i

The following paper was originally published
in the Proceedings of the
Tenth USENIX System Administration Conference (LISA X)
Chicago, IL, USA, Sept. 29 - Oct. 4, 1996

Abstract Y ourself With Modules

John L. Furlani, Sun Microsystems, Inc.
Peter W. Osel, Siemens Components, Inc.

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org

4. WWW URL: http://www.usenix.org

Abstract Yourself With Modules

John L. Furlani — Sun Microsystems, Inc.
Peter W. Osel — Siemens Components, Inc.

ABSTRACT

Modules abstracts the activation of applications from the details of their installation. It
provides a uniform interface for selecting applications and for applying the necessary changes to
the environment.

Five years ago, the first paper on Modules was published [1]. Since then, Modules has
been written in C, uses Tcl [2] as its extension language, has seen acceptance and use at a rich
variety of sites and has acquired several features for supporting the management of hundreds of
software packages across large and diverse intranets. With Modules’ proven combination of
features and flexibility, we believe it has the potential to become the preferred standard for
software management and activation.

In this paper, we compare the Modules package with several systems that have appeared in
the years since its introduction. We also present some real-world examples of how the Modules
package is being applied. This paper covers some of the new features in the current
implementation. Finally, we discuss how the Modules concept can be applied elsewhere,

including the problem of loading and installing on-demand applets and applications.

Introduction

The problems surrounding software installation
and software distribution for heterogeneous distributed
networks continue to be an area of great interest to
systems administrators and software developers alike.
Because of this level of interest in recent years, a
plethora of solutions are available for solving many of
the problems with installing and distributing software
for large networks. Beyond software installation and
distribution is software activation and software man-
agement. We define software activation as the prob-
lems surrounding how a user learns about installed
software as well as how the software, once installed, is
enabled by the user. We define software management
as the set of problems around maintaining an ever-
growing, ever-revising array of software packages.
Modules solves the problem of software activation and
software management for the user and the systems
administrator. In essence, Modules is about abstracting
the user from traditional dependencies on the location,
the architecture and the issues surrounding version
migration for installed and distributed software pack-
ages.

In this paper, we present a few interesting case
studies which exemplify how the Modules package
can be and has been applied. We follow up the case
studies with a section comparing Modules as it is
implemented today with other packages and
approaches that attempt to solve related problems.
Once compared with other solutions, we describe in
more detail the currently available implementation of
the Modules concept done in Tcl and C. The final por-
tion of the paper is dedicated to new features in future
versions of the Modules package, to ideas for new

implementations of the Modules concept and to other
arecas where the concepts behind Modules can and
should be applied — specifically applet deployment.

It is important at this point to separate the Mod-
ules package from the Modules concept. The concept
behind Modules is grounded in applying object ori-
ented techniques such as methods and data abstraction
to the problems of software management and activa-
tion. The Modules package is a particular implementa-
tion of the Modules concept for UNIX systems using
Tcl and C.

Modules Basics

Modules abstracts the activation of applications
from the details of local software installation and dis-
tribution. It frees the user from clumsy manipulation
of environment variables by providing high level
methods for software activation.

If “object oriented” wasn’t an overloaded buzz-
word, we would be even more inclined to advertise
Modules as the “object oriented” solution to software
management and activation. In object oriented par-
lance, installed software packages are the objects.
Modulefiles or some other application-specific
database information contains the implementations for
a set of methods, e.g., activate, deactivate, show infor-
mation. The program behind the module(1) command
implements a command-line user interface for trigger-
ing the execution of methods on the objects (deacti-
vate softwarel, activate software2). The module(1)
user interface does not differ between platforms or
shells.

Dependencies and conflicts between applications
and versions of an application can be configured into

1996 LISA X — September 29-October 4, 1996 — Chicago, IL 193

Abstract Yourself With Modules

the modulefiles. Modules also affords the user query
abilities which include listing the available software
packages, information about a particular package and
package-specific help.

Case Studies

The Modules package is helping numerous sites
of different sizes, ranging from a single workstation to
large intranets with several hundreds or thousands of
workstations, to manage their software. This section
describes four deployments of the Modules package
and exemplifies its flexibility.

Siemens AG

At the Semiconductor Division of Siemens AG
the Modules package is used for managing more than
250 software packages on more than 800 Sun and HP
workstations worldwide. The software packages
include commercial, freely available and proprietary
tools. It is not unusual to have many (sometimes up to
a dozen) versions of a software package installed and
in use at the same time. For example, each version of
their CAD system uses a different set of software
packages. The software and configuration information,
including modulefiles, are mirrored to development
sites in Germany (Miinchen and Diisseldorf), Austria
(Villach), The United States (Cupertino, CA), and Sin-
gapore using OpenDist [9]. Within their environment
module(1) is called more than six thousand times a
day. They also ship parts of their CAD system to more
than twenty external design contractors. At the con-
tractors’ sites the Modules package integrates
smoothly into a multitude of different existing system
and network setups.

All sites use the same modulefiles. Differences in
the systems’ configuration are handled by common
library functions returning domain-specific and sys-
tem-specific configuration information. Thus, all sys-
tem configuration can be done by a central library,
thereby decreasing the maintenance effort while
improving documentation of differences between their
computing sites.

Every software package activation is logged
using the usage tracing feature of the Modules pack-
age. Knowing the usage of software on the systems at
each site helps them efficiently phase out old or
unused software. Usage tracing also enables them to
inform affected users of a particular software package
if a mission-critical bug is found. This is more effi-
cient and effective than posting to a general informa-
tion news system or broadcasting to all users. They
have found that users bombarded by e-mail or
repeated news about software packages they don’t use
end up ignoring all of the informational messages.
They claim the timely and effective distribution of
information to those affected saves thousands of dol-
lars.

Furlani & Osel

Sun Microsystems, Inc.

The Modules package originates from Furlani’s
work as a systems administrator for the North Car-
olina Development Center. Its use unified software
management and activation for about seventy users on
over one hundred workstations. Novice users found it
simpler to learn about and activate new applications.
Advanced users quickly embraced its wide range of
capabilities and its immense flexibility.

Often, software developers must test against dif-
ferent releases of many different source code trees.
The Modules package permits a team-organized mech-
anism for simple switching between daily builds,
weekly builds, earlier releases, personal clones and
other developer’s clones.

Today, the Modules package is heavily utilized
by the Solaris XIL Image and Video Library develop-
ment team. The team shares a common directory of
modulefiles specifying the location of common direc-
tories like daily, weekly and release builds. Each
developer has his or her own directory of modulefiles
augmenting or overriding the commonly available
modulefiles. Often a developer isolates a bug or adds a
new feature in his or her development tree that other
developers want to test or try prior to integrating the
changes into a master source tree. Switching to a new
development tree occurs with a single module(1) com-
mand referencing the target developer’s modulefile.

Also, some groups inside of Sun use the Modules
package for the more commonly stated software acti-
vation and management features.

Cray Research, Inc.

The Modules package is released with Cray’s
Programming Environment 2.0 [10] product. Cray
supplies modulefiles with the product for managing
the dependencies between the various pieces within
the Programming Environment as well as the cross-
compiling capabilities of their compilers. Using the
Modules package also allows local systems adminis-
trators an easy method for managing more than one
version of the product at the same time. Cray also pro-
vides some tools for customers to create their own
modulefiles as well as a specific modulefile for each
version of the product.

Auburn University

The College of Engineering at Auburn Univer-
sity uses the Modules package to manage a large num-
ber of applications for many users. They use the Mod-
ules package as the foundation for a self-developed
menu-driven application initialization and activation
package called user-setup [4]. Since the introduction
of user-setup Version 2 in May 1992, over 5,000 users
have benefited from the easy menu-driven setup and
manipulation of their environment afforded by user-
setup.

The systems administrators found an immediate
and dramatic reduction in their help-desk’s work-load

194 1996 LISA X — September 29-October 4, 1996 — Chicago, IL

Furlani & Osel

after the introduction of user-setup Version 2. Some
unexpected side-effects of introducing this Modules-
based solution include simplified instructions for those
describing how to access software applications, a
reduction in requests to install new software packages,
users easily locating and using a wider variety of soft-
ware on their own and enabling the use of UNIX sys-
tems to non-UNIX users.

Related Tools

We divide the software distribution cycle into
five distinct steps as follows:

* Development encompasses the creation of the

bits comprising an application.

* Packaging focuses on the problem of getting
the bits onto a distribution media (be that mag-
netic, optical or a network).

Installation (the inverse of the packaging prob-

lem) is getting the bits off of the distribution

media onto a local media in an organized fash-
ion.

Integration is making the bits available on the

user’s system.

* Activation includes how users learn about the
availability of the application as well as how
they enable the new application once it is inte-
grated on their system.

Each stage of the software distribution cycle
requires solving a different set of problems. Solutions
and tools often cover more than a single step. In fact,
they often imply or depend upon attributes of the
neighboring steps.

Tools for software development, software pack-
aging and software installation are beyond the scope
of this paper. Although, it is important to note that
Modules operates independently of the solutions used
for packaging and installation. Modules aims to solve
the final two steps of this software distribution cycle.
The next two sub-sections focus on how Modules can
be used to integrate and activate software in a dis-
tributed environment.

Integration

Conceptually, files on a user’s system start at the
root directory and live locally or remotely. Integration
involves integrating the application into the filesystem
hierarchy available to each user.

There are a number of solutions which provide
the mechanics for organizing and distributing the
application’s bits to a large number of machines.
Modules works independently of these software instal-
lation and integration solutions. But we have found
that Modules better solves the distributed software
management problem if Modules’ object oriented
characteristics are taken into consideration when
choosing or utilizing an integration scheme.

Typically, solutions to the software integration
problem provide policies dictating how software

Abstract Yourself With Modules

packages are to be integrated onto the system. These
solutions often define a package’s location within the
filesystem hierarchy whereas solutions to the software
installation problem often define a package’s internal
directory structure. Often, both of these solutions
include tools to help systems administrators install,
distribute and remove packages according to a set of
policies.

Policies may account for the efficient storage and
distribution of software packages for a highly dis-
tributed heterogeneous network of computers or for a
single computer.

Many take advantage of transparent remote net-
work filesystem access such as NFS [26] and AFS
[13]. Some use tools like rdist(1) [8] or the OpenDist
package to duplicate software within a network.

Our experience with the Modules package indi-
cates integrating software in discrete packages works
best. Fortunately, it is becoming common practice that
integrating software into a distributed network is done
as separate packages. The clean separation of software
packages and versions help to manage an ever-grow-
ing and fast-changing ocean of software.

Installation of software as separate packages has
several advantages. Installation and removal of soft-
ware becomes cleaner and errors or name conflicts
become less probable. Multiple versions can be
installed in parallel and an be selected individually.
Software discovery becomes easier if a standard direc-
tory is used to install all packages. However software
activation becomes more difficult because a user has
to change the environment prior to starting an applica-
tion.

Providing merged access directories (e.g., bin,
lib, man) by linking all files from separate packages is
one common approach to solve this problem. Users
include these merged access directories in their path
and have access to all installed software. However, if
this merged directory is configured centrally, the user
looses control over name conflict resolution or version
selection. If he or she wants to use a different version,
he or she still has to know where this software is
installed and change his or her environment accord-
ingly.

Also, a merged directory for commands quickly
becomes huge. This increases the start-up time for
shells with hash tables (like C shells) and the search
time for commands in shells without hash tables. Sym-
bolic links carry a performance penalty as well and
require tedious maintenance.

Systems providing merged access directories to
separately installed software packages include the
“Corporate Software Bank’ [24], LUDE [23], Depot
(CMU) [15], its extension “Local Disk Depot™ [17],
and Xhier [22].

Xhier uses a user-owned merged access directory
such that users can select which software packages are

1996 LISA X — September 29-October 4, 1996 — Chicago, IL 195

Abstract Yourself With Modules

linked. Users can select packages and versions.

The Depot (NIST) [21], Depot-Lite [16],
opt_depot [18] install software as separate packages
without specifying merged access directories. They
rely on the user or other tools to provide for software
activation. In fact, Depot-Lite uses the Modules pack-
age.

Also see John P. Rouillard and Richard B. Mar-
tin, “Depot-Lite: A Mechanism for Managing Soft-
ware” for a discussion of several software integration

solutions (such as a comparison of Depot-Lite with
NIST Depot, CMU, CMU Ext, Ericsson, and Xhier).

The System V software management utilities
(pkgadd(l), pkginfo(l), pkgmk(1), ...) [12] and the
emerging POSIX standard for software administration
[25] address packaging and installation but not dis-
tributed integration of software.

No policies of how and where the software is to
be integrated into the system are defined. Though,
they recommend it should be possible to install soft-
ware at any point in the filesystem hierarchy.

The main focus of LUDE is software integration.
But, it also touches on installation and packaging of
software. Software packages can be retrieved from
LUDE ftp servers or tapes, and can be integrated into
your installation by LUDE commands.

Furlani & Osel

Activation

Software activation should hide integration
details from the user. Users should be able to find out
what software is available, what the software does and
should have the ability to enable the software without
knowing the details of its integration on the system.
Of course, the user’s favorite shell should be sup-
ported.

There are several tools purporting to solve the
software activation problem. However, most of them
solve only part of the problem. None of them provides
the user with as flexible and as rich a feature set as the
Modules package does. Most of the tools do not sup-
port software configuration management features like
querying for available packages, dependency declara-
tions, etc. See Table 1 for a comparison of features.

All of the solutions support initial setup of the
user’s environment during login by setting or altering
environment variables. BNR [6], login-shared [5], and
the Modules package use exactly one file per applica-
tion to store the description of environment changes.
login-shared stores the files with the applications,
while BNR uses a configuration file to list their loca-
tions. The Modules package supports single or multi-
ple arbitrarily nested directory structures to store con-
figuration files.

Here we look at each solution independently in
more detail.

Features ﬁiizlge: BNR Ini éﬁfﬁ:& Soft
Supported shells peii,e(ifllzllcs sh, csh sh, csh csh sh, csh
Freely Available YES NO YES YES YES
On-the-fly Activate/Deactivate YES NO YES NO NO
On-the-fly Reload/Refresh YES NO YES NO YES
On-the-fly Exchange/Swap YES NO NO NO NO
Define Alias/Shell Functions YES NO NO YES NO
Set Local Shell Variables NO YES NO YES NO
X Resource Manipulation YES NO NO NO NO
Package Dependency Control YES NO NO NO NO
Standard Configuration Language YES NO NO NO NO
Hierarchical Package Naming YES NO NO NO NO
Query Available and Active Packages YES NO YES NO NO
Query Information About Packages YES NO NO NO NO
Inherent Versioning Support YES NO LIMITED NO NO
Symbolic Version Management YES NO NO NO NO
Usage Tracing YES NO NO NO NO

Table 1: Features of Software Activation Solutions

196 1996 LISA X — September 29-October 4, 1996 — Chicago, IL

Furlani & Osel

ini

ini [20] is for loading, unloading packages on-
the-fly, as well as for querying available and loaded
packages. Bourne and C shells are supported. ini uses
a single directory to store configuration files describ-
ing environment changes needed to activate an appli-
cation. Configuration information can be stored in a
single file or on a per package basis. There is no hier-
archical grouping of configuration files. The configu-
ration files do not use a standard language. You can
select to make packages available based on operating
system, machine architecture or hostname. ini is
implemented in perl(1) [11]. It is available free of
charge for non-commercial use.

envy

envv [7] manipulates environment and local vari-
ables in a shell-independent manner. It supports
Bourne and C shells. You can set and alter environ-
ment variables. When adding a component to a path
list, you can define the position of the new component.
You can also move components within existing path
lists. envv has been used to write start-up scripts for
applications that can be sourced by both Bourne and C
shells. Once an application is activated by sourcing its
start-up script, you cannot deactivate it unless you
write a separate deactivation script that reverses the
effects of the start-up script. envv is available free of
charge.
Soft

Soft [3] uses a configuration file listing the pack-
ages a user plans to activate. For each entry in the
user’s configuration file, a database lists the necessary
directories and variables to activate the application.
Macros can band applications or other macros
together. Shell script caches for both Bourne and C
shells are created. These are sourced during login to
construct the user’s environment. Users modify their
environment by editing the configuration file, execut-
ing an update tool, and finally sourcing the caches.
There is no on-the-fly activation or deactivation of
individual packages. Soft does not support querying
for available packages. It uses its own language for its
selection file. It is available free of charge.
login-shared

login-shared provides mechanisms for rapidly
initializing an user’s environment during login. C shell
scripts for activating applications are kept with each
software package (there is not a central repository).
Applications can be activated interactively. A cache is
created asynchronously for applications activated in
the user’s shell start-up file. The cache ensures during
login that each environment variable is only set once.
There are no commands to deactivate a package on-
the-fly. A directory containing links for every com-
mand from every available package helps users locate
packages. login-shared encourages users to activate
many packages at login time. Because of this effect, a
variant of the C shell was created for supporting a 4k-

Abstract Yourself With Modules

character search path. With the Modules package’s
convenient on-the-fly activation and deactivation, the
user’s environment can remain small and thus requires
no changes to system programs. login-shared only
supports the C shells. It is available free of charge.

BNR Standard Login

BNR Standard Login supports the setup of the
user’s initial environment during login for Bourne and
C shells. It uses configuration files (tables) to define
how the environment is modified when activating an
application. Environment and local variables can be
set, unset or altered. Programs can be executed and the
user can be queried to correctly set the TERM vari-
able. Users can exclude applications from initializa-
tion. Also the BNR Standard Login supports delayed
application configuration in order to make initial login
faster. It does not support on-the-fly package activa-
tion and deactivation or software package discovery. It
is not publicly available.

Our Modules Implementation

Initializing the Modules package and the mod-
ule(1) command is accomplished by sourcing a shell-
specific script into the shell. The script either creates
an alias or a function in the user’s shell which
becomes the module(1) command. When invoked, the
alias or function instructs the shell to evaluate the out-
put of a program. The program is called modulecmd(1)
and converts the user requests into shell directives.

Modulefiles are written shell-independently in
Tcl and are interpreted by the modulecmd(1) program.
Modulefiles can be loaded, unloaded or switched on-
the-fly. Each modulefile describes the necessary
changes to a user’s environment in order to activate an
application.

Typically, a modulefile is a small amount of code
that sets or alters a few key shell environment vari-
ables such as PATH, MANPATH, etc. Using a rich
programming language like Tcl allows for arbitrarily
complex modulefiles that resolve issues like complex
application dependencies, resource acquisition and
application access and use policies.

From the user’s perspective, changing the envi-
ronment for one type of shell is exactly the same as
changing the environment for another type of shell.
One set of information takes care of every shell type.

Often, a pool of system modulefiles are shared
by many users. The Modules package enables users to
maintain their own collection of modulefiles that sup-
plement or replace shared modulefiles. A search path
for modulefiles controls locating modulefiles and can
be dynamically manipulated.

It has become common practice to have one
modulefile per revision of a software package. These
modulefiles are stored in a directory named after the
software package name. Referencing the directory
structure selects a default version, yet a specific

1996 LISA X — September 29-October 4, 1996 — Chicago, IL 197

Abstract Yourself With Modules

version may be specified as well. These directories
can be kept in single or multiple modulefile reposito-
ries. Arbitrarily nested directory structures can be uti-
lized for storing modulefiles.

The Modules package source code is freely
available. It is written in ANSI C and can be built on
any modern UNIX machine with an ANSI C compiler
(like the GNU C compiler).

Standard Features

Our Modules package supports the following
features:
* Set or alter environment variables (pre-pending
or appending path components)
» Environment variable optimization
* Alias definition (mapped to shell aliases or
functions where appropriate)
* X-Resource manipulation
A variety of shells and languages, e.g., Bourne
shell, C shell, perl, and emacs
Activate (load) / deactivate (unload) one or sev-
eral packages in a single operation
Unload all currently loaded packages (purge)
Exchange (swap) packages or versions
Refresh (reload) all currently loaded packages
Display effects of loading a package on the
environment
Query available or loaded packages
Per-package help and information
Centralized and distributed repositories
Alter modulefile repository search path
Hierarchical application categorization
Dependency declaration (conflicts and pre-req-
uisites)
Tcl as activation specification language
Modules-specific Tcl functions to manipulate
environment variables, aliases, and X-
Resources in a shell independent manner to
query the current operation mode (load, unload,
info) and to query system information (machine
name, operating system release, ...)

The Modules package can be used nearly every-
where for application activation. It is not limited to
interactive use. Use it in your scripts (sh(1), csh(l),
perl(1l), or emacs(l)), in X11 startup scripts, X11
menu files, etc.

As an aside, we have decided not to implement
environment caches for setup of the user’s environ-
ment during login. The Modules package optimizes
environment setting when activating multiple software
packages with a single module(1) command.

Key New Features

Last year we began a major revision of the Mod-
ules package to add features that help the largest
installations manage software. This revision is version
3.0 of the Modules package and is backward compati-
ble with earlier releases.

Furlani & Osel

Active Dependency Resolution

Previously, the loading or unloading of a mod-
ulefile is aborted if a conflict or a dependency is not
met.

With Active Dependency Resolution, module-
files can force modulefiles to be loaded and unloaded
such that all conflicts and dependencies are resolved.
This enables the activation of complete software sys-
tems containing several packages that are considered a
set. Thus guaranteeing all software packages are
loaded with tested and compatible versions by auto-
matically unloading any conflicting packages and
loading any missing packages.

Circular and conflicting dependencies are
detected. In these cases, the user is informed of the
error and the modulefiles are not loaded. Modulefile
writers are responsible for ensuring these cases don’t
occur when specifying dependencies. Much like
header file creation in C or C++, it is possible to create
modulefiles with circular and invalid dependencies.

Symbolic Versions

A symbolic version can be assigned to a specific
revision of a software package. The symbolic version
turns a meaningless revision like 4.2.17.8 into a
descriptive name like “beta”, “current” or “old”. For
systems with multiple software packages assigning a
symbolic version to the current revision reduces the
maintenance effort for configuring software systems
with many version of each package.

The user can easily spot which revision is
released, which revision is beta, which revisions are
old and which revision belongs to a specific system.
The current assignment of a symbolic version to each
software revision can be listed for future reference in
case the user wants to exactly reproduce an environ-
ment after the symbolic names change.

Users have control of the revision selection as
well as the assignment of symbolic versions to soft-
ware revisions.

Autoload

Tcl provides for the autoloading of functions. If a
function is called but is not defined in the current Tcl
script, a list of directories is searched for Tcl libraries
containing the function.

Autoloading eases the creation of libraries con-
taining common functions. Modulefiles shrink since
code is not duplicated leading to an overall reduction
in maintenance costs. Displaying standard information
for packages and platform detection are examples of
common functions.

Apropos and Whatis

Similar to the UNIX apropos(1) and whatis(1)
commands for manual pages, a one line description is
printed for every available modulefile matching the
given argument. With the number of packages
installed at some sites reaching staggering heights, it is

198 1996 LISA X — September 29-October 4, 1996 — Chicago, IL

Furlani & Osel

no longer useful to retrieve information for every
package one at a time. The new commands make it
convenient to browse all of the installed software at
large installations.

Logging and Usage Tracing

A network-wide logging of module(1) invoca-
tions using syslog(3) enables systems administrators to
collect statistics on the usage of individual software
packages. Knowing when a software package is no
longer in use helps make the transition from old to
new version of a software package smooth. It also
helps track users of a software package for notification
or interdepartmental charges.

Miscellaneous

* Oft-used package names or combinations can
be abbreviated by defining a modulefile alias.
For example, you can map OpenWindows/3.0
to ow3 to save keystrokes.

* Error messages are generated based on user-

selectable levels. This helps novice users

receive corrective information and keeps
experts from complaining about verbosity.

Configuration variables control enabling many

of the new features without recompiling source

code. For example, error and information mes-
sages can be configured to be printed to stdout,
stderr, appended to files or passed to syslog(3).

A new test suite for the Modules package pro-

vides regression testing of most features. This

helps maintain quality levels through the devel-
opment of new features.

Experiences

There are some not so obvious issues that you
might experience when introducing Modules. The
ones we present here are culled from our own experi-
ences and those expressed by other systems adminis-
trators using the Modules package.

“Continuum Breakdown”

The Modules package does not guarantee that the
user’s environment is restored to a previous state when
deactivating modulefiles. Modulefiles may be very
complex scripts that make it difficult or infeasible to
exactly reverse their effect without storing the envi-
ronment prior to their activation or storing the exact
environment changes at each step. Altering the
sequence of loading and unloading modulefiles adds
yet more complexity.

In practice, the absence of an environment con-
tinuum has caused few or no problems for users.

“It’s a Small World”

Our studies have found that most modulefiles are

very small. Out of 250 different modulefiles, 75%

contain less than 20 lines and only eight have between
100 and 150 command lines.

Abstract Yourself With Modules

“You Win Some, You Lose Some”

A good software activation solution makes it
convenient to install more software while software
installation and maintenance is easier. In most cases, a
user’s PATH environment variable becomes shorter
too. However, some users tend to activate every soft-
ware package they might ever use in their shell’s
startup file. The environment is a limited resource.
Especially the length of the PATH environment vari-
able in some shells (notably the C shell). This limits
the number of packages that can be active at the same
time.

To avoid the limitations of the PATH environ-
ment variable, aliases that activate a software package
using the module(1) command before calling the
application can be defined. The same method can be
applied for package bundles that load several packages
with a single command. This is a form of autoloading
that can reduce the number of packages that users
need to load. It can also provide many of the features
afforded by maintaining single directory with every
command linked to its location without many of the
pitfalls.

“Coins Have Two Sides”

Being able to efficiently manage large installa-
tions of numerous software packages in separate loca-
tions makes it convenient to provide several versions
of the same software package. This does help users
migrate to newer versions. They can switch back to an
old version with a single module(1) command if the
new version does not satisfy their needs (i.e., has new
bugs). Although, this capability tends to make version
transitions take more time.

Given this, there is less pressure for user’s to
migrate to new versions of the software by a given
date. Some users stick with old versions (knowing
how to work around bugs) so increased administrative
pressure may need to be applied in order to get them
to switch. However, we believe the flexibility gained
far outweighs this side-effect.

“Start a New Shell, Do Not Pass...”

Though environment variables are inherited
when starting a new shell, local variables and aliases
are not. To work around this limitation, we added the
update sub-command which resets the environment
and reloads all currently active modulefiles.

An alternative solution we are pursuing is to
have the Modules package reload those modulefiles
with alias definitions when being initialized in a new
shell.

Performance Considerations

There is a negligible performance penalty
incurred at login when using the Modules package. On
a SPARCstation 10/51 running Solaris 2.4 and version
3.0 of the Modules package, the average elapsed time
to activate seven popular software packages (X11/R6,
gnu, pbmplus, mtools, TeX, pgp, and Adobe’s

1996 LISA X — September 29-October 4, 1996 — Chicago, IL 199

Abstract Yourself With Modules

Acrobat) is 0.6 seconds. Activating 21 software pack-
ages takes an average of 1.5 seconds. All of the soft-
ware packages are activated with a single module(1)
load command. We use the timing facilities of fcsh(1).
The times include any overhead from the usage trace
feature.

Some users have experienced a new performance
gain because not all applications must be activated
during login. The dynamic activation features of the
Modules package make it easy to activate less fre-
quently used packages as they’re needed.

We observe the performance penalties incurred
by poorly configured or inattentive machines and net-
works are much higher than the overhead caused by
using the Modules package.

“Think about the future...”

The Modules package based on Tcl is just one
example of how the Modules concept can be applied
to software management and activation. In this sec-
tion, we venture into ideas which border on plans for
future implementations of the Modules concept. We
finish this section with a discussion of how Modules
might be applied to the problem of configuring
dynamically loadable Java [14] applications.

A Distributed Modules Server

The current implementation of Modules requires
a separate filesystem distribution mechanism that per-
mits all users of the Modules package to gain access to
a common database of modulefiles. As the number of
machines and the distance between the machines
grows, keeping the database up-to-date becomes more
difficult. We have begun preliminary work on the
design and the development of a distributed Modules
server. Such a server would assist with the problems
of updating and distributing modulefiles to a wide
range of machines and domains.

Software Discovery

Beyond the software discovery mechanisms
available in the Modules package, we see a Modules
server permitting collaboration between different
administrative domains within a company. Individual
domains run their own server which communicates
with other servers within a company. Queries for
available software within one domain can be modified
to extend to other cooperating domains. Through NFS
or some other file access method, an application in
one domain may be discovered and made available to
the user. Note that software discovery and activation
in this manner is much like a selecting an HTML link
on a Web page.

Software Information

We expect the Modules server to act as a soft-
ware information and documentation tool like csdsdb
[19]. Users should be able to query for information
about each software package like:

* Maintainer’s contact address

Furlani & Osel

* Licensing information

* Potential source code availability

* Revision history

* Record of applied patches

* Planned upgrade information
Activating or retrieving information about the soft-
ware can use the same user interface.

Programmers Interface

We have already seen the development of a wide
array of tools that use and augment the Modules pack-
age. With the expanded capabilities of a Modules
server, we see such tools becoming more prevalent.
Providing an application programmer interface to the
query capabilities, environment manipulation mecha-
nisms and an ability to programmatically setup a new
program’s environment via the Modules server is an
important goal.

For example, building Modules interaction into a
UNIX shell reduces the need to form a traditional
filesystem-based search path. When the shell is initial-
ized, the Modules server can download application
names into the shell’s hash table directly without hav-
ing to mount and search each filesystem. Upon invo-
cation of any of these names (or aliases), a wide vari-
ety of environment preparation can take place. Fur-
thermore, the shell can dynamically receive new pro-
gram names and information from the Modules server
as they become available or change.

User Profiles and Release Management

Based upon a user’s organization or a user’s pro-
file, the list of available software and information can
be customized. For example, certain applications (oh,
say salarytool(1)) may be available to managers in an
organization but not to every employee.

Profiles can also be used to remove clutter. Some
users may not be interested in knowing about the wide
assortment of CAD software available on the network.
Being able to configure this software out of the view-
able list of software assists novice users who may be
overwhelmed by the large amount of software avail-
able on the network at a typical large company.

Often, applications are not available on all the
hardware platforms within a company. The server can
flag software packages that are unavailable on the
client’s hardware platform or can make them appear
unavailable to the client.

Hiding software packages that are not-yet-
released is another variation. A list of users, e.g., beta-
testers, will see these software packages listed while
other users will not be tempted by potentially unstable
software.

Performance and Complexity

We expect the Modules server to increase the
performance of processing modulefiles because com-
monly used modulefiles can be cached and potentially
pre-compiled for commonly used shells. Redundant
servers can ensure availability of the Modules service.

200 1996 LISA X — September 29-October 4, 1996 — Chicago, IL

Furlani & Osel

Dependencies between modulefiles can be stored in
the servers’ database to discover indirect dependencies
or conflicts. Dependency and conflict matrices can be
provided as well, e.g., to assist in discovering conflict-
ing dependencies.

Using DNS as Modules Server

Another path we are considering is using the
existing Internet Domain Name System (DNS) proto-
col and query mechanisms to provide some of the
aforementioned Modules server capabilities. DNS per-
mits storing arbitrary amounts of text and other infor-
mation for a given domain name. We are investigating
the potential of using a reserved domain name within
an intranet to provide the existing module(1) capabili-
ties. Special domain names can specify query requests
for available modulefiles. Once the list has been
received, the client can query the DNS server for more
information about specific packages.

Due to the static nature of DNS records, a Mod-
ules server may still be necessary for some of the
more advanced query capabilities. Although, it may be
possible to use DNS to help locate the appropriate
Modules server for a given application or domain.

“The Taming of Java”

Much of Modules is about preparing the system’s
environment prior to the execution of an application.
Currently, modulefiles contain the steps necessary to
activate an application. This includes problems like
resource allocation and verification, environment
modification and dependency and conflict resolution.
As more complex applications are developed for
downloading over the Internet or over intranets, the
traditional problems of integrating software onto the
system arise.

Applications should not be responsible for han-
dling configuration issues on the local host. As it
stands today, Java applets request additional resources
and other applets which may or may not be available
to the local machine. The execution of the applet fails
if these capabilities are not obtained — potentially after
much of the applet has been downloaded. For exam-
ple, certain types of or portions of applications will
not work through a firewall. A user may begin loading
such an application over the network and even begin
executing it before discovering the missing depen-
dency. If activating a particular feature of the applica-
tion invokes an unsupported access to outside the fire-
wall, then it depends on how well the application han-
dles the failure and the nature of the work as to
whether the failure will have a minimal or catastrophic
affect on the user’s work.

We envision a small modulefile-like Java pro-
gram being downloaded into the local host prior to
downloading and executing an application. Using a set
of well-defined system configuration interfaces and
tests as well as all the features of Java, the modulefile
can verify the capabilities of the local host. Also, the
modulefile can verify resolution of dependencies on

Abstract Yourself With Modules

other applets for the application. Once the modulefile
has verified the host is configured such that it is likely
to successfully execute the application does the trans-
fer of the application begin.

Some sites may have different network restric-
tions and configurations as well as different policies
with regard to downloading Java applications. The
modulefile would be able to scope out these configu-
ration issues prior to downloading the application in
addition to potentially modifying the behavior of the
application to suit local configuration parameters.
With network bandwidth at a premium and Java appli-
cations tackling larger problems, using Modules in this
fashion reduces the likelihood of wasting network
bandwidth on attempting to load applications that
won’t execute.

As Java applications become more complex they
will have the same tendency to depend on particular
versions of other applets or Java libraries. The mod-
ulefile would be able to verify the local host doesn’t
have incompatible versions loaded. For a while, other
dependencies may include the installation of a particu-
lar set of native methods on the local host.

The modulefile doesn’t have to be static. It can
interface with the user to suggest modifications to the
local host prior to loading the application.

Like the modulefiles used in the Modules pack-
age, the pre-loaded modulefiles can provide informa-
tion about the application that helps the user determine
if he or she wants to continue the download. Further-
more, these pre-loaded modulefiles can handle issues
like licensing and monetary exchange prior to down-
loading the application. In such a situation, the user
might enjoy an indication of whether the application
will execute on his or her machine.

We have just begun to scratch the surface of an
implementation based on the ideas presented in this
section. Some number of security and certification
issues will need to be resolved as well as a more con-
crete understanding of the necessary configuration
parameters a local host can make available to the mod-
ulefile before any implementation is complete.

Summary

In abstracting the user from the details of soft-
ware installation, distribution and integration, Mod-
ules is a compelling solution to the software activation
and management problem for large-scale distributed
networks. We have contrasted the Modules package
with other solutions to the software activation prob-
lem. In addition, we have introduced the reader to the
features of the latest release of the Modules package
as well as ideas for utilizing future capabilities of a
Modules server.

Lastly, we have presented how the Modules con-
cept can be exploited to manage the burgeoning con-
figuration problems surrounding a swelling sea of

1996 LISA X — September 29-October 4, 1996 — Chicago, IL 201

Abstract Yourself With Modules

increasingly complex Java applications.

Availability

Visit Modules’ home page at http://www.
modules.org/ for latest information on Modules.

Modules is freely available from ftp://ftp.
modules.org/pub/Modules/ or from your friendly Tecl
archive in your neighborhood, like ftp://fip.
neosoft.com/tcl/.

You can subscribe to the Modules interest mail-
ing list, by sending the line “‘subscribe modules-inter-
est <your-email-address>" in the message body to
majordomo@modules.org.

Acknowledgments

We would like to thank a number of individuals
who have made significant contributions in their sup-
port of the Modules package: Tony Bennett, Maureen
Chew, Richard Elling, Leif Hedstrom, Doug Kubel,
Don Libes, Ken Manheimer, Marty McLean, Phillip
Moore and John Rouillard.

Development of the 3.0 version of the Modules
package has been funded in part by the Semiconductor
Group of Siemens AG. Much of the new features were
implemented by Jens Hamisch, Strawberry EDV-Sys-
teme GmbH, Munich. We are especially thankful for
his contributions during the specification of the new
features and his solid implementation. We also thank
Connect! GmbH, Munich for providing ftp and web
space.

John thanks all of his co-workers through the
years for supporting the use of the Modules package
and putting up with the bugs and problems during its
development. John thanks his parents for their contin-
uing support of all his travels and endeavors.

Peter thanks SAM for their Never Ending Story.
Also, he would like to thank Johnny Clegg & Savuka
for their album “Heat, Dust & Dreams” which helped
him to keep working on Modules and this paper.

Author Information

John L. Furlani is currently technical lead of the
Solaris XIL Imaging and Video development team at
SunSoft, Inc. in Mt. View, CA. John received a Bache-
lor of Science in Electrical and Computer Engineering
from the University of South Carolina at Columbia in
1990. While employed by Sun in North Carolina, he
received a Masters of Science in Computer Science
from Duke University in 1994. He was a systems
administrator at USC and the Naval Research Labora-
tory in Washington, D.C. during his undergraduate
college years. Upon graduation, John joined Sun
Microsystems, Inc. as the systems administrator for
Sun’s North Carolina Development Center in
Research Triangle Park, North Carolina. John enjoys
playing the keyboard and the bassoon, hiking, travel-
ing, snow skiing, cycling, rollerblading, cooking,

Furlani & Osel

eating great food and wine tasting. John can be
reached via e-mail at j.furlani@ieee.org.

Peter W. Osel received his diploma in electrical
engineering from the Technische Universitidt Miinchen
(TUM) in 1985. For three years he worked at corpo-
rate research of Siemens AG, where he developed
tools for ECAD of Integrated Circuits. From 1988
until June 1996 he was working for the Semiconductor
Division of Siemens. He was responsible for world-
wide integration and distribution of the CAD system,
as well as the development of central tools, and the
coordination of the development sites’ system envi-
ronments. Since July 1996 he is working for Siemens
Business Services GmbH & Co OHG in the depart-
ment that administrates all workstations of the Semi-
conductor Division of Siemens. In September 1996 he
moved from Munich, Germany, to Cupertino, CA,
where he designs, implements and administrates the
compute environment for the development and mar-
keting of Siemens’ new microcontroller family. Reach
Peter at Siemens Business Services GmbH & Co
OHG, SBS DS 33, Postfach 801709, D-81617
Miinchen, Germany; or at Siemens Components, Inc.,
10950 North Tantau Avenue, Cupertino, CA 95014; or
by e-mail at pwo@HL.Siemens.DE, or see his Web
page at http://www.ConnectDE.NET/"pwo/.

References

[1] John L. Furlani, “Modules: Providing a Flexible
User Environment”, Proceedings of the Fifth
Large Installation Systems Administration Con-
ference (LISA V), pp. 141-152, San Diego, CA,
September 30 — October 3, 1991.

[2] John K. Ousterhout, Tcl and the Tk Toolkit, Addi-
son Wesley Publishing Company, Inc., ISBN
0-201-63337-X, 1994.

[3] Rémy Evard and Robert Leslie, “Soft: A Soft-
ware Environment Abstraction Mechanism”,
Proceedings of the Eighth Systems Administra-
tion Conference (LISA VIII), pp. 65-74, San
Diego, CA, September 19-23, 1994.

[4] Richard Elling, Matthew Long, ‘“user-setup: A
system for Custom Configuration of User Envi-
ronments, or Helping Users Help Themselves”,
Proceedings of the Sixth Systems Administration
Conference (LISA VI), pp. 215-223, Long Beach,
CA, October 19-23, 1992.

[5] Carl Hauser, “Speeding Up UNIX Login by
Caching the Initial Environment”, Proceedings
of the Eighth Systems Administration Conference
(LISA VIII), pp. 117-124, San Diego, CA,
September 19-23, 1994.

[6] Christopher Rath, “The BNR Standard Login (A
Login Configuration Manager)”, Proceedings of
the Eighth Systems Administration Conference
(LISA VIII), pp. 125-138, San Diego, CA,
September 19-23, 1994.

[7] David F. Skoll, ““envv — manipulate environment

202 1996 LISA X — September 29-October 4, 1996 — Chicago, IL

Furlani & Osel

variables in a shell-independent manner””, UNIX
man page and source code for version 1.6 of the
application, July 1995.

[8] Michael A. Cooper, “Overhauling Rdist for the
’90s”, Proceedings of the Sixth Systems Adminis-
tration Conference (LISA VI), pp. 175-188, Long
Beach, CA, October 19-23, 1992.

[9] Peter W. Osel, Wilfried Génsheimer, “OpenDist
— Incremental Software Distribution”, Proceed-
ings of the Ninth Systems Administration Confer-
ence (LISA IX), pp. 181-193, Monterey, CA,
September 17-22, 1995.

[10] Cray Research, Inc. Products. http://www.
cray.com/PUBLIC/product-info/sw/ .

[11] Larry Wall and Randal L. Schwartz, Program-
ming perl, O’Reilly & Associates, Inc.,
Sebastopol, CA, 1991.

[12] System V software management utilities, Solaris
2.5 manual pages pkgadd(l), pkgmk(1l), pkg-
trans(1) etc.

[1314FS distributed filesystem FAQ. http:
/Iwww.cis.ohio-state.edu/hypertext/faq/usenet/
afs-fag/faq.html .

[14] James Gosling, Henry McGilton, “The Java Lan-
guage Environment”, A White Paper from Sun
Microsystems, Inc., October 1995. http://java.
sun.com/doc/language environment/ .

[15] Wallace Colyer and Walter Wong, “Depot: A
Tool for Managing Software Environments”,
Proceedings of the Sixth Systems Administration
Conference (LISA VI), pp. 151-162, Long Beach,
CA, October 19-23, 1992.

[16] John P. Rouillard and Richard B. Martin,
“Depot-Lite: A Mechanism for Managing Soft-
ware”, Proceedings of the FEighth Systems
Administration Conference (LISA VIII), pp.
83-91, San Diego, CA, September 19-23, 1994,

[17] Walter C. Wong, “Local Disk Depot — Customiz-
ing the Software Environment”, Proceedings of
the Seventh Systems Administration Conference
(LISA VII), pp. 51-55, Monterey, CA, November
1-5, 1993.

[18] opt_depot — http://www.arlut.utexas.edu/opt_depot/
opt_depot.html .

[19] esdsdb — Computer Science Division Software
Database, http://www.arlut.utexas.edu/csd/csdsdb/ .

[20] ini — GeNUA GmbH, ftp://www.genua.de/tools/
ini.tar.gz.

[21] Kenneth Manheimer, Barry A. Warsaw, Stephen
N. Clark, Walter Rowe, “The Depot: A Frame-
work for Sharing Software Installation Across
Organizational and UNIX Platform boundaries™,
Proceedings of the Fourth Large Installation
Systems Administrator’s Conference, pp. 37-46,
Colorado Springs, CO, October 18-19, 1990.

[22] John Sellens, “Software Maintenance in a Cam-
pus Environment: The Xhier Approach”, Pro-
ceedings of the Fifth Large Installation Systems

Abstract Yourself With Modules

Administration Conference (LISA V), pp. 21-28,
San Diego, CA, September 30 — October 3,
1991.

[23] Michel Dagenais, Stéphane Boucher, Robert
Gérin-Lajoie, Pierre Laplante, Pierre Mailhot,
“LUDE: A Distributed Software Library”, Pro-
ceedings of the Seventh Systems Administration
Conference (LISA VII), pp. 25-32, Monterey, CA,
November 1-5, 1993.

[24] Steven W. Lodin, “The Corporate Software
Bank™, Proceedings of the Seventh Systems
Administration Conference (LISA VII), pp.
33-42, Monterey, CA, November 1-5, 1993.

[25] Barrie Archer, “Towards a POSIX Standard for
Software Administration™, Proceedings of the
Seventh Systems Administration Conference
(LISA VII), pp. 67-79, Monterey, CA, November
1-5, 1993.

[26] Sandberg, R., D. Goldberg, S. Kleiman, D.
Walsh, B. Lyon, “Design and Implementation of
the Sun Network Filesystem,” USENIX Confer-
ence Proceedings, USENIX Association, Berke-
ley, CA, Summer 1985.

1996 LISA X — September 29-October 4, 1996 — Chicago, IL 203

204 1996 LISA X — September 29-October 4, 1996 — Chicago, IL

