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On the Theory of Time-Resolved X-ray Diffraction’
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We derive the basic theoretical formulation for X-ray diffraction with pulsed fields, using a fully quantized
description of light and matter. Relevant time scales are discussed for coherent as well as incoherent X-ray
pulses, and we provide expressions to be used for calculation of the experimental diffraction signal for both
types of X-ray sources. We present a simple analysis of time-resolved X-ray scattering for direct bond breaking
in diatomic molecules. This essentially analytical approach highlights the relation between the signal and the
time-dependent quantum distribution of internuclear positions, including thermal effects.

I. Introduction There are several works that have discussed various aspects

The real-time detection of chemical dynamics has attracted ©f the theory of time-resolved X-ray diffractién:®In particular,
much attention in the past couple of decades. The aim is to '€fS 12 and 13 derive expressions for the X-ray scattering signal
“film” the transformation of matter, that is, map out, in real PY €xplicitly taking into account the dynamical equations for
time, the interatomic distances of all atoms. This mapping leads POth the material system and the pulsed radiation field, where
to a series of “snapshots” which forms a “molecular movie” of the latter is tr_eated classically. In the present Wprk, we treat
the transformation. both the material system and the pulsed radiation field quantum-

The snapshots can be recorded using the ptpnpbe mechanically, and thg interpretation of 'Fhe obtained expression
technique: An ultrashort pump laser pulse creates a non- O the X-ray scattering signal is inspired by the time-scale
stationary state, and its time evolution is subsequently monitored, considerations presented in refs BL. Furthermore, at present,

at well-defined time delays, by a probe pulse. Typically, the there have only been a few studies where the formalism has

pump pulse induces an electronic transition, and, subsequently,been implemented numerically for nonstationary states. Thus,

additional electronic states might be populated as the dynamicsthe purpose of the present work is to (i) elucidate the theoretical

unfolds. framework needed in order to describe time-resolved X-ray
So far, the shortest probe pulses are laser pulses in the opticaPcatt€ring, and (i) undertake an exploratory study for simple

regime, which induce ultrafast electronic transitions in the diréct bond breaking with the aim of highlighting the relation

material system. In order to interpret the signals associated with between the time-dependent scattering signals and the dynamics

this form of probing, a detailed knowledge of the energetics of of bond breaking_. . .
the relevant excited electronic states, as a function of the In the next section, we review and elaborate on the theoretical

interatomic distances, is required. Alternatively, one can probe framework for time-resolved X-ray scattering. In section I,

the state of dynamical nonequilibrium structures via scattering Y€ consider the application to direct bond breaking in diatomic

techniques (e.g., electron diffraction or X-ray diffraction). Pulsed Molecules, highlighting the key features in the time-dependent

X-rays are, for example, obtained from synchrotron radiation S|gngls, including the S|gnatures.of finite temperatures. Finally,

or plasma sources. The temporal duration of these incoherentS€ction IV presents the conclusions.

pulses, consisting of many sub-femtosecond (atomic time scale)

coherent subpulses, is currently in the range-@00 ps to 100

fs.I In the near future, free-electron lasers will produce short  In the case of high-energy X-ray scattering, the Hamiltonian

~100 fs to 10 fs coherent and highly intense bursts of X-fd&ys.  describing the interaction between the material system and the
Recently, several experimental studies employing pulsed radiation field takes the forfri-16

X-rays have been published with applications to dynamics in

II. Theory of Pulsed X-ray Diffraction

the solid state as well as photoactivated chemical reactions in quAz(rj, 1)
solution (see, e.g., refs=5 and the references therein). . = Z - (1)
The theory and interpretation of experimental signals for ] 2m

X-ray scattering on static equilibrium structures (“classical’

structures) is, of course, well-known and highly developed. wherej runs over all the charged particles, of chaggeand
Much less work has been done on time-resolved X-ray diffrac- massm, in the material system. In this expressidr, t) =
tion on dynamic nonequilibrium structures, where the distribu- A)(r, t) + AC)(r, t) is the (Heisenberg) operator for the
tion of internuclear distances, that is, the wave packet, has afield of the radiation with positive componenby = ck),
non-negligible time-dependent variance which, for example, for

direct bond breaking, increases with time. "

AH) — A k=gt
t Part of the “James T. (Casey) Hynes Festschrift’. AT, )= z Z €y 2V A€ (2)
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andAC) = [AM]. Here 4y is the photon annihilation operator
in the second quantization description of the radiation field, and
€y is the polarization vector.

Now, a single scattering event involves, in a manner of
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compared with the average vallkg Hence, the field intensity
is proportional to the square magnitude of the Fourier transform
of ¢k, which means that the intensity is a pulse with duration
At ~ 1/cAk at a givenr or, equally, a pulse with a spatial

speaking, the scattering of an incident photon with wave vector extension in the rangAr ~ 1/Ak in r at a given time. Thus,

ko and polarizatioru into a photon with wave vectdts with
polarizationy. In the traditional first-order perturbation theory
treatment of X-ray scatteriry,16the scattering amplitude for
this process is given as the matrix elemiiits, W's|Hin|uk o, ;)
where|W[describes the material system dokC= é$k|vadjs
a single-photon (number) state of the X-ray field. This treatment
corresponds to a situation where the material system is irradiate
by a coherent X-ray field with a constant, time-independent
intensity. The differential scattering cross section, which is the
scatteringrate per solid angle per incident radiation flux, is
obtained from Fermi’s Golden rule.

In the following, we present (within the framework of time-

dependent first-order perturbation theory on the material system)

a derivation of the differential scattering signal in a situation
where the incoming X-ray field is pulsed. We consider the
material stat¢W (t)Ccreated by the pump laser pulse as described
in the Introduction. The perturbation on this state due to the
interaction with the X-ray pulse is given by

1 ’ *.AM —t' x r 7
POO0= - [ dee ™R @O0 ()

whereHy, is the Hamjlton operator for the free matprial system,
and the perturbatiortlint v, is the matrix element dfli,; in the
field states corresponding to the scattering event of intéfest.

d

coherent X-ray pulse durations ranging from 0.02 fshich
results inAr ranging from 60 A, originates from Ak smaller
than 0.02 A1, This Ak is (reasonably) small compared t&ka
on the order of 1 A for X-rays with energies in the tens of
kiloelectronvolts regime, which justifies the above-mentioned
assumption. Note that, for a monochromatic incident X-ray field,
Ck—k, = Okkp We Obtain the usual resultr, t) = E§0.21

Using eq 4, the perturbation to be used in eqila;,M =
@k s|Hint|uk,L) becomes

2

h q; )
PY —E(r, e ®m< (p)
eV, ,Zqu o]

N 1
Hint,M =

whereP = ¢,¢, is the polarization factor between the incident
and scattered photon and

B (1, 1) = B h(r, petor ) -

The expression foE(r, t) resembles the expression for a
(complex) classical pulsed electric field with the carrier
frequency wy,. Equation 6 can therefore be viewed as a

We note that eq 3 is valid provided that the pump laser createsSemiclassical expression for the perturbation on the material
a pure state, whereas the creations of a mixed state requires &YStem. It should be noted, however, tg(r, 1) is not the
density-operator description of the material system (see, e.g.,expectation value of the corresponding operagt)(r, t), for

ref 18). In the following, we will point out, in several places,

the state in eq 4, as one might have expected: this expectation

how the results obtained from eq 3 can be generalized to mixedvalue is zero. The present derivation of eq 6 is, in spirit, similar

states, for instance, in order to include temperature effects.
Since our goal is to calculate the differential scattering signal,

to the semiclassical treatment of absorption presented, for
example, in ref 17. An alternative semiclassical treatment of

we can use any representation of the scattered field as long asbsorption is based on a multiphoton, coherent-state representa-

we, in the calculation of the differential scattering signal, add
all contributions to the signal in the solid angl®. We therefore
take the scattered field state to [ak[1as in the usual treatment.

For the incident X-ray field, we use the coherent polarized
one-photon, multimode wave pack&t°

WukOD: Z Ck—k0|UI(D 4)

wherec, defines a distribution that is peaked around zero with

tion of the electric field (see, e.qg., ref 18), and in the Appendix
we argue that eq 6 can also be derived from a coherent-state
description of the incident X-ray pulse.

The differential scattering signal, that is, the number of
scattered photons per solid angle, then becomes

ds

a width Ak. This wave packet consists of field eigenstates, each where

containing one photon, with wave vectors all pointing in the
same direction (different from the direction kod) with varying
length around the average lendih The wave packety,is

a one-photon state because it is an eigenstate of the photon

number operatoﬁl = Zquélki%k with the eigenvalue 1, while
the average number of photons in #th mode equal$ci—i,|%/
Sklckl? To see thatyw,represents a pulse, we consider the
field intensityl (r, t) = @ou EO(r, YEDT, t)|yuc,[) whereEE)

= —0A®)/ot is the positive (negative) component of the electric
field operatort®2! The field intensity is

h .
VD R S AL LI
0

I(r,t)=

whereEy, = , [hw, 12V, andh(r, t) = 3 4/ (k+ko)/Kockd ® T~

~ Sic@® 00 if we assume that the widtihk is small

3o = J dop)in@VoOnn (@)
wEsV
plw) = 20 )

is the frequency density of scattered statés[that contribute

to the signal per solid anglé.Here, and in the following, we
have replaced the sum over wave vectors by an integral such
that, for example, eq 4 becomég, 1= fdkg(k — ko)|uk]
Furthermore, we assume that all particles in the material system
experience the same pulse envelope centereekdp after the
laser pump pulsé(rj, t) &~ hy(t — tp) = Sdkg(K)e *xt~%. This

is a very reasonable assumption for a nanometer-sized (or
smaller) system considering the extent of an ultrashort pulse,
as discussed above. Hence, the differential signal per scattered
frequency becomes
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&S Wy ) where Fp(w) = (27)7t f7,, dtCp(t)e7t is the (normalized)

100 P j; dt” j; dt’Ek (t)E () x frequency density-of- states spectrum of the incident X-ray
ks Goﬁw pulse?! Hence, the scattered X-rays have the same frequency

|wk5(t Oy e P R gy O (1 distribution as the incident X-ray pulse, that is, the scattering

© (tiLe IF()E(10) can be considered to be over-all “elastic”. We note that, for an
whereEi(t) = Exhplt — tp) expimigt) and incoherent sum of coherent subpulses, both the.spectra}l vyidths
of each of these subpulses as well as the possible variation in

2 their carrier frequency contribute to the width fef.
r_ 9 i(Ko—k-rj Now consider this expression for the typical pulses obtained
L= Z —e I (112)

- 2m from synchrotron and laser plasma sources, namely, that the

totalincoherentpulse has a duration much longer than the time

is the scattering operator. Because of the high mass ratio betweer?falte fqr the electronic mc_)tlon 'gas d|c:ated d t_)y t:lhel Tv%rse
nuclei and electrons, the contributions to this operator from the electronic eigenenergy spacing). As mentioned in the Introduc-

nuclei are often ignored, even for highly charged nuclei, because o the state vector for the mate_rlal SysteHi(yL] IS createq

there will be a correspondingly high number of electron by the pump UV-laser pulse, and it therefore contains amplitude

contributions on the electronic ground state as well as on one (or several)
To be more specific, we now consider the Gaussian time exc!ted electronic state(s). We expa]r\ﬂ(t)lqin t.he adiabatic

profile, hy(t) = exp(—t2/2y?). Then we can writeE, (t")Ex(t) basis and sum over the relevant eIe_ctro_nlc eigenstpigs)]

= |Ex(1)12hsY%(0) explond), wherer = (t' + )72 andd = = Y nlxn(Y)OnClwhere|nls an electronic eigenstate, apd(t)0

vt Herpe (1) = |Ex (t0)|2,is the X-ray pulse intensity, and is the associated amplitude, which is a function of the nuclear

. It = 1Bk : ;
Co(t) = hpt’A(t) explwi,t) can be viewed as the (normalized) coordinates. Then
X-ray pulse time-correlation or coherence functféf? With

hese definit d's s
these definitions, 000 2n2 S a? p(wks)P X
K Ce
d’s @k, P2 ok * W
0o, Mgéqﬁ [ drl (7) [ doC(8)e " Zn S el (@)D I(LD) om0 (14)

BlI’(t)l glfuol2h{ teiFom{” dfudl2h s 1y (12) In this expression,(L)mn = [n/LL |0 which still depends
on the nuclear coordinates. Only the diagonal elements con-

This is a central result of our analysis. Obviously, for the fully tribute to eq 14 because of the rapidly oscillating terms (on the
coherent X-ray pulse that led to this expression, the coherencetime scale of the pulse duration) arising from the energy spacing
time is essentially the same as the pulse duration. However, between different electronic states:!
for an incoherent X-ray pulse consisting of many coherent —Obviously, the details in the time-profil, and the frequency
subpulses, the coherence time is independent of (i.e., muchspectrumFy, of the incident X-pulse depend on the experimental
shorter than) the pulse duration. The expression for the signalsetup. However, if the duration of the pulse is either sufficiently
arising from an incident incoherent X-ray pulse can be obtained short or sufficiently long compared to the time scale of the
from eq 10 simply by averaging over the photon statistics, that nuclear dynamicd, may be replaced by either a delta function
is, replacingEg, (t")Ex(t') by the averaged time-correlation Or & constant on the nuclear time scale. Likewise, if the width
function of the pulse envelop&E, (t'")Ex,(')[! Hence, eq 12 of Fp can be neglected, we can obtain a simplified expression
remains the same for an incoherent X-ray pulse, with the pulse for the differential scattering signal:
intensity given byly(t) = JEx,(t)|20andCy(d) = [Ek, () Ex(t —

0)lx(t), which is assumed to depend only on the relative time E
difference,o. do
Expressions similar to eq 12 have previously been reported 1
in the literaturetl-*?where a perturbation on the form given in —P2 2 j(; drlp(r)ljkn(t)|(L L)nn|xn(r)|QS K (15)
eq 6 was either simply postulatéar derived from a classical 272 €C hwk n

description of the incident X-ray puldéHere, eq 12 has been
derived from first principles, that is, the quantum theory of light- As pointed out earlier, the frequency widths of X-ray pulses
maitter interactions, with a quantum-mechanical description of obtained from, for example, synchrotron radiation are typically
the incident X-ray pulse. on the order of percents of the carrier frequency. Hence, in order
A. Coherence Time Short Compared to DynamicsWe to simulate the finer details of the experimental signal, the actual
consider a situation where the coherence time, that is, the timefrequency distribution of the incident X-ray pulse must be taken
during which Cy(t) is substantially different from zero, is so into accoun®
short (subfemtoseconds) that we can ignore all of the dynamics We note that the above analysis can be generalized to a
in the material system during this time. This is a relevant limit material system described by the density opera(rinstead
for X-rays from synchrotron radiation and laser plasma sources. of the state vectoi¥(t)Cby carrying out the perturbation theory
Then in Liouville space'®22Hence, we may replace the expectation
values over the material system in eq 13 byLTi[p(t)], and in
s egs 14 and 15 by Tf(LTL).pn(t)], where the trace is over the
dQdw, o nuclear degrees of freedom only, apgt) = [|p(t)|nC] With
° this replacement, eq 15 resembles the general expression given
in ref 13, which is derived from a purely classical treatment of
the X-ray field and its interaction with the material system
followed by quantization of the latter. This is consistent with

(4]

M o, )P? [ del ()@ (@)L W (7) 0 (13)
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the fact that the classical analysis presented in ref 13 discardsferential cross sectidffor a single electron in the statall

the coherence of the X-ray field by considering each scattering
event to be independent and instantaneous (see also ref 16)d0

which is reasonable with the present X-ray soufces.
B. Coherence Time Short Compared to Only Nuclear
Dynamics. Equations 13-15 are valid if the time scales (as

2

2
e P\ |nTE_, (19)

4e,mc

c
%

“dds

dQ ~ |V| dtda

dictated by the inverse eigenenergy spacing) of both the nuclearwherec/V is the photon flux in the incident X-ray field, and
and the electronic motion are long compared to the coherencethe time derivative is evaluated prior to taking the limit in eq

time of the pulse. However, for a coherence time of tens of

femtoseconds, say, the time scale of the electronic motion is

8.
C. The Independent Atom Model.In order to simplify the

not long in comparison when the electronic eigenenergy spacingrelation between the differential scattering signal and the nuclear

is in the electronvolt range, typical for small molecules. This is
a relevant limit for future coherent X-ray sourcex.

Again we write the state of the material system'&gt)[1=
> nlxn(Y)OnCl where|nis an electronic eigenstate ang(t)Uis

the associated amplitude (nuclear wave packet). Employing the

Born—Oppenheimer approximation, which implies an integra-
tion over the electronic states under the condififTr|yn(t) 0
= Trlxn(t)Dnm wWe obtain

/2R To-iRuOm{ JRuoi2n _
Z eIHN'mé/ZiLrTnne_lHN'né/hl_melHN'l(SIZh (16)
mn

where the right-hand side (rhs) now only acts on the nuclear
wave packets. Herlelym = Tr + Vm(R) is the Hamiltonian for
the nuclear motion in thesth electronic state, aridy, = in|L|nL]
which is still a function of the nuclear coordinates due to the

parametric dependence of the electronic states on the nuclear

coordinatesR. Inserting this expression into eq 12, only the
diagonal elements contribute because of the rapidly oscillating
terms (on the time scale of the coherence time) arising from
Vi(R) — V(R).8"11 Hence, if we consider an X-ray pulse with

motion, we ignore the scattering from the nuclei and adopt the
independent atom model (IAM) for the electrénd14in which

the electrons are localized around the nuclei as in a free atom.
In the 1AM,

L~ fR(@Q = f,9% (20)

where the sum runs over all the atoms (nucligi)s the atomic
scattering factorR,, is the position of the atom, ar@d = ko —
ks is the scattering vector.

From both eqgs 15 and (18), we then obtain

das 1
dQ 2.7'[26003hwk0

> Jo @@ [ dRIR(QKpo(R. ) (21)

P? x

wherepn(R, t) = [R|pn(t)|Rs the unnormalized nuclear density
on the electronic state(= |yn(R,t)|2 for a pure state). To obtain
eq 21 from eq 15, we used the idea that, ~ Lnyndnm in the

a coherence time on the order of tens of femtoseconds andjzp \which can be argued from a quantum-chemical point of

assume (i) that the electronic states are energetically well

separated and (i) that the nuclear dynamics can by ignored

during the coherence of the X-ray pulse, we get

d’s
dQdw,

> o del @B Lol (0 D (17)

With a coherence time of, say, 10 fs, the width Bf
(corresponding toAk ~ 1074 A) is certainly very small
compared to the carrier frequency. Aldga(7)||Lnnl2lxn(t)0is
typically constant ovefks — ko| < 0.01 A1 (see section IlI),
and the width of, can safely be neglected in this case. Hence,

ds 1

— = P?x
dQ  27% Chwy,

> o del @B @Il (0 By, (18)

view.1In this connection, we recall that eq 15 may be too crude
an approximation, and one may have to perform the actual
integration over eq 14, which, in the IAM, becomes identical

to the rhs of eq 21 without the restrictitm= ko and multiplied

by (widwko)Fp(wky).

Expressions similar to eq 21 have been reported pre-
viously 2~11.13.14pyt here we have derived it, for the first time,
from a fully quantum-mechanical treatment of the interaction
between a molecular system and a pulsed X-ray field. Our
derivation reveals that, within the 1AM and the restrictions
mentioned above, eq 21 is valid for an incident coherent
(incoherent) X-ray pulse with a duration (coherence time) that
is short compared to the time scale for nuclear motion, provided
that, in both cases, the pulse duration is long compared to the
time scale for electronic motion.

[Il. Application to Direct Bond Breaking

We consider the time-resolved X-ray scattering in a very
simple process: direct bond breaking in a diatomic molecule
(see Figure 1). A detailed numerical implementation has been
presented previously for direct bond breaking in;Brour aim
here is to present a simplified analysis that highlights the relation

As before, this expression can be generalized to a materialbetween the key features in the dynamics and the time-dependent

system described by the density opergif), replacing the
expectation value over the material system biy[Ltnn| 20n(t)],

where the trace is over the nuclear degrees of freedom only,

and pa(t) = [(H)InC

We note that omitting in eq 16 the nuclear degrees of freedom,
we obtain, from eq 18 in the continuous wave limit for an
incident one-photon X-ray fieldl{t) = Eﬁo) the usual dif-

signals. A similar approach has been used for time-resolved
pump—probe spectroscopy using optical probing (see, e.g., ref
23 and the references therein). We calculate the scattering signal
for a diatomic molecule in its stationary ground state and the
“‘instantaneous” signak;(Q, t) = SdR|fr(Q)|%en(R, 1), in an
excited nonstationary state created by laser excitation. For
incoherent X-ray pulses that are not ultrashort, the expression
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I W(RY) Yim(6:9) ~

E(R) H( Vim0 ¢)) "R HOuRH  (25)

\
| "nl where Y\, are the spherical harmonics eigenstates associated
i X
| \
L6

with the angular momentum, arid() is equivalent to a one-
il dimensional Hamiltonian given by
|

H() = - R Vi(R)

20 o (26)

with the effective potential

B RA( + 1)
il P VI(R) = V(R) + TR (27)
A\ .,,'I: ' Az ///

where the angular momentum quantum numlber 0,1

Using eq 25, the time evolution of a state that is in a stationary
R rotational state can then be written in the form

Figure 1. Schematic illustration of the laser-induced nonstationary
probability density associated with the internuclear positions of a

diatomic molecule. The probability density is shown in the excited

X —iA U(R) Y (01¢) —iH
_ : : e '””*‘('—Y.mw )) =" MOy (R) (28)
(antibonding) state at two times: (a) after an instantaneous vertical R R
excitation and (b) at a later time where the distribution is broadened as

a result of the spreading of the wave packet. The scattering of an X-ray Thus, the radial motion takes place in the effective one-
photon from this state is sketched.

dimensional potential|(R). For a strongly repulsive potential
. . . . the motion is, to a good approximation, independernit of
for the signal must be convoluted with the temporal intensity

profile of the X-ray pulse (cf. eq 21).

The complex exponential in eq 23 can be expanded in the
; ; . ) form?4
The scattering factdir(Q) for a diatomic molecule with bond
vectorR = R; — Ry, takes, within the IAM, the form

R = 4712 nf i @Y ‘ (0L0)Y,(0,8)  (29)
2 2 ) 4 -, QR ’ Im\*»
IfRQI° = f.(Q)*fy(Qe¥ ™ -
; where]|(QR) is a Riccati-Bessel function (eigenfunction of the
= [[Q)F + IfQ)1* + F(Q)*fx(Q)e ¥ + Hamiltonian in eq 26 foM(R) = 0), and Q, o, d) specifies the

L QR magnitude and direction of th®@ vector. The RiccatiBessel
f1(Q)f(Q)*e function is related to the spherical Bessel functjif@R) =

(22 JQRIQR. . , .

A. Signal, Ground State.First, we consider the scattering
where, in the last line, we have specialized to a homonuclearSIgnal when the molecule is in the stationary vibrational
. ' P p . . .~ rotational ground state. Within a harmonic approximation to

diatomic, where the atomic scattering factors are identical (i.e. .
f1(Q) = f2(Q)). The signal is then proportional to the expression

' the vibrational ground statep(R) is given by a Gaussian
Frs(Q. 1) = [ dRIf(Q) 4R, )I?

= fQF(2+e "+ %)

IG(Rt = 0))? = [27(AR)] 2 exp[ _(F;—_Roz)fl (30)
= 2, (QIA(f dRIx (R, > + (AR
Re{f dREXRy (R, %) ‘t’)‘/gfc:?neﬂsR)oz = Al(2mw). The scattering signal in eq 23
whgreQ =Q|. (23)

_ 2 iQ-R 2
Since the interaction potential of the diatomic molecule is FinsQ) = 21, (Q)I7(1 + Re[f dRe |Xgr(R’ 0I%)
spherical symmetric, it is natural to consider the Hamiltonian

in polar coordinates. Thus, the nuclear Hamiltonian for the = 2|fl(Q)| 1+ [ZN(AR)g] 1/2f rSNeR sin(QR)
relative motion takes the well-known form 0 QR
~ [o* 209 [P R-R) )
H= +£ = ———]+VR 24 ex (1)
Zu(aRz RR ] @Y 2(AR)0
wherey is the reduced masR is the internuclear distancé,

V(R) is the electronic energy. Rotational invariance implig¢4]

because of the orthonormality of the spherical harmonics:
= 0, and the angular momentum associated with the relative

motion is a constant of motion. We consider the dynamics of a Y} | Y,
state with a definite angular momentum, and write the radial
part of the wave function in the formy(Rt)/R. We note that

In this case, where the initial state is spherical symmetric,
is the angular momentum operator of the relative motion, and only thel = m = 0 term in eq 29 contributes to the integral

L 2 (0.)Yi(0,0) Sin 00006 = 6,0,y (32)
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Typically (AR)o/Ry corresponds to a few percent, ankR)o is
largest for molecules with small masses and small force
constants. In the classical Iimit&R)S — 0, the integrand is
nonzero only forR = Ry,

[272(AR)3 Y2 exp[—(R_—RO)il

—_ —_ 2—)
2GR 8(R— Ry) for (ARZ— 0

(33)

and

QR

which is just the classical standard result for a spherical
symmetric molecule.
B. Signal, Excited Nonstationary StateNext, we consider

Sin(QF’o)) (34)

Fins( Q. 1) = 2|f1(Q)|2(1 +

the scattering signal when the molecule is in a nonstationary

excited-state obtained by excitation out of the initial stationary
vibrational-rotational ground state.

We consider an electronic transition in a molecule, from the
electronic ground state “gr” to an excited state “ex”. Within
the electric-dipole approximation and first-order perturbation
theory for the interaction with an electromagnetic field (see eq

3), the state vector associated with the nuclear motion in the

excited electronic state “ex” is given by (at timéswhen the
laser pulse has vanishé&#§®

Yok D=3 [ dte e ©)p(x, t—t)  (35)

where g(xt — t') = exp[—iHe(t — t')/A]|p0) EL(t) is the
(pump) laser field, and

|pU= g5 |Xgr|-_.]

is the Franck-Condon wave packet. In this expressign,Lis

(36)

the initial stationary nuclear state in the electronic ground state @Bk —

with energy e, and u12 is the projection of the electronic
transition-dipole moment on the polarization vector of the
electric field, which we define as theaxis. Thus, the excited-

state wave function can be thought of as a coherent superposition
of Franck-Condon wave packets promoted to the upper state

at timest’ with different weighting factors (given b, (t')) and
phases. At timé, each of these wave packets in the superposi-
tion has evolved for a time — t'.

We specialize now to a delta pul&g(t’) = ELO(t) on the

nuclear time scale and a parallel transition where the transition-

dipole moment is parallel to the bond vect®r Then

YR, O = ZH(R, ) =

1 i u(R)
e Hexﬂh(EL{#lz{choseYlm(ey ¢’)) (37)

Assumel = 0, then co¥Ypo = v 1/3Y,,, and, according to eq
28,

E o=
ZelR. 1) = %J1/3Y10e"He*<"1>”huo<R> (38)

where we have assumed that the transition-dipole momgnt

is constant, that is, independent of the internuclear distance (the

Condon approximation), and where the spherical harm¥nic
= 4/ 3/(4r)cod). The time evolution of the initial Gaussian is
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now described within a time-dependent local harmonic ap-
proximation (LHA) to the center of the wave packet. The
dynamics is then described by a Gaussian wave packet of the
form27v28

G(x,t) = explioy(x — xt)zlh +ip(x — x)/h + iy /h] (39)
where x; and p; are the expectation values of position and
momentum, respectively; andy; are complex numbersA).?

= Al(4lmay), the imaginary part ofy; accounts for the
normalization, and the real part of implies that the wave
packet acquires a phase (the classical action). The probability
density of the Gaussian is

_ 2
IG(RYP = [27(AR) 2 exp[ _RZR)

2(AR)? (40)

Then using eq 23, assuming the same atomic scattering factors
as in the electronic ground state,

(€0s0)* = 2Vm(2Y,/5 + Yuo)/3 (41)

and egs 29 and 32, we obtain

» . SINQR
Finst(Qvt) = A|f1(Q)|2(1 + N(t)!/(‘) dRW X
— (3 coga — I)N(t) x
1,(QR)

j:odR OR ex;{—

where A = 2E, ?|u12%/3h?, N(t) = [27(AR)?] Y2 is the time-
dependent normalization factor of the wave packet,ja(xjl =
1) sinx — (3/x) cosx is a Bessel function. Because of
the nonisotropic distribution of the molecules prior to X-ray
scattering, the signal depends @nas well as on the angle
between the polarization vector of the laser pulse andQhe
ctor.
The change in signal as a function of time is due to the change
in the average internuclear distarigeas well as the spreading
of the wave packetAR).. (AR)/R; for direct bond breaking
corresponding to a purely repulsive potential can be much bigger
than that for stationary structures. In the limit of an ultrashort
o pump, the FranckCondon wave packet is localized at early
times; however, the momentum uncertainty of the initial state
gives rise to fast spreading of the wave packet. Longer pulses
produce broader wave packets with slower spreading. Thus, at
any given time, the signal is due to scattering from a distribution
of structures. The magnitudes of the time-dependent terms in
eq 42, at a fixed value @, decrease as the internuclear distance
R: increases (since the magnitudes of the spherical Bessel
functions decrease at large internuclear distances).

In the classical IimitAR)f — 0, the integrands are nonzero
only for R= R, and

(R—R)

2(AR)?

(R—R)

2(AR)?

) (42)

Finsl(Q't) =
o,  SINQR) _ JAQR)
AR Q1+ oR (3 coda 1)Q—R (43)

however, as we will see in a moment, the accuracy of this
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Figure 2. The “classical result” in eq 43, i.e5ins(Q,t)/(Alf1(Q)|? — 1, for direct bond breaking of BrThe classical trajectory corresponding to
the interatomic potential specified in the text is givenRWA = 2.3 — (2.0/4.64) In(2.0/[exp(0.0495+ exp(—0.0498)]), where time is measured
in femtoseconds.
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Figure 3. The exact result in eq 42, i.e5ns(Q,t)/(Alf1(Q)|?) — 1, based on a wave packet description of the interatomic motion for the same
potential as in Figure 2. The width of the wave packetA&y = 1.0 A.

expression, as a result of the non-negligible width of the wave  When coso. = 1/v/3, the last term in eq 42 disappears, and
packet, is poor. the signal is isotropic. We consider, in the following, the time
We consider now a numerical illustration, focusing on the dependence of the second term, thafiss(Q,t)/(AIf1(Q)|?) —
signatures in the signal of the bond breaking, including the wave 1. Figure 2 shows the “classical result” in eq 43 for various
packet spreading. As an example, we consider the dynamics intimes as a function of. Note that the signal @t= 0 (with the
a purely repulsive exponential potential corresponding to direct exception of a constant factor) is equivalent to the signal from
bond breaking. The potenti®(R) = Vo exp[—a(R — Ry)], with the electronic ground state, and the signal continues to evolve
Vo = 0.949 eV,a = 4.64 A1, andR, = 2.3 A, gives a good in time also when the bond is broken. Figure 3 shows the exact
description of théIl, state of the Brmolecule (with the reduced  result based on eq 42, including the finite width of the wave
mass 39.95 amu), and, with laser excitation-&5 000 cnm?, packet. If the wave packet was created with) goulse, as
this state is the only one being populat@dhis potential leads  described above, the initial width would be equal to that of the
to essentially free relative motion after about 60 fs (i.e., the ground state, and, already after about 100 fs, it will be on the
dissociation time of the bond), corresponding to an interatomic order of AR) = 1.0 A. If we use AR), = 0.1 A, a result very
distance of about 3 A. close to the classical result is obtained, but, oR); = 1.0 A,
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which is shown in Figure 3, the signal is clearly modified, and initial conditionsRy andpy = 0), G(R}t) is the Gaussian wave
a pronounced signal and time dependence is visible only for packet of eq 39H, is the nth Hermite polynomial,x; =
small values oR. Clearly, when these “instantaneous” results ,/2ima,/h, andB; = (2/m)[ydtImay. That is,
are convoluted with the temporal intensity profile of the X-ray
pulse, according to eq 21, the time dependence of the signal |¢n(R,t)|2 = (2“n!)‘1|G(R,t)|2|Hn[Kt(R— Rt)]|2 (48)
will tend to get washed out as the temporal duration of the X-ray
pulse increases. where
C. Thermal Effects. Above, we have considered the time-
resolved X-ray scattering signal assuming that the initial state 5 o112 (R-R)
is the vibrationat-rotational ground state. At any given time, IG(RYI” = [27(AR);] "“exp———-| (49)
the signal (eq 23) is due to scattering from a distribution of 2(AR);
structures. This distribution is temperature dependent, and the ) ) ) .
signal is obtained as a thermal average over the initial states.With (AR); = #/(4Ima;) being the time-dependent variance
The signal depends, in particular, on the probability density of associated with the Gaussian, thatdg(Rt). Using a well-
interatomic distances. known summation formuld& the density matrix at timet
We will here consider a mixed initial state which can be Pecomes
handled analytically for the vibrational part of the probability

density. We consider a harmonic oscillator with a statistical =~ ) o 1o (R=R)__,
mixture of states corresponding to thermal equilibrium. [pa(RDIPy = [27(AR);] ~“ ex |4
The population of theith quantum state is given by, = = 2(AR);

e &/KD/Z, whereE, = hw(n + 1/2), andZ™! = 2 sinhhw/ © g E/KT

(2kT)]. The p.robability density in position space (the diagonal [H k(R — R‘)]|2

density matrix element) is obtained from the stationary states n= 2"n!

of the harmonic oscillatop,(R,0), and takes the well-known

Gaussian fort S SR 1.7 I i | 0
w0 ZJT(AR)tZ 2kT 2(AR)t2 2KT,

,OT(R,t = O) = |¢n(R!O)|2pn
= This result is a generalization of the density matrix associated
with a time-dependent “thermal coherent state” of a harmonic
= /mtanr(h_“’) exr{— mtanh(h_w)(R_ RO)Z] (44) oscillato?? to the corresponding density matrix for a locally
7h 2K, h 2K harmonic potential with a varying curvature. Thus, at any
temperature, we have a Gaussian distribution centered around
the time-dependent expectation val&e and with a time-
dependent width. In the low-temperature linfity > 2KkT, eq
50 reduces to eq 49.
Thus, the result at temperatufés identical to the situation
where the initial state is the vibrational ground state, except for

which is a broadened version of eq 30.

We consider now laser excitation out of any of the pure
vibrational quantum states (assuming adain 0). The laser
pulse is again & pulse, which, according to eq 38, creates
Franck-Condon wave packets given by

E, |4y, a broadening of the Gaussian with a (time-dependent) standard
ex(R, 1) = —r Y 1/3Y, 4, (RY) (45) deviation in position given by
Whgre </>n(R,.t) = exp(—iHext/h)qbn(R,O), apd on(R,0) are the o7(t) = (AR)/ / tan h_‘“) (51)
stationary vibrational states associated with the electronic ground 2KT,

state. Now, for UV-excitation out of a statistical mixture of pure
states corresponding to thermal equilibrium, the probability
density in position space becomes

Typically Aw/k (the vibrational “temperature”) is on the order
of 1000 K. For Bp, hw/k = 463 K, which implies that, fol <
463 K, one obtaingt < 1.4700, wheregp = (AR):.

P We can conclude that, at finite temperatures, the distribution
pr(R, ) =Y [xo(R, )%, of internuclear distances, i.e., the width of the dynamical
= nonequilibrium structure, is broadened by a time-independent
2 2 (temperature-dependent) factor.
E "luodl 5 e )
= ?Ym IR [6,(RY)P, (46) IV. Conclusions
Es

The final result for the differential scattering cross section

The summation can again be evaluated wiggfR,0) are presented in eq 21 takes a simple intuitive form that is closely
stationary states of a harmonic oscillator. related to the standard result where the material system is in a
We consider the (laser-induced) dynamics within the frame- Stationary state. Thus, with the material system in a nonsta-
work of the time-dependent LHA. That is, fdr> 0, the tionary state, one must simply add the results from a series of
stationary states evolve into generalized harmonic oscillator instantaneous structures with weights given by the temporal
states, given B profile of the X-ray pulse. In this paper, we have investigated

_ the basic formalism for X-ray scattering with pulsed fields,

o (RY) = (2" Y GROH [k (R— R)e ™  (47) where we have paid attention to the identification of the proper

form of the perturbation on the material system based on a fully

where the time evolution of the expectation values of position quantized description of the radiation field, and to the various
R and momentunp; is given by Hamilton’s equations (with  approximations that must be introduced in order to arrive at eq
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21. Among other things, our investigations reveals that eq 21 Er,t) =i Ekakei(k'r"”kt) =iE, h(r t)ei(ko'rfwkot) (A.54)
is only valid provided that the frequency spread (or non- Z 0
monochromaticity) of the incident X-ray pulse can be ignored.

Otherwise, an average over the different frequency component — oo _ [ o~ aT—ogd)
must be performed, which is explicitly included in our analysis. S\ﬁh;zlfg(k.,wﬁgf kl;;":’ S?rrﬁl;(rr atr)1 alyéik Sl(gkgk(i/kégﬁ(r e
; JNn(r, <.

There are a number of questions that require further work; . 7 T . AR
for example, questions concerning the signal for coherent X-ray The r_elatlve uncertainty in the electric field amplitude d|m|n|sh_es
! (ywth increasing mean photon number, and the average field

pulses in the time domain where the pulses cannot be considere variation resembles that of a pulsed classical field with the
to be ultrashort on the time scale of nuclear motion, the signal . ! pulse . - .
carrier wave defined b¥ko. For an, in this sense “classical-

when the electronic states of the material system are closelylike,, incident X-ray wave packet of highly excited coherent

spaced, the validity of the 1AM, and the inversion of experi- states, the field undergoes no noticeable change in the average

mental signals. . T .
We have derived analytical expressions that capture the main!OhOtOn number in the direction & by scattering one photon

; . . into the directiork (different from the direction oko). Hence,
features of the time-resolved X-ray signal for laser-induced we use the final statgpuJuks The perturbation to be used
direct bond breaking in a diatomic molecule. The expressions uko TV P

(valid for ultrashort coherent or incoherent X-ray pulses) display, \I/Uh?ghst:gg?r:iore determined Bl m = K s| W ucol Hineltuk)
in particular, the relation between the time-resolved signal, the
average interatomic distance, and the uncertainty of the distance. )
The time-dependent uncertainty for non-stationary states plays . =i h q ket — )
an important role. Thus, because of this uncertainty, a pro- Hinem = — Pz —E(r;, e T (A.55)
nounced time dependence of the signal will show up only for oy, \ €V, T 2m
small values ofQ. We have derived an analytical expression
for the width of the dynamical nonequilibrium structure that is whereP is the polarization factor between the incident beam
also valid at finite temperatures. This expression shows that theand the scattered photon. It should be noted that, in the
width is broadened by a time-independent, but temperature-derivation of this expression, we have ignored contributions
dependent, factor. arising from the terms iitli,; containing operator producés,

In order to create a “molecular movie” of direct bond al,, although they are not strictly zero in this case, sirsnply
breaking, ultrashort (and intense) X-ray pulses are required. Suchhecause these contributions do not represent the scattering
pulses will become available in the near future. process in question. Accepting these considerations, the results

) in section Il remain unaltered by changing the representation
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