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We derive the basic theoretical formulation for X-ray diffraction with pulsed fields, using a fully quantized
description of light and matter. Relevant time scales are discussed for coherent as well as incoherent X-ray
pulses, and we provide expressions to be used for calculation of the experimental diffraction signal for both
types of X-ray sources. We present a simple analysis of time-resolved X-ray scattering for direct bond breaking
in diatomic molecules. This essentially analytical approach highlights the relation between the signal and the
time-dependent quantum distribution of internuclear positions, including thermal effects.

I. Introduction

The real-time detection of chemical dynamics has attracted
much attention in the past couple of decades. The aim is to
“film” the transformation of matter, that is, map out, in real
time, the interatomic distances of all atoms. This mapping leads
to a series of “snapshots” which forms a “molecular movie” of
the transformation.

The snapshots can be recorded using the pump-probe
technique: An ultrashort pump laser pulse creates a non-
stationary state, and its time evolution is subsequently monitored,
at well-defined time delays, by a probe pulse. Typically, the
pump pulse induces an electronic transition, and, subsequently,
additional electronic states might be populated as the dynamics
unfolds.

So far, the shortest probe pulses are laser pulses in the optical
regime, which induce ultrafast electronic transitions in the
material system. In order to interpret the signals associated with
this form of probing, a detailed knowledge of the energetics of
the relevant excited electronic states, as a function of the
interatomic distances, is required. Alternatively, one can probe
the state of dynamical nonequilibrium structures via scattering
techniques (e.g., electron diffraction or X-ray diffraction). Pulsed
X-rays are, for example, obtained from synchrotron radiation
or plasma sources. The temporal duration of these incoherent
pulses, consisting of many sub-femtosecond (atomic time scale)
coherent subpulses, is currently in the range of∼100 ps to 100
fs.1 In the near future, free-electron lasers will produce short
∼100 fs to 10 fs coherent and highly intense bursts of X-rays.1,2

Recently, several experimental studies employing pulsed
X-rays have been published with applications to dynamics in
the solid state as well as photoactivated chemical reactions in
solution (see, e.g., refs 3-5 and the references therein).

The theory and interpretation of experimental signals for
X-ray scattering on static equilibrium structures (“classical”
structures) is, of course, well-known and highly developed.
Much less work has been done on time-resolved X-ray diffrac-
tion on dynamic nonequilibrium structures, where the distribu-
tion of internuclear distances, that is, the wave packet, has a
non-negligible time-dependent variance which, for example, for
direct bond breaking, increases with time.

There are several works that have discussed various aspects
of the theory of time-resolved X-ray diffraction.6-15 In particular,
refs 12 and 13 derive expressions for the X-ray scattering signal
by explicitly taking into account the dynamical equations for
both the material system and the pulsed radiation field, where
the latter is treated classically. In the present work, we treat
both the material system and the pulsed radiation field quantum-
mechanically, and the interpretation of the obtained expression
for the X-ray scattering signal is inspired by the time-scale
considerations presented in refs 8-11. Furthermore, at present,
there have only been a few studies where the formalism has
been implemented numerically for nonstationary states. Thus,
the purpose of the present work is to (i) elucidate the theoretical
framework needed in order to describe time-resolved X-ray
scattering, and (ii) undertake an exploratory study for simple
direct bond breaking with the aim of highlighting the relation
between the time-dependent scattering signals and the dynamics
of bond breaking.

In the next section, we review and elaborate on the theoretical
framework for time-resolved X-ray scattering. In section III,
we consider the application to direct bond breaking in diatomic
molecules, highlighting the key features in the time-dependent
signals, including the signatures of finite temperatures. Finally,
section IV presents the conclusions.

II. Theory of Pulsed X-ray Diffraction

In the case of high-energy X-ray scattering, the Hamiltonian
describing the interaction between the material system and the
radiation field takes the form6,7,16

where j runs over all the charged particles, of chargeqj and
massmj, in the material system. In this expression,Â(r , t) )
Â(+)(r , t) + Â(-)(r , t) is the (Heisenberg) operator for theA
field of the radiation with positive component (ωk ) ck),
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andÂ(-) ) [Â(+)]†. Here,âuk is the photon annihilation operator
in the second quantization description of the radiation field, and
εu is the polarization vector.

Now, a single scattering event involves, in a manner of
speaking, the scattering of an incident photon with wave vector
k0 and polarizationu into a photon with wave vectorks with
polarizationV. In the traditional first-order perturbation theory
treatment of X-ray scattering,6,7,16 the scattering amplitude for
this process is given as the matrix element〈Vks,Ψf|Ĥint|uk0,Ψi〉,
where|Ψ〉 describes the material system and|uk〉 ) âuk

† |vac〉 is
a single-photon (number) state of the X-ray field. This treatment
corresponds to a situation where the material system is irradiated
by a coherent X-ray field with a constant, time-independent
intensity. The differential scattering cross section, which is the
scatteringrate per solid angle per incident radiation flux, is
obtained from Fermi’s Golden rule.

In the following, we present (within the framework of time-
dependent first-order perturbation theory on the material system)
a derivation of the differential scattering signal in a situation
where the incoming X-ray field is pulsed. We consider the
material state|Ψ(t)〉 created by the pump laser pulse as described
in the Introduction. The perturbation on this state due to the
interaction with the X-ray pulse is given by

whereĤM is the Hamilton operator for the free material system,
and the perturbation,Ĥint,M, is the matrix element ofĤint in the
field states corresponding to the scattering event of interest.17

We note that eq 3 is valid provided that the pump laser creates
a pure state, whereas the creations of a mixed state requires a
density-operator description of the material system (see, e.g.,
ref 18). In the following, we will point out, in several places,
how the results obtained from eq 3 can be generalized to mixed
states, for instance, in order to include temperature effects.

Since our goal is to calculate the differential scattering signal,
we can use any representation of the scattered field as long as
we, in the calculation of the differential scattering signal, add
all contributions to the signal in the solid angledΩ. We therefore
take the scattered field state to be|Vks〉 as in the usual treatment.

For the incident X-ray field, we use the coherent polarized
one-photon, multimode wave packet19,20

whereck defines a distribution that is peaked around zero with
a width∆k. This wave packet consists of field eigenstates, each
containing one photon, with wave vectors all pointing in the
same direction (different from the direction ofks) with varying
length around the average lengthk0. The wave packet|ψuk0〉 is
a one-photon state because it is an eigenstate of the photon
number operator,N̂ ) ∑u∑kâuk

† âuk with the eigenvalue 1, while
the average number of photons in thekth mode equals|ck-k0|2/
∑k|ck|2. To see that|ψuk0〉 represents a pulse, we consider the
field intensityI(r , t) ) 〈ψuk0|Ê(-)(r , t)Ê(+)(r , t)|ψuk0〉, whereÊ(()

) -∂Â(()/∂t is the positive (negative) component of the electric
field operator.19-21 The field intensity is

whereEk0 ) xpωk0
/2ε0V, andh(r , t) ) ∑k x(k+k0)/k0ckei(k‚r-ωkt)

∼ ∑kckei(k‚r-ωkt), if we assume that the width∆k is small

compared with the average valuek0. Hence, the field intensity
is proportional to the square magnitude of the Fourier transform
of ck, which means that the intensity is a pulse with duration
∆t ∼ 1/c∆k at a givenr or, equally, a pulse with a spatial
extension in the range∆r ∼ 1/∆k in r at a given time. Thus,
coherent X-ray pulse durations ranging from 0.02 fs,1 which
results in∆r ranging from 60 Å, originates from a∆k smaller
than 0.02 Å-1. This ∆k is (reasonably) small compared to ak0

on the order of 1 Å-1 for X-rays with energies in the tens of
kiloelectronvolts regime, which justifies the above-mentioned
assumption. Note that, for a monochromatic incident X-ray field,
ck-k0 ) δk,k0, we obtain the usual result,I(r , t) ) Ek0

2 .21

Using eq 4, the perturbation to be used in eq 3,Ĥint,M )
〈Vks|Ĥint|ψuk0〉, becomes

whereP ) εu‚εv is the polarization factor between the incident
and scattered photon and

The expression forEk0(r , t) resembles the expression for a
(complex) classical pulsed electric field with the carrier
frequency ωk0. Equation 6 can therefore be viewed as a
semiclassical expression for the perturbation on the material
system. It should be noted, however, thatEk0(r , t) is not the
expectation value of the corresponding operator,Ê(+)(r , t), for
the state in eq 4, as one might have expected: this expectation
value is zero. The present derivation of eq 6 is, in spirit, similar
to the semiclassical treatment of absorption presented, for
example, in ref 17. An alternative semiclassical treatment of
absorption is based on a multiphoton, coherent-state representa-
tion of the electric field (see, e.g., ref 18), and in the Appendix
we argue that eq 6 can also be derived from a coherent-state
description of the incident X-ray pulse.

The differential scattering signal, that is, the number of
scattered photons per solid angle, then becomes

where

is the frequency density of scattered states|Vks〉 that contribute
to the signal per solid angle.16 Here, and in the following, we
have replaced the sum over wave vectors by an integral such
that, for example, eq 4 becomes|ψuk0〉 ) ∫dkg(k - k0)|uk〉.
Furthermore, we assume that all particles in the material system
experience the same pulse envelope centered att ) tp after the
laser pump pulse,h(r j, t) ≈ hp(t - tp) ) ∫dkg(k)e-iωk(t-tp). This
is a very reasonable assumption for a nanometer-sized (or
smaller) system considering the extent of an ultrashort pulse,
as discussed above. Hence, the differential signal per scattered
frequency becomes
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whereEk0(t) ) Ek0hp(t - tp) exp(-iωk0t) and

is the scattering operator. Because of the high mass ratio between
nuclei and electrons, the contributions to this operator from the
nuclei are often ignored, even for highly charged nuclei, because
there will be a correspondingly high number of electron
contributions.

To be more specific, we now consider the Gaussian time
profile, hp(t) ) exp(-t2/2γ2). Then we can write,E/

k0 (t′′)Ek0(t′)
) |Ek0(τ)|2hp

1/2(δ) exp(iωk0δ), whereτ ) (t′′ + t′)/2 andδ )
t′′ - t′. Here,Ip(t) ) |Ek0(t)|2 is the X-ray pulse intensity, and
Cp(t) ) hp

1/2(t) exp(iωk0t) can be viewed as the (normalized)
X-ray pulse time-correlation or coherence function.21,22 With
these definitions,

This is a central result of our analysis. Obviously, for the fully
coherent X-ray pulse that led to this expression, the coherence
time is essentially the same as the pulse duration. However,
for an incoherent X-ray pulse consisting of many coherent
subpulses, the coherence time is independent of (i.e., much
shorter than) the pulse duration. The expression for the signal
arising from an incident incoherent X-ray pulse can be obtained
from eq 10 simply by averaging over the photon statistics, that
is, replacingE/

k0 (t′′)Ek0(t′) by the averaged time-correlation
function of the pulse envelope,〈E/

k0 (t′′)Ek0(t′)〉.21 Hence, eq 12
remains the same for an incoherent X-ray pulse, with the pulse
intensity given byIp(t) ) 〈|Ek0(t)|2〉 andCp(δ) ) 〈E/

k0 (t)Ek0(t -
δ)〉/Ip(t), which is assumed to depend only on the relative time
difference,δ.

Expressions similar to eq 12 have previously been reported
in the literature,11,12 where a perturbation on the form given in
eq 6 was either simply postulated11 or derived from a classical
description of the incident X-ray pulse.12 Here, eq 12 has been
derived from first principles, that is, the quantum theory of light-
matter interactions, with a quantum-mechanical description of
the incident X-ray pulse.

A. Coherence Time Short Compared to Dynamics.We
consider a situation where the coherence time, that is, the time
during whichCp(t) is substantially different from zero, is so
short (subfemtoseconds) that we can ignore all of the dynamics
in the material system during this time. This is a relevant limit
for X-rays from synchrotron radiation and laser plasma sources.1

Then

where Fp(ω) ) (2π)-1 ∫-∞
∞ dtCp(t)e-iωt is the (normalized)

frequency density-of-states spectrum of the incident X-ray
pulse.21 Hence, the scattered X-rays have the same frequency
distribution as the incident X-ray pulse, that is, the scattering
can be considered to be over-all “elastic”. We note that, for an
incoherent sum of coherent subpulses, both the spectral widths
of each of these subpulses as well as the possible variation in
their carrier frequency contribute to the width ofFp.

Now consider this expression for the typical pulses obtained
from synchrotron and laser plasma sources, namely, that the
total incoherentpulse has a duration much longer than the time
scale for the electronic motion (as dictated by the inverse
electronic eigenenergy spacing). As mentioned in the Introduc-
tion, the state vector for the material system,|Ψ(t)〉, is created
by the pump UV-laser pulse, and it therefore contains amplitude
on the electronic ground state as well as on one (or several)
excited electronic state(s). We expand|Ψ(t)〉 in the adiabatic
basis and sum over the relevant electronic eigenstates,|Ψ(t)〉
) ∑n|øn(t)〉|n〉, where|n〉 is an electronic eigenstate, and|øn(t)〉
is the associated amplitude, which is a function of the nuclear
coordinates. Then

In this expression, (L̂†L̂)mn ) 〈m|L̂†L̂|n〉, which still depends
on the nuclear coordinates. Only the diagonal elements con-
tribute to eq 14 because of the rapidly oscillating terms (on the
time scale of the pulse duration) arising from the energy spacing
between different electronic states.8-11

Obviously, the details in the time-profile,Ip, and the frequency
spectrum,Fp, of the incident X-pulse depend on the experimental
setup. However, if the duration of the pulse is either sufficiently
short or sufficiently long compared to the time scale of the
nuclear dynamics,Ip may be replaced by either a delta function
or a constant on the nuclear time scale. Likewise, if the width
of Fp can be neglected, we can obtain a simplified expression
for the differential scattering signal:

As pointed out earlier, the frequency widths of X-ray pulses
obtained from, for example, synchrotron radiation are typically
on the order of percents of the carrier frequency. Hence, in order
to simulate the finer details of the experimental signal, the actual
frequency distribution of the incident X-ray pulse must be taken
into account.5

We note that the above analysis can be generalized to a
material system described by the density operatorF̂(t) instead
of the state vector|Ψ(t)〉 by carrying out the perturbation theory
in Liouville space.18,22 Hence, we may replace the expectation
values over the material system in eq 13 by Tr[L̂†L̂F̂(t)], and in
eqs 14 and 15 by TrN[(L̂†L̂)nnF̂n(t)], where the trace is over the
nuclear degrees of freedom only, andF̂n(t) ) 〈n|F̂(t)|n〉. With
this replacement, eq 15 resembles the general expression given
in ref 13, which is derived from a purely classical treatment of
the X-ray field and its interaction with the material system
followed by quantization of the latter. This is consistent with

d2S
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the fact that the classical analysis presented in ref 13 discards
the coherence of the X-ray field by considering each scattering
event to be independent and instantaneous (see also ref 16),
which is reasonable with the present X-ray sources.1

B. Coherence Time Short Compared to Only Nuclear
Dynamics. Equations 13-15 are valid if the time scales (as
dictated by the inverse eigenenergy spacing) of both the nuclear
and the electronic motion are long compared to the coherence
time of the pulse. However, for a coherence time of tens of
femtoseconds, say, the time scale of the electronic motion is
not long in comparison when the electronic eigenenergy spacing
is in the electronvolt range, typical for small molecules. This is
a relevant limit for future coherent X-ray sources.1,2

Again we write the state of the material system as|Ψ(t)〉 )
∑n|øn(t)〉|n〉, where|n〉 is an electronic eigenstate and|øn(t)〉 is
the associated amplitude (nuclear wave packet). Employing the
Born-Oppenheimer approximation, which implies an integra-
tion over the electronic states under the condition〈m|T̂R|øn(t)〉|n〉
) T̂R|øn(t)〉δnm, we obtain

where the right-hand side (rhs) now only acts on the nuclear
wave packets. HereĤN,m ) T̂R + Vm(R) is the Hamiltonian for
the nuclear motion in themth electronic state, andL̂mn) 〈m|L̂|n〉,
which is still a function of the nuclear coordinates due to the
parametric dependence of the electronic states on the nuclear
coordinatesR. Inserting this expression into eq 12, only the
diagonal elements contribute because of the rapidly oscillating
terms (on the time scale of the coherence time) arising from
Vn(R) - Vm(R).8-11 Hence, if we consider an X-ray pulse with
a coherence time on the order of tens of femtoseconds and
assume (i) that the electronic states are energetically well
separated and (ii) that the nuclear dynamics can by ignored
during the coherence of the X-ray pulse, we get

With a coherence time of, say, 10 fs, the width ofFp

(corresponding to∆k ∼ 10-4 Å) is certainly very small
compared to the carrier frequency. Also,〈øn(τ)||L̂nn|2|øn(τ)〉 is
typically constant over|ks - k0| < 0.01 Å-1 (see section III),
and the width ofFp can safely be neglected in this case. Hence,

As before, this expression can be generalized to a material
system described by the density operatorF̂(t), replacing the
expectation value over the material system by TrN[|L̂nn|2F̂n(t)],
where the trace is over the nuclear degrees of freedom only,
and F̂n(t) ) 〈n|F̂(t)|n〉.

We note that omitting in eq 16 the nuclear degrees of freedom,
we obtain, from eq 18 in the continuous wave limit for an
incident one-photon X-ray field (Ip(t) ) Ek0

2 ), the usual dif-

ferential cross section16 for a single electron in the state|n〉:

wherec/V is the photon flux in the incident X-ray field, and
the time derivative is evaluated prior to taking the limit in eq
8.

C. The Independent Atom Model.In order to simplify the
relation between the differential scattering signal and the nuclear
motion, we ignore the scattering from the nuclei and adopt the
independent atom model (IAM) for the electrons,9-11,14in which
the electrons are localized around the nuclei as in a free atom.
In the IAM,

where the sum runs over all the atoms (nuclei),fR is the atomic
scattering factor,RR is the position of the atom, andQ ) k0 -
ks is the scattering vector.

From both eqs 15 and (18), we then obtain

whereFn(R, t) ) 〈R|F̂n(t)|R〉 is the unnormalized nuclear density
on the electronic staten () |øn(R,t)|2 for a pure state). To obtain
eq 21 from eq 15, we used the idea thatL̂mn ≈ L̂nnδnm in the
IAM, which can be argued from a quantum-chemical point of
view.14 In this connection, we recall that eq 15 may be too crude
an approximation, and one may have to perform the actual
integration over eq 14, which, in the IAM, becomes identical
to the rhs of eq 21 without the restrictionks ) k0 and multiplied
by (ωks/ωk0)Fp(ωks).

Expressions similar to eq 21 have been reported pre-
viously,9-11,13,14but here we have derived it, for the first time,
from a fully quantum-mechanical treatment of the interaction
between a molecular system and a pulsed X-ray field. Our
derivation reveals that, within the IAM and the restrictions
mentioned above, eq 21 is valid for an incident coherent
(incoherent) X-ray pulse with a duration (coherence time) that
is short compared to the time scale for nuclear motion, provided
that, in both cases, the pulse duration is long compared to the
time scale for electronic motion.

III. Application to Direct Bond Breaking

We consider the time-resolved X-ray scattering in a very
simple process: direct bond breaking in a diatomic molecule
(see Figure 1). A detailed numerical implementation has been
presented previously for direct bond breaking in Br2;10 our aim
here is to present a simplified analysis that highlights the relation
between the key features in the dynamics and the time-dependent
signals. A similar approach has been used for time-resolved
pump-probe spectroscopy using optical probing (see, e.g., ref
23 and the references therein). We calculate the scattering signal
for a diatomic molecule in its stationary ground state and the
“instantaneous” signal,Finst

n (Q, t) ) ∫dR|fR(Q)|2Fn(R, τ), in an
excited nonstationary state created by laser excitation. For
incoherent X-ray pulses that are not ultrashort, the expression

eiĤMδ/2pL̂†e-iĤMδ/pL̂eiĤMδ/2p )

∑
mnl
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ε0pωk0

2
Fp(ωks
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dS
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for the signal must be convoluted with the temporal intensity
profile of the X-ray pulse (cf. eq 21).

The scattering factorfR(Q) for a diatomic molecule with bond
vectorR ) R1 - R2, takes, within the IAM, the form

where, in the last line, we have specialized to a homonuclear
diatomic, where the atomic scattering factors are identical (i.e.,
f1(Q) ) f2(Q)). The signal is then proportional to the expression

whereQ ) |Q|.
Since the interaction potential of the diatomic molecule is

spherical symmetric, it is natural to consider the Hamiltonian
in polar coordinates. Thus, the nuclear Hamiltonian for the
relative motion takes the well-known form

whereµ is the reduced mass,R is the internuclear distance,L̂
is the angular momentum operator of the relative motion, and
V(R) is the electronic energy. Rotational invariance implies [Ĥ,L̂]
) 0, and the angular momentum associated with the relative
motion is a constant of motion. We consider the dynamics of a
state with a definite angular momentum, and write the radial
part of the wave function in the formul(R,t)/R. We note that

whereYlm are the spherical harmonics eigenstates associated
with the angular momentum, andĤ(l) is equivalent to a one-
dimensional Hamiltonian given by

with the effective potential

where the angular momentum quantum numberl ) 0,1, ‚‚‚.
Using eq 25, the time evolution of a state that is in a stationary
rotational state can then be written in the form

Thus, the radial motion takes place in the effective one-
dimensional potential,Vl(R). For a strongly repulsive potential,
the motion is, to a good approximation, independent ofl.

The complex exponential in eq 23 can be expanded in the
form24

whereĵ l(QR) is a Riccati-Bessel function (eigenfunction of the
Hamiltonian in eq 26 forV(R) ) 0), and (Q, R, δ) specifies the
magnitude and direction of theQ vector. The Riccati-Bessel
function is related to the spherical Bessel functionjl(QR) )
ĵ l(QR)/(QR).

A. Signal, Ground State.First, we consider the scattering
signal when the molecule is in the stationary vibrational-
rotational ground state. Within a harmonic approximation to
the vibrational ground state,u0(R) is given by a Gaussian

where (∆R)0
2 ) p/(2mω). The scattering signal in eq 23

becomes

In this case, where the initial state is spherical symmetric,
only the l ) m ) 0 term in eq 29 contributes to the integral
because of the orthonormality of the spherical harmonics:

Figure 1. Schematic illustration of the laser-induced nonstationary
probability density associated with the internuclear positions of a
diatomic molecule. The probability density is shown in the excited
(antibonding) state at two times: (a) after an instantaneous vertical
excitation and (b) at a later time where the distribution is broadened as
a result of the spreading of the wave packet. The scattering of an X-ray
photon from this state is sketched.

|fR(Q)|2 ) ∑
R,â

2

fR(Q)* fâ(Q)eiQ‚(RR-Râ)

) |f1(Q)|2 + |f2(Q)|2 + f1(Q)* f2(Q)e-iQ‚R +

f1(Q)f2(Q)*eiQ‚R

) |f1(Q)|2(2 + e-iQ‚R + eiQ‚R) (22)

Finst
n (Q, t) ) ∫ dR|fR(Q)|2|øn(R, t)|2

) 2|f1(Q)|2(∫ dR|øn(R, t)|2 +

Re{∫ dReiQ‚R|øn(R, t)|2})

(23)

Ĥ ) - p2

2µ( ∂
2

∂R2
+ 2

R
∂

∂R
- L̂2

p2R2) + V(R) (24)

Ĥ(ul(R,t)

R
Ylm(θ,φ)) )

Ylm(θ,φ)

R
Ĥ(l)ul(R,t) (25)

Ĥ(l) ) - p2

2µ
∂

2

∂R2
+ Vl(R) (26)

Vl(R) ) V(R) +
p2l(l + 1)

2µR2
(27)

e-iĤt/p(ul(R)

R
Ylm(θ,φ)) )

Ylm(θ,φ)

R
e-iĤ(l)t/pul(R) (28)

eiQ‚R ) 4π∑
l)0

∞

∑
m)- l

m)l

i l
ĵ l(QR)

QR
Ylm

/ (R,δ)Ylm(θ,φ) (29)

|G(R,t ) 0)|2 ) [2π(∆R)0
2]-1/2 exp[-

(R - R0)
2

2(∆R)0
2 ] (30)

Finst(Q) ) 2|f1(Q)|2(1 + Re{∫ dReiQ‚R|øgr(R, t)|2})

) 2|f1(Q)|2(1 + [2π(∆R)0
2]-1/2∫0

∞
dR

sin(QR)
QR

×

exp[-
(R - R0

2)

2(∆R)0
2 ]) (31)

〈Yl′m′|Ylm〉 )

∫0

π ∫0

2π
Y /

l′m′(θ,φ)Ylm(θ,φ) sin θdθdφ ) δll ′δmm′ (32)
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Typically (∆R)0/R0 corresponds to a few percent, and (∆R)0 is
largest for molecules with small masses and small force
constants. In the classical limit (∆R)0

2 f 0, the integrand is
nonzero only forR ) R0,

and

which is just the classical standard result for a spherical
symmetric molecule.

B. Signal, Excited Nonstationary State.Next, we consider
the scattering signal when the molecule is in a nonstationary
excited-state obtained by excitation out of the initial stationary
vibrational-rotational ground state.

We consider an electronic transition in a molecule, from the
electronic ground state “gr” to an excited state “ex”. Within
the electric-dipole approximation and first-order perturbation
theory for the interaction with an electromagnetic field (see eq
3), the state vector associated with the nuclear motion in the
excited electronic state “ex” is given by (at times,t, when the
laser pulse has vanished)25,26

where φ(x,t - t′) ) 〈x|exp[-iĤex(t - t′)/p]|φ〉, EL(t) is the
(pump) laser field, and

is the Franck-Condon wave packet. In this expression,|øgr〉 is
the initial stationary nuclear state in the electronic ground state
with energy ε0, and µ12 is the projection of the electronic
transition-dipole moment on the polarization vector of the
electric field, which we define as thez-axis. Thus, the excited-
state wave function can be thought of as a coherent superposition
of Franck-Condon wave packets promoted to the upper state
at timest′ with different weighting factors (given byEL(t′)) and
phases. At timet, each of these wave packets in the superposi-
tion has evolved for a timet - t′.

We specialize now to a delta pulseEL(t′) ) ELδ(t′) on the
nuclear time scale and a parallel transition where the transition-
dipole moment is parallel to the bond vectorR. Then

Assumel ) 0, then cosθY00 ) x1/3Y10, and, according to eq
28,

where we have assumed that the transition-dipole momentµ21

is constant, that is, independent of the internuclear distance (the
Condon approximation), and where the spherical harmonicY10

) x3/(4π)cosθ. The time evolution of the initial Gaussian is

now described within a time-dependent local harmonic ap-
proximation (LHA) to the center of the wave packet. The
dynamics is then described by a Gaussian wave packet of the
form27,28

where xt and pt are the expectation values of position and
momentum, respectively,Rt andγt are complex numbers, (∆x)t

2

) p/(4ImRt), the imaginary part ofγt accounts for the
normalization, and the real part ofγt implies that the wave
packet acquires a phase (the classical action). The probability
density of the Gaussian is

Then using eq 23, assuming the same atomic scattering factors
as in the electronic ground state,

and eqs 29 and 32, we obtain

whereA ) 2EL
2|µ12|2/3p2, N(t) ) [2π(∆R)t

2]-1/2 is the time-
dependent normalization factor of the wave packet, andĵ2(x) )
(3/x2 - 1) sinx - (3/x) cosx is a Bessel function. Because of
the nonisotropic distribution of the molecules prior to X-ray
scattering, the signal depends onQ as well as on the angleR
between the polarization vector of the laser pulse and theQ
vector.

The change in signal as a function of time is due to the change
in the average internuclear distanceRt as well as the spreading
of the wave packet (∆R)t. (∆R)t/Rt for direct bond breaking
corresponding to a purely repulsive potential can be much bigger
than that for stationary structures. In the limit of an ultrashort
δ pump, the Franck-Condon wave packet is localized at early
times; however, the momentum uncertainty of the initial state
gives rise to fast spreading of the wave packet. Longer pulses
produce broader wave packets with slower spreading. Thus, at
any given time, the signal is due to scattering from a distribution
of structures. The magnitudes of the time-dependent terms in
eq 42, at a fixed value ofQ, decrease as the internuclear distance
Rt increases (since the magnitudes of the spherical Bessel
functions decrease at large internuclear distances).

In the classical limit (∆R)t
2 f 0, the integrands are nonzero

only for R ) Rt, and

however, as we will see in a moment, the accuracy of this

[2π(∆R)0
2]-1/2 exp[-

(R - R0)
2

2(∆R)0
2 ] f δ(R - R0) for (∆R)0

2 f 0

(33)

Finst(Q, t) ) 2|f1(Q)|2(1 +
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QR0
) (34)
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ip∫-∞

∞
dt′e-iε0t′/pEL(t′)φ(x, t - t′) (35)

|φ〉 ) µ12 |øgr〉, (36)
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ip
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1
ip
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||
ul(R)
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EL|µ12|

ipR
x1/3Y10e

-iĤex(l)1)t/pu0(R) (38)

G(x,t) ) exp[iRt(x - xt)
2/p + ipt(x - xt)/p + iγt/p] (39)

|G(R,t)|2 ) [2π(∆R)t
2]-1/2 exp[-

(R - Rt)
2

2(∆R)t
2 ] (40)

(cosθ)2 ) 2xπ(2Y20/x5 + Y00)/3 (41)

Finst(Q,t) ) A|f1(Q)|2(1 + N(t)∫0

∞
dR

sin(QR)
QR

×

exp[-
(R - Rt)

2

2(∆R)t
2 ] - (3 cos2R - 1)N(t) ×

∫0

∞
dR

ĵ2(QR)

QR
exp[-

(R - Rt)
2

2(∆R)t
2 ]) (42)

Finst(Q,t) )

A|f1(Q)|2(1 +
sin(QRt)

QRt
- (3 cos2 R - 1)

ĵ2(QRt)

QRt
) (43)
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expression, as a result of the non-negligible width of the wave
packet, is poor.

We consider now a numerical illustration, focusing on the
signatures in the signal of the bond breaking, including the wave
packet spreading. As an example, we consider the dynamics in
a purely repulsive exponential potential corresponding to direct
bond breaking. The potentialV(R) ) V0 exp[-a(R - R0)], with
V0 ) 0.949 eV,a ) 4.64 Å-1, andR0 ) 2.3 Å, gives a good
description of the1Πu state of the Br2 molecule (with the reduced
mass 39.95 amu), and, with laser excitation at∼25 000 cm-1,
this state is the only one being populated.29 This potential leads
to essentially free relative motion after about 60 fs (i.e., the
dissociation time of the bond), corresponding to an interatomic
distance of about 3 Å.

When cosR ) 1/x3, the last term in eq 42 disappears, and
the signal is isotropic. We consider, in the following, the time
dependence of the second term, that is,Finst(Q,t)/(A|f1(Q)|2) -
1. Figure 2 shows the “classical result’’ in eq 43 for various
times as a function ofQ. Note that the signal att ) 0 (with the
exception of a constant factor) is equivalent to the signal from
the electronic ground state, and the signal continues to evolve
in time also when the bond is broken. Figure 3 shows the exact
result based on eq 42, including the finite width of the wave
packet. If the wave packet was created with aδ pulse, as
described above, the initial width would be equal to that of the
ground state, and, already after about 100 fs, it will be on the
order of (∆R) ) 1.0 Å. If we use (∆R)t ) 0.1 Å, a result very
close to the classical result is obtained, but, for (∆R)t ) 1.0 Å,

Figure 2. The “classical result” in eq 43, i.e.,Finst(Q,t)/(A|f1(Q)|2) - 1, for direct bond breaking of Br2. The classical trajectory corresponding to
the interatomic potential specified in the text is given byRt/Å ) 2.3 - (2.0/4.64) ln(2.0/[exp(0.0496t) + exp(-0.0496t)]), where time is measured
in femtoseconds.

Figure 3. The exact result in eq 42, i.e.,Finst(Q,t)/(A|f1(Q)|2) - 1, based on a wave packet description of the interatomic motion for the same
potential as in Figure 2. The width of the wave packet is (∆R)t ) 1.0 Å.
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which is shown in Figure 3, the signal is clearly modified, and
a pronounced signal and time dependence is visible only for
small values ofQ. Clearly, when these “instantaneous” results
are convoluted with the temporal intensity profile of the X-ray
pulse, according to eq 21, the time dependence of the signal
will tend to get washed out as the temporal duration of the X-ray
pulse increases.

C. Thermal Effects. Above, we have considered the time-
resolved X-ray scattering signal assuming that the initial state
is the vibrational-rotational ground state. At any given time,
the signal (eq 23) is due to scattering from a distribution of
structures. This distribution is temperature dependent, and the
signal is obtained as a thermal average over the initial states.
The signal depends, in particular, on the probability density of
interatomic distances.

We will here consider a mixed initial state which can be
handled analytically for the vibrational part of the probability
density. We consider a harmonic oscillator with a statistical
mixture of states corresponding to thermal equilibrium.

The population of thenth quantum state is given bypn )
e-En/(kT)/Z, whereEn ) pω(n + 1/2), andZ-1 ) 2 sinh[pω/
(2kT)]. The probability density in position space (the diagonal
density matrix element) is obtained from the stationary states
of the harmonic oscillatorφn(R,0), and takes the well-known
Gaussian form30

which is a broadened version of eq 30.
We consider now laser excitation out of any of the pure

vibrational quantum states (assuming againl ) 0). The laser
pulse is again aδ pulse, which, according to eq 38, creates
Franck-Condon wave packets given by

where φn(R,t) ) exp(-iĤext/p)φn(R,0), and φn(R,0) are the
stationary vibrational states associated with the electronic ground
state. Now, for UV-excitation out of a statistical mixture of pure
states corresponding to thermal equilibrium, the probability
density in position space becomes

The summation can again be evaluated whenφn(R,0) are
stationary states of a harmonic oscillator.

We consider the (laser-induced) dynamics within the frame-
work of the time-dependent LHA. That is, fort > 0, the
stationary states evolve into generalized harmonic oscillator
states, given by28

where the time evolution of the expectation values of position
Rt and momentumpt is given by Hamilton’s equations (with

initial conditionsR0 andp0 ) 0), G(R,t) is the Gaussian wave
packet of eq 39,Hn is the nth Hermite polynomial,κt )
x2ImRt/p, andât ) (2/m)∫0

t dt′ImRt′. That is,

where

with (∆R)t
2 ) p/(4ImRt) being the time-dependent variance

associated with the Gaussian, that is,φ0(R,t). Using a well-
known summation formula,31 the density matrix at timet
becomes

This result is a generalization of the density matrix associated
with a time-dependent “thermal coherent state” of a harmonic
oscillator32 to the corresponding density matrix for a locally
harmonic potential with a varying curvature. Thus, at any
temperature, we have a Gaussian distribution centered around
the time-dependent expectation valueRt and with a time-
dependent width. In the low-temperature limit,pω . 2kT, eq
50 reduces to eq 49.

Thus, the result at temperatureT is identical to the situation
where the initial state is the vibrational ground state, except for
a broadening of the Gaussian with a (time-dependent) standard
deviation in position given by

Typically pω/k (the vibrational “temperature’’) is on the order
of 1000 K. For Br2, pω/k ) 463 K, which implies that, forT e
463 K, one obtainsσT e 1.47σ0, whereσ0 ) (∆R)t.

We can conclude that, at finite temperatures, the distribution
of internuclear distances, i.e., the width of the dynamical
nonequilibrium structure, is broadened by a time-independent
(temperature-dependent) factor.

IV. Conclusions

The final result for the differential scattering cross section
presented in eq 21 takes a simple intuitive form that is closely
related to the standard result where the material system is in a
stationary state. Thus, with the material system in a nonsta-
tionary state, one must simply add the results from a series of
instantaneous structures with weights given by the temporal
profile of the X-ray pulse. In this paper, we have investigated
the basic formalism for X-ray scattering with pulsed fields,
where we have paid attention to the identification of the proper
form of the perturbation on the material system based on a fully
quantized description of the radiation field, and to the various
approximations that must be introduced in order to arrive at eq

FT(R,t ) 0) ) ∑
n)0

∞

|φn(R,0)|2pn

) xmω
πp

tanh(pω
2kT) exp[- mω

p
tanh(pω
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2] (44)
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ipR
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-inât (47)
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2
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2

2(∆R)t
2 ]Z-1 ×

∑
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∞

|Hn[κt(R - Rt)]|2
e-En/(kT)

2nn!

) x 1

2π(∆R)t
2

tanh(pω
2kT) exp[-

(R - Rt)
2

2(∆R)t
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tanh(pω
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σT(t) ) (∆R)t/xtanh(pω
2kT) (51)
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21. Among other things, our investigations reveals that eq 21
is only valid provided that the frequency spread (or non-
monochromaticity) of the incident X-ray pulse can be ignored.
Otherwise, an average over the different frequency components
must be performed, which is explicitly included in our analysis.

There are a number of questions that require further work;
for example, questions concerning the signal for coherent X-ray
pulses in the time domain where the pulses cannot be considered
to be ultrashort on the time scale of nuclear motion, the signal
when the electronic states of the material system are closely
spaced, the validity of the IAM, and the inversion of experi-
mental signals.

We have derived analytical expressions that capture the main
features of the time-resolved X-ray signal for laser-induced
direct bond breaking in a diatomic molecule. The expressions
(valid for ultrashort coherent or incoherent X-ray pulses) display,
in particular, the relation between the time-resolved signal, the
average interatomic distance, and the uncertainty of the distance.
The time-dependent uncertainty for non-stationary states plays
an important role. Thus, because of this uncertainty, a pro-
nounced time dependence of the signal will show up only for
small values ofQ. We have derived an analytical expression
for the width of the dynamical nonequilibrium structure that is
also valid at finite temperatures. This expression shows that the
width is broadened by a time-independent, but temperature-
dependent, factor.

In order to create a “molecular movie” of direct bond
breaking, ultrashort (and intense) X-ray pulses are required. Such
pulses will become available in the near future.
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Appendix

In this appendix we argue that the analysis presented in
section II remains essentially unaltered when using a more
“classical-like” description of the incident X-ray pulse as a
highly excited multimode coherent state.33 We represent the
incident X-ray pulse as a polarized, multimode coherent state

where a single-mode coherent state is a wave packet given
by21,33,34

Hence,|ψuk0〉 consists of single-mode coherent states with wave
vectors all pointing in the same direction (different from the
direction ofks) but of varying length around the average length
k0. This state is not an eigenstate of the photon number operator
N̂ ) ∑u∑k âuk

† âuk, but rather an eigenstate of the annihilation
operator,âuk|ψuk0〉 ) Rk-k0|ψuk0〉. Hence, thekth mode in eq
A.52 contains anaVerageof |Rk-k0|2 photons, and, by analogy
with the treatment in section II,Rk in eq A.52, defines a
distribution that is peaked around zero with the width∆k,
where∆k , k0. The state|ψuk0〉 is an eigenstate of the operator
Ê(+)(r , t) with the eigenvalueE(r , t). Hence, the expectation
value of the incident electric field is 2Re[E(r , t)]:

whereEk ) xpωk/2ε0V, andh(r , t) ) ∑k x(k+k0)/k0Rke
i(k‚r-ωkt)

∼ ∑kRkei(k‚r-ωkt). By a similar analysis,I(r , t) ) Ek0

2 |h(r , t)|2.
The relative uncertainty in the electric field amplitude diminishes
with increasing mean photon number, and the average field
variation resembles that of a pulsed classical field with the
carrier wave defined byk0. For an, in this sense “classical-
like”, incident X-ray wave packet of highly excited coherent
states, the field undergoes no noticeable change in the average
photon number in the direction ofk0 by scattering one photon
into the directionks (different from the direction ofk0). Hence,
we use the final state|ψuk0〉|Vks〉. The perturbation to be used
in eq 3 is therefore determined asĤint,M ) 〈Vks|〈ψuk0|Ĥint|ψuk0〉,
which becomes

whereP is the polarization factor between the incident beam
and the scattered photon. It should be noted that, in the
derivation of this expression, we have ignored contributions
arising from the terms inĤint containing operator productsâVks

†

âuk
† , although they are not strictly zero in this case, simply

because these contributions do not represent the scattering
process in question. Accepting these considerations, the results
in section II remain unaltered by changing the representation
of the incident X-ray pulse to a highly excited multi-mode
coherent state.
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