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1 Development

Literature:

Geometry: Consider an ultrafast pump-probe scattering experiment (See Figure 1 for an
example and definitions of lab-frame coordinates). For today, we will take the pump to be an
optical ultrafast pulse. This pump strikes an isotropic sample (e.g., provided by a gas jet) at
t = 0, and promotes a (hopefully) single-photon transition in some of the sample molecules
from the stationary Frank-Condon state S0 to an excited state SN , setting up non-adiabatic
dynamics. Single-photon absorption is not isotropic, but proportional to the square of the ẑ
component of the transition dipole moment at the Frank-Condon point. At time delay t, the
scattering probe (x-ray or electrons, depending on the experiment) strikes the sample, and
takes a snapshot of the current geometry of the sample in terms of the scattering pattern on
the detector. Typically, this signal is adjusted by subtracting the t = −∞ signal, exposing
changes in the geometry for the pumped molecule, and providing a “molecular movie” if a
number of pump-probe time delays are sampled. Note that the subtraction of the t = −∞
component of the signal serves to remove the scattering signal from the non-excited molecules
(which remain in the time-independent steady-state FC wavepacket).

Figure 1: An illustration of ultrafast X-ray diffraction (along with UED, this is one of the
main types of pump-probe scattering experiments that we consider). The X-ray probe arrives
a delay of t with respect to the optical pump. In the perpendicular experimental arrangement
(shown here), the polarization vector ~E ∝ ẑ of the optical pump pulse is perpendicular to the

incident wave vector ~k0 ≡ kŷ of the X-ray probe pulse. The incident X-ray photons scatter
at angle θ with respect to ~k0, and azimuthal angle η with respect to ~E. These two angles
fully describe the scattering in the elastic regime, as |~k0| = |~ks|. The scattering vector ~s is

the difference between the incident and scattered wave vectors ~s ≡ ~k0 − ~ks. The amplitude
of the scattering vector is s ≡ |~s| = 2k sin θ/2 = (4π/λ) sin θ/2. Figure adapted to our
notation from Kent Wilson’s excellent 1998 ultrafast scattering paper in JPCA [Jianshu Cao
and Kent R. Wilson, J. Phys. Chem. A 102, 9523 (1998)].

Objective: As theorists, our objective is to perform a computational simulation of the non-
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adiabatic dynamics and time-resolved scattering signal observable of the ultrafast pump-
probe experiment. To make things easy, let us assume that we have performed the non-
adiabatic dynamics simulations, and have a representation for the density of the wavepacket
in terms of a set of weighted trajectories {rIA(t), wI(t)}. Each density-matrix trajectory
basis function (e.g., a pair of AIMS TBFs in the Mulliken or saddle-point approximation,
or an adiabatic trajectory) has a set of time-dependent nuclear coordinates rIA(t), a time-
dependent weight factor wA(t), which accounts for the weight of the starting configuration
in the Franck-Condon point (Wigner sampling provides even weights, but there may also
be weights due to sampling from different conformers), the overall oscillator strength, and
any changes in weights due to adiabatic state population changes over the dynamics, and an
adiabatic electronic label often denoted as |I〉.
We also apply one additional convention (not usually seen in AIMS) to our trajectories: we
assert that the transition dipole moment of the t = 0 frame is aligned to ẑ, and that all
subsequent frames follow this lab frame alignment. This will allow for the efficient treat-
ment of anisotropic absorption later, by “reusing” each trajectory many times with different
orientations. Note that this convention can be applied after running AIMS, by rotating all
frames of a given trajectory tree by the rotation matrix to bring the t = 0 frame into the ẑ
axis.

In particular, our job is to produce the time-dependent detector pattern I(θ, η, t), the detec-
tor moments Il(θ, t), and the corresponding radial distribution functions Il(r, t).

Elastic Scattering: We will assume we are working in the elastic scattering regime (no

momentum transfer to the sample), which implies that |~k0| = |~ks|. This constraint reduces
the dimensionality of the valid scattering space by 1.

~s = s{cos θ/2 sin η, sin θ/2, cos θ/2 cos η}

Here s = 2k sin θ/2 = (4π/λ) sin θ/2. Because of this relationship, s and θ are used inter-
changably in discussing the scattering.

IAM: In the independent atom model (IAM), the scattering for a given molecular “frame”
I, with known and fixed orientation, is,

II(~s, t) =

∣∣∣∣∣∑
A

fA(s)ei~s·~r
I
A(t)

∣∣∣∣∣
2

The spherically-isotropic atomic form factors are available for X-ray scattering and UED
from considerations of the atomic electronic density (see below), or may be computed from
scattering codes like ELSEPA (specialized for UED).

The total scattering signal is computed as,

I(~s, t) =
∑
I

wI(t)

∫
SO(3)

dR̂ R̂2
zz

∣∣∣∣∣∑
A

fA(s)ei~s·R̂~rIA(t)

∣∣∣∣∣
2

/

∫
SO(3)

dR̂

Note the “smearing” over all sample orientations R̂, with R̂2
zz weight for the anisotropic

absorption.
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Note that,∫
SO(3)

dR̂ R̂2
zz/

∫
SO(3)

dR̂ =
1

3

Detector Signals: The detector signal can be expanded as,

I(~s, t) =
∑
I

wI(t)
∑
A,B

fA(s)fB(s)KAB(~s, t)

where,

KAB(~s, t) =

∫
SO(3)

dR̂ R̂2
zze

i~s†R̂~rIAB(t)/

∫
SO(3)

dR̂

The rotation group integrals are worked out in A. H. Zewail and J.S. Baskin, Chem. Phys.
Chem., 6, 2261 (2015). For the perpendicular case (selection weight of R̂2

zz):

K⊥(~s) =
J1(sr)

sr
−
[
sin2 γ + (2− 3 sin2 γ) cos2(θ/2) cos2 η

] J2(sr)
2

For the parallel case: (selection weight of R̂2
yy):

K‖(~s) =
J1(sr)

sr
−
[
sin2 γ + (2− 3 sin2 γ) sin2(θ/2)

] J2(sr)
2

For the isotropic case, (selection weight of 1):

K∅(~s) = J0(sr)

In the above γ = cos−1(r̂ · ẑ) and r = |~r|. Note that sin2 γ = 1 − (r̂ · ẑ)2 = 1 − r2z/r
2 =

(r2x + r2y)/r
2.

The spherical Bessel functions are,

J0(s) =
sinx

x
: 1

J1(x) =
sinx

x2
− cosx

x
: 0

J2(x) =

(
3

x2
− 1

)
sinx

x
− 3

cosx

x2
: 0

The limits at x = 0 are displayed. Also note that limx→0 J1(x)/x = 1/3.

Modified Diffraction Intensity: Particularly for UED, the raw diffraction intensity above
is too peaked near the origin. To facilitate analysis, a “modified” diffraction intensity is often
defined as,

sM(s) ≡ s
Imol(s)

Iat(s)
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Here, the atomic contribution of the scattering is,

Iat(s) ≡
∑
A

|fA(s)|2

Note that this is time and structure invariant. The molecular scattering signal is,

Imol(s) ≡ I(s)− FIat(s)

Here F = 1/3 for perpendicular and parallel transitions, F = 1 for isotropic transitions.

Anisotropy: For a perpendicular pump-probe arrangement, the scattering signal can be
exactly decomposed into,1

I(s, η, t) = I0(s, t) + I2(s, t) cos(2η)

This decomposition can be computed from two collocation points as,

I0(s, t) =
1

2
[I(s, η = 0, t) + I(s, η = π/2, t)]

I2(s, t) =
1

2
[I(s, η = 0, t)− I(s, η = π/2, t)]

Pair Correlation Functions: The distance pair correlation is computed from the UED
detector signal as,

M(r, t) ≡
∫ smax

0

ds sM(s) sin(sr) exp(−αs2)

Formally, smax → ∞ for an exact sine transform. In practice, a cutoff must be used due
to the outer limits of s values that are scattered. The cutoff function exp(−αs2) is used to
damp down noise from large s. Additionally, the detector signal is only available from smin

and up, so the signal is typically assumed to rise smoothly2 from s = 0 to the value at smin.

Typically this analysis is applied to the isotropic difference signal ∆M0(s, t) = M0(s, t) −
M0(s, t = −∞).

Specific Example I: UED at SLAC: One of the main experiments we are trying to
support is the UED-III endeavor at SLAC. A representative paper of the approach and
setup is from the UED-I run: J. Yang et al, Nat. Comm., 7, 11232 (2016). Another good
paper is on the instrument design: S. Weathersby et al, Rev. Sci. Instr., 86, 073702.

In this experiment, 3.7 MeV electrons are used as the probe (λ = 0.30 pm = 0.0030 Å).
The detector is an Andor iXon ultra 888 electron multiplying charge-coupled device camera
(EMCCD), which is positioned 3.1 m from the sample. The accessible range of s is 3.5 Å−1

to 12 Å−1, corresponding to scattering angles θ of 0.0957◦ to 0.328◦, or a detector radius of

1Note that everyone seems to be using Legendre polynomials in the literature. This doesn’t make sense to
me, and I have empirical evidence that the scattering signal exactly decomposes onto 1 and cos(2η) azimuthal
basis functions for R̂2

zz anisotropy.
2Linearly?
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sz of 0.52 to 1.78 cm. Large s is limited by the size of the detector, small s is limited by
the 0.4 cm diameter hole drilled in the EMCCD for the electron beam (thought this may
be improved in later runs). Note that this is very small angle scattering, but permits rather
high values of s due to the small deBroglie wavelength of ultra-relativistic electrons. By
contrast, x-rays typically scatter over much larger angles to reach similar values of s. For
instance, 1.3 Å wavelength electrons reach only s = 9.7 Å−1 over the entire scattering sphere.

In analysis, the UED team typically uses a cutoff of α = 7−2 Å−2 in the sine transform
above.

The entire instrument has a time resolution of roughly 100 fs, and notably lacks an in-flight
diagnostic clock (e.g., “timestamping”), though a THz streaking experiment has recently
been developed to provide an offline clock calibration.

A Ti:Sapphire laser serves as both pump and probe initiator. Part of the laser pulse initiates
electron release from a copper photocathode (photoelectron release), which are subsequently
accelerated to 3.7 MeV by a massive klystron. Tilting/tuning the klystron accelerates the
back of the electron bunch more than the front, combating Coulomb spread in the probe
electron bunch, but this can induce problems in determining the time delay.

X-Ray Scattering vs. Electron Diffraction: For ultrafast x-ray scattering, the form
factors fA(s) are the Fourier transform of the electronic density of a spherical atom (possibly
selected to reflect the density of the local chemical environment in the true molecule),

fA(s) ≡
∫
R3

dr1 ρ
e
A(~r1)e

i~s·~r1

These form factors are tabulated for many common atoms at

http://lampx.tugraz.at/~hadley/ss1/crystaldiffraction/

atomicformfactors/formfactors.php

(accessed 01/18/2018). The specific parametrization is,

fA(s) ≡
4∑

i=1

ai exp

(
−bi

( s

4π

)2)
+ c

With 9 parameters a1−4 b1−4, and c per atom type. Units are Å−1.

To switch to ultrafast electron diffraction, one must also account for scattering off of the
nucleus and for a modified Jacobian element,

fUED
A (s) ≡ 1

s2
[
ZA − fXRAY

A (q)
]

See M. Ben-Nunn, J. Cao, and K. Wilson, JPCA, 101, 8744 (1997) for details.
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2 Example: Iodine

Geometry: As a key example, we consider a perpendicular pump-probe UED experiment
wherein iodine molecule I2 is excited to a hypothetical bound state via a parallel transition
(transition dipole along the molecular axis).3 The classical trajectory is,

r(t) = 2.66 + 0.5 sin(2πt[fs]/600)[Å]

Using the techniques above, we compute the detector moments I0(s, t) and I2(s, t) for each
of the frames in the trajectory (see Figure 2). We use the accessible range of s ∈ [3.5, 12.0]
Å−1 for the UED experiment, and use a de Broglie wavelength of λ = 0.0030 Å, which
corresponds to the 3.7 MeV electrons of the experiment.

Figure 2: Detector moments I0(s, t) and I2(s, t) for toy iodine problem. These moments are
differences (as are all plots in this section), i.e., I(s, t)← I(s, t)−I(s, t = 0). These moments
are of the flavor sM(s, η, t) (as are all plots in this section).

At this point, we can easily compute the detector patterns from I(s, η, t) = I0(s, t) +
I2(s, t) cos(2η). E.g., an interesting frame is t = 132 fs, and the decomposition into isotropic/anisotropic
parts is also shown. A complete 3D detector movie over (s, η, t) is in figs/i2-movie in this
TeX source dir.

Starting from the moments, e.g., I0(s, t), we can compute the “molecular movie” I0(r, t) by
sine transforming. This is done in Figures 4 and 5 for our toy iodine problem, using a variety
of smin and smax cutoffs, and without/with time blurring with a 100 fs FWHM Gaussian.
The upper right figure in Figure 4 shows roughly what can be expected with the current
experimental setup.

Of particular note, the smin limit due to the hole for the electron beam induces large “fringes”
in the signal. It might be plausible that pushing smin down could be just as useful as pushing
smax up in cleaning up these pictures.

3Note that this toy problem is chosen for ease of setup/representative nature, not for rigorous physics.
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Figure 3: Detector patterns I(s, η), I0(s, η) and I2(s, η) for toy iodine problem (t = 132 fs).
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Figure 4: Molecular movies I0(r, t) for toy iodine problem. On the left is the 1 fs resolution
signal. On the right is the 100 fs FWHM time-blurred system (Gaussian blurring). On the
top, the smin = 3.5 Å−1. On the bottom, smin ∼ 0.0 Å−1. In all cases, smax = 12.0 Å−1.
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Figure 5: Molecular movies I0(r, t) for toy iodine problem. On the left is the 1 fs resolution
signal. On the right is the 100 fs FWHM time-blurred system (Gaussian blurring). On the
top, the smin = 3.5 Å−1. On the bottom, smin ∼ 0.0 Å−1. In all cases, smax = 24.0 Å−1. Note
that α = 0 in the sine transform in this case.
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