Cheesy Time-Dependent Properties in AIMS Rob Parrish

Definitions: The AIMS wavefunction is,
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where ¢/(t) is the TBF amplitude, |x;(z,t)) is a frozen Gaussian nuclear basis function, and
|I) is the adiabatic electronic state.

Approximation 1: We wish to compute an arbitrary time-dependent observable depending
on the nuclear coordinates,
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Plugging in, this is,
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I think an OK approximation is,
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Here,
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Here the last equality holds only for a; = a; (common in AIMS).

The approximation invoked above is,
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This will be accurate if O(x) varies slowly from O(Z;;) relative to the integration weight
Xi(x,t)xs(x,t). In AIMS, the TBFs are quite narrow, so this is probably a fine approxima-
tion.

Approximation 2: Another possible approximation is,
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This is the Mulliken-charge-based estimate, or as Todd prefers, the “bra-ket averaged Taylor
approximation”



