system takes a lot of computation time and the sample has Monte Carlo choices. It is always
important that the component after the split has Monte Carlo choices, as the same ray will otherwise
just be simulated in an identical manner many times, ultimately achieving the same result with more
time spent.

1 de t e c t o r . set component SPLIT (”powder sample” , 300)

McStas instr method set component c code before

Method for setting C code to be printed before component

This method is most often used for inserting %include statements that insert components from another
instrument to that point in an instrument. A similar method called set component c code after is
available to insert code after the component.

1 de t e c t o r . s e t component c code be fo r e (”powder sample” , ”%inc lude ILL H22 . i n s t r ”)

McStas instr method set component comment

Method for updating the comment on a component

Using this method a comment can be set for the specified component.

1 de t e c t o r . set component comment (” beam extract ion ” , ” Simulat ing s eve r e misal ignment ”)
2 de t e c t o r . print component (” beam extract ion ”)

1 // Simulat ing s eve r e misal ignment
2 COMPONENT beam extract ion = Guide grav i ty
3 AT [0 , 0 , 2] RELATIVE p r e g u i d e s l i t
4 ROTATED [0 , 2 . 0 , 0] RELATIVE p r e g u i d e s l i t

McStas instr method copy component

Copies component instance

input type explanation
first argument string name of new component
second argument string name of original component
Keyword arguments All keyword arguments from add component allowed

This method can be used to copy components already defined. It is possible to use all keyword
arguments from the add component method here, which will be applied to the new component.

1 de t e c t o r . copy component (” beam extract ion thermal ” , ” beam extract ion ” ,
2 AT=[0 .12 , 0 , 0] , AT RELATIVE=”beam extract ion ”)

9

McStas instr method write c files

Methods for writing C files to folder named generated includes

This method will write C files describing the declare, initialize and trace sections of the generated
instrument.

1 de t e c t o r . w r i t e c f i l e s ()

These can then be included in another McStas file. This is useful as this python tool is most often used
to generate large repeating part of an instrument that can then be included in a regular instrument
file. The instrument file can include them using the %include keyword from McStas as shown below.

1 DECLARE
2 %{
3 // inc lude parameters dec l a r ed from generate LOKI parts . py
4 %inc lude ” g ene r a t ed i n c l ud e s / LOKI detector dec la re . c”
5 %}
6

7 INITIALIZE
8 %{
9 // inc lude i n i t i a l i z a t i o n code from generate LOKI parts . py

10 %inc lude ” g ene r a t ed i n c l ud e s / LOKI d e t e c t o r i n i t i a l i z e . c”
11 %}
12

13 TRACE
14 // inc lude components from generate LOKI parts . py
15 %inc lude ” g ene r a t ed i n c l ud e s /LOKI detector component trace . c”

McStas instr method write full instrument

Writes the full instrument file with name defined in original McStas instr call

This method instead writes the entire instrument file using the provided information.

1 de t e c t o r . w r i t e f u l l i n s t r umen t ()

McStas instr method run full instrument

Runs McStas simulation of defined instrument and returns array of McStasData objects

This method runs the simulation using the mcrun commands of the system and returns the result-
ing data as a list of McStasData objects. Normally an error will occur if the fodldername already
exists. By setting the increment folder name keyword argument to True, the foldername is updated
automatically for each run to avoid this. It is default behavior that a new instrument file is written
at every run, requiring a new compile step, if this is not desired the force compile keyword argument
can be used. Be aware that with force compile set to False, no new instrument is written and the last
compiled instrument is used for the run.

input type explanation
foldername string name of folder that will be created for data
parameters dict Dictionary with input parameters and their values
ncount int Number of rays to simulate
mpi int Number of mpi threads to use for simulation
custom flags string Custom mcstas flags added to mcrun launch command
executable path string Absolute path to mcrun/mxrun (overwrites path from config file)
force compile bool If false, wont write new instrument and will reuse old compile
increment folder name bool If True, increments data folder name automatically
suppress output bool If True, no text output will be shown

10

If the mpi keyword argument is not set, the mcrun command will use the standard C compiler and run
using a single core. Setting mpi to 1 results in mcrun using the configured mpi enabled C compiler,
which may require additional steps during the McStas installation. Below an example of a simulation
run is shown.

1 data = de t e c to r . r un f u l l i n s t r umen t (fo ldername=”data1” ,
2 parameters= {”wavelength” : 5 . 1 } ,
3 ncount=1E7 , mpi=2)

McStas instr method show instrument

Shows McStas instrument using mcdisplay

This method calls the mcdisplay command which will display a geometrical representation of the
instrument. The standard method will open a new tab in a browser with a 3D view of the instrument.

input type explanation
parameters dict Dictionary with input parameters and their values
format str ”web-gl” provides 3D tab in browser, ”window” opens window with 2D views

The default value for the format is ”web-gl”

1 data = de t e c to r . show instrument (format=”window” , parameters={” he ight ” : 0 . 8})

class McStasData

Holds a single McStas data set in either 1D or 2D

A class to handle data from McStas simulations in a transparent way which provides easy access to
manipulation of the data. The included data is located in the following variables

variable type explanation
Intensity float array Numpy array containing intensity
Error float array Numpy array containing error on intensity
Ncount int array Numpy array containing number of rays in each pixel
xaxis float array Numpy array of xaxis if data is one dimensional
metadata metadata class Contains necessary meta data
plot options plot options class Preferences for plotting the data

McStasData method set xlabel

Sets the xlabel of a data set

Method for setting xlabel on a data set, similar methods exists for ylabel and title with same syntax.

1 data [0] . s e t x l a b e l (”custom x l ab e l [m] ”)

McStasData method set plot options

Sets plotting preferences for data set

Plotting options are associated with the data set instead of being given during the plotting. All plot
options are given as a dictionary input. Currently the following are available.

11

name type explanation
log bool or int plot on logarithmic scale
orders of mag float maximum orders of magnitude for colorscale
colormap string name of colormap to be used (matplotlib library)
show colorbar bool default True, which shows colorbar on 2D plots
cut max float cut top of data, 1 is all data
cut min float cut bottom of data, 0 includes is all data
left lim float lower limit of plot
right lim float higher limit of plot
top lim float top limit (Only 2D)
bottom lim float bottom limit (Only 2D)
x axis multiplier float Multiplier for xaxis, for example change unit
y axis multiplier float Multiplier for yaxis, for example change unit

1 data [0] . s e t p l o t o p t i o n s (l og=True , colormap=”hot”)

It is often simpler to access the data using the name of the monitor rather than the index, which
can be done using the function name search. The function will also find the data if the filename is
given instead of the component name. In this example data is a list of McStasData objects.

1 PSD sample = func t i on s . name search (”PSD sample” , data)
2 PSD sample . s e t p l o t o p t i o n s (l og=True , colormap=”hot”)

Since setting the plot options will be a very frequent operation, a function is provided for this particular
operation.

1 f un c t i on s . name p lot opt ions (”PSD sample” , data , l og=True , colormap=”hot”)

In most circumstances McStasData objects will be returned from simulations performed with McStasS-
cript. It is however possible to load a data folder that contains a mccode.sim file and the associated
data. The returned data is a list of McStasData objects.

1 data = func t i on s . l oad data (” data fo lder name ”)

function make plot

plots single McStasData object or a list of these objects

Function for simple plotting of McStasData objects.

input type explanation
first argument McStasData array data to be plotted
figsize tuple of two floats size of figure in inches, (width, height)
no data to black bool Default False where missing data is white (0 on log plots)
filename string If provided the plot will be saved to disk with given filename

Here all data in the list of data is plotted according to the preferences stored in the plot options class
of each data set. Here the figure size is set to 10 by 8 inches.

1 p l o t t e r . make plot (data , f i g s i z e =(10 , 8))

It is also possible to use any keyword arguments from the set plot options method to modify the
plotting.

1 p l o t t e r . make plot (data , l og=True , show co lorbar=False)

12

When a list of data objects is plotted, it is possible to specify the options for the individual plots as a
list for the keyword argument. Here the first dataset would be plotted with the log option, while the
second would be plotted normally.

1 p l o t t e r . make plot (data , l og=[True , Fa l se] , o rder s o f mag=5)

When using the keyword arguments from set plot options, the plot options of each dataset are applied,
so if the data is plotted again these options are remembered.

function make sub plot

plots single McStasData object or a list of these as subplots

Class for simple plotting of McStasData objects in one window. Will be expanded over time to contain
more control over the resulting plots. Currently only the initialization is done so the returned object
has no useful methods.

input type explanation
first argument McStasData array data to be plotted
figsize tuple of two floats size of figure in inches, (width, height)
no data to black bool Default False where missing data is white (0 on log plots)
filename string If provided the plot will be saved to disk with given filename

Here all data in the list data is plotted according to the preferences stored in the plot options class of
each data set. As with make plot, keyword arguments from set plot options can be used to affect all
or some plots.

1 p l o t t e r . make sub plot (data , l og=[True , True , Fa l se])

class McStas file

Class for working with existing McStas files

This class can read a McStas instrument file and produce either a McStasScript McStas instr object
or McStasScript python file that includes the information contained within the instrument file. The
class is initialized with the name of the McStas file to be read. When using this system it is highly
recommended to check that two simulations produce the same output when given identical parameters.

input type explanation
filename str McStas instrument filename

1 Reader = reader . McS ta s f i l e (” ILL IN5 . i n s t r ”)

McStas file method add to instr

Adds the content of the McStas file to the provided McStas instr instance

This method is used when a McStas instr instance of a McStas file is required.

input type explanation
Instr McStas instr McStas instr instance

Here the defined Reader is used to produce a McStas instr instance called IN5.

1 IN5 = i n s t r . McStas ins t r (”IN5”)
2 Reader . a dd t o i n s t r (IN5)

13

McStas file method write python file

Writes python file that describes a given instrument using McStasScript

This method will write a python file that describes the orgiginal instrument using McStasScript. This
is useful if a project was started in a instrument file, but should be converted to McStasScript. It is
always simple to convert back to a instrument file using the write full insttrument method.

input type explanation
filename str filename of produced python file
force boolean True if the python file should be overwritten

Here the defined Reader is used to write a python file capable of reproducing the instrument. It is
selected not to overwrite any existing file for safety (which is the default).

1 Reader . w r i t e p y t h o n f i l e (”IN5 . py” , f o r c e=False)

5.1 Advanced use

The parts of the api covered by the documentation so far is the simplest way of using the API, but
some additional methods in the McStas instr are useful for experienced python users that want more
direct access to the underlying classes.

McStas instr method get component

Returns the component class instance of a selected component

It is possible to get direct access to the component instances inside the McStas instr instance for direct
manipulation. This can make the syntax a bit shorter in some cases.

1 gu i d e p i e c e = de t e c t o r . get component (” beam extract ion ”)

McStas instr method get last component

Returns the component class instance of the last component in the component sequence

Same as get component but no argument is needed when returning the last component of the sequence.

1 gu i d e p i e c e = de t e c t o r . ge t l a s t component ()

class component

Holds information on a component and methods for updates and writing to file

The component class is used as a superclass for each component type added to the instrument. The
subclass for a specific component type also includes attributes for each parameter of the component,
and these can be changed directly. The class is frozen after initialize so no new attributes can be
created, and in this way misspelled parameter names are caught on user input. Most of the methods
contain in the component class are just passed directly to the McStas instr and thus does not require
further explanation, they are however listed here for completeness.

component method show parameters

Equivalent to component help in McStas instr, also shows changed parameters

component method show parameters simple

14

Same information as show parameters, but without use of ANSI colors

component method set AT

Equivalent to set component AT in McStas instr

component method set ROTATED

Equivalent to set component ROTATED in McStas instr

component method set RELATIVE

Equivalent to set component RELATIVE in McStas instr

component method set parameters

Equivalent to set component parameter in McStas instr

component method set comment

Equivalent to set component comment in McStas instr

component method freeze

Freezes the object, an error will occur if new attributes are added

component method unfreeze

Unfreezes the object, new attributes can be added

component method write component

Writes the component to file

input type explanation
first argument file identifier file identifier ready for writing

component method print long

Prints information on the component to the terminal

6 Discussion

This section contains discussion on the python module.

6.1 Possible improvements / requests

Features that are still missing and should be added. Also keeps track of user requests.

6.1.1 Limits on parameters

Allow user to easily set limits on parameters and generate appropriate input sanitation for instrument
file with error message.

6.1.2 Methods for removing parameters / variables / components

When using the software from a terminal it could be useful to remove components. Might also be
useful to be able to move a component to another location in the sequence.

15

6.2 Jupyter notebook experience

It is entirely possible to write an instrument file from a jupyter notebook using this tool, but at this
point it behaves more like a script, and thus there is no inherent benefit. The main issue is that
rerunning a cell will cause errors because the same components are added again, and they recognize
the names are not unique. Should instead allow to update components when the same name is used,
but this adds a severe risk of users replacing an earlier component instead of creating a new.

Another issue is the lack of feedback beyond printing all added components. A simple improvement
would be to have a method that prints all changes since last print was executed, which would be a
natural end of each cell.

If a component instance is already defined, syntax completion does work with all parameters which
is beneficial. It does however cause users to create two cells for each component to be added, as the
component need to be initialized before syntax completion works.

16

	Introduction
	Installation
	Importing the package
	Configuration
	Documentation
	Advanced use

	Discussion
	Possible improvements / requests
	Limits on parameters
	Methods for removing parameters / variables / components

	Jupyter notebook experience

