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1 Development

Geometry: Consider an ultrafast time-resolved optical pump and elastic X-ray scattering
probe experiment in a perpendicular arrangement, as shown in Figure 1. Initially, the
samples are all oriented randomly, but the optical pump preferentially excites chromophores
with transition dipoles µ oriented along ẑ, with probability P (µ̂) ≡ µ̂2

z = cos2(ζµ), where ζµ is
the polar angle from ẑ. This anisotropic absorption will induce anisotropy in the subsequent
X-ray scattering signal.

In the independent atom model (IAM), the X-ray scattering signal is,

I(~q, t) ≡ 1

NI

∑
I

∣∣∣∣∣∑
A

fA(q)ei~q·~r
I
A(t)

∣∣∣∣∣
2

Here ~rIA(t) are the nuclear coordinates of atom A as a function of delay time t, for trajectory
I [from molecular dynamics trajectories on the relevant electronic state(s)]). By averaging
over many trajectories, and by weighting to account for the cos2(ζµ) anisotropy of the initial
conditions, the time-resolved X-ray scattering signal can be obtained on a one-to-one footing
with the experiment. The fA(q) are atom- and X-ray-beam-specific scattering cross sections,
and have been tabulated online in a standard Gaussian form.

The X-ray scattering signal is best written in spherical coordinates as I(~q, t) ≡ I(q, ζ, φ, t).
Here q is the scattering amplitude, ζ is the polar angle from ẑ, and φ is the azimuthal angle
in x̂-ŷ. Note that we expect the signal to be isotropic in φ, but not in ζ.

Spherical Harmonic Transformation: A useful transformation of the X-ray scattering
signal involves the (complete) projection onto spherical harmonics,

I(~q, t) =
∑
lm

Ylm(ζ, φ)Ilm(q, t)

where,

Ilm(q, t) ≡
∫

Ω

dΩ Y ∗lm(Ω)I(q,Ω, t)

The solid angle Ω is shorthand for the set of < ζ, φ > coordinates. Here the spherical
harmonics are defined to be fully orthonormal on the unit sphere,∫

Ω

dΩ Y ∗lm(Ω)Yl′m′(Ω) = δll′δmm′

Due to parity, the odd-l spherical harmonic contributions must be zero. Due to isotropy
in φ, the m 6= 0 spherical harmonic contributions must be zero. Thus, the only surviving
contributions are the even zonal spherical harmonics Yl0 where l is even.

The normalized zonal spherical harmonics are,

Yl0(ζ, φ) ≡ NlPl(cos ζ)
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Figure 1: An illustration of ultrafast X-ray diffraction. The X-ray probe arrives a delay of
t with respect to the optical pump. In the perpendicular experimental arrangement (shown

here), the polarization vector ~E ∝ ẑ of the optical pump pulse is perpendicular to the incident

wave vector ~k0 ≡ kŷ of the X-ray probe pulse. The incident X-ray photons scatter at angle θ
with respect to ~k0, and azimuthal angle η with respect to ~E. These two angles fully describe
the scattering in the elastic regime, as |~k0| = |~ks|. The scattering vector ~q is the difference

between the incident and scattered wave vectors ~q ≡ ~k0−~ks. The amplitude of the scattering
vector is q ≡ |~q| = 2k sin θ/2. Figure adapted to our notation from Kent Wilson’s excellent
1998 ultrafast scattering paper in JPCA [Jianshu Cao and Kent R. Wilson, J. Phys. Chem.
A 102, 9523 (1998)].

The Legendre polynomials are,

P0(x) = 1

P1(x) = x

Pl+1(x) =
1

l + 1
[(2l + 1)xPl(x)− lPl−1(x)]

The normalization factors are,

Nl ≡
√

2l + 1

4π

Tasking: For a set of trajectories rIA(t) aligned so that ~µ(t = 0) = µẑ, we must compute,

Il0(q, t) ≡ 1

NI

∑
I

∫
SO(3)

dR̂ R̂2
z

∫
Ω

dΩ Y ∗l0(Ω)

∣∣∣∣∣∑
A

fA(q)ei~q·[R̂~r
I
A(t)]

∣∣∣∣∣
2

Colloquially, this says “rotate each trajectory through the full set of rotations R̂, and weight
these by the square of the projection of the rotation on ẑ (R̂2

z ⇔ cos2[ζ(R̂)]) to account for
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the excitational anisotropy. For each trajectory and rotation, compute the diffraction signal

in ~q, and project onto spherical harmonic contributions II,R̂l0 (q, t). Average these over all
rotations and all trajectories.”

A key observation is that one can apply the rotations to the diffraction patterns, rather than
to the trajectories, which allows for interchange of summation,∣∣∣∣∣∑

A

fA(q)ei~q·[R̂~r
I
A(t)]

∣∣∣∣∣
2

=

∣∣∣∣∣∑
A

fA(q)ei[R̂
†~q]·~rIA(t)

∣∣∣∣∣
2

This amounts to switching working variable from ~q =< q,Ω > to ~q′ =< q, R̂†Ω > and leaving
the trajectories in ẑ frame. The observable may now be written as,

Il0(q, t) ≡
∫

Ω

dΩ

∫
SO(3)

dR̂ R̂2
zY
∗
l0(R̂†Ω)

1

NI

∑
I

∣∣∣∣∣∑
A

fA(q)ei~q
′·~rIA(t)

∣∣∣∣∣
2

︸ ︷︷ ︸
I ẑ(~q′,t)

Computational Procedure:

1. Compute NI trajectories rIA(t) and align these so that ~µ(t = 0) = µẑ.

2. Lay out a regular grid qP and a Lebedev grid < ΩQ, wQ > to form a 3D spherical grid
~qR ≡ qP ⊗ ΩQ.

3. Evaluate,

I ẑ(~qR, t) ≡
1

NI

∑
I

∣∣∣∣∣∑
A

fA(qR)ei~qR·rA(t)

∣∣∣∣∣
2

4. Generate a covering sequence of rotation matrices and affiliated weights < R̂M , wM >
to integrate SO(3). A particularly nice way to do this is to exploit the “rotate around
ẑ by angle ω, then rotate down to a uniform spherical angle Ω” method for generat-
ing uniform random rotation matrices, but adapting this to the appropriate regular
quadrature grids for ω and Ω (Fourier and Lebedev). That is, lay out uniform Fourier
grid ωT ≡ 2πT/(NT + 1) and wT = 1/NT and a Lebedev grid < ΩU , wU >. Then form
the direct product grid ΦM ≡ ωT ⊗ ΩU and wM ≡ (wT ⊗ wU)/4π. For each M point,
start with the identity matrix, rotate about ẑ by ωT (a simple Given’s rotation), and
then rotate directly down from ẑ to ΩM (a Householder reflection + parity inversion)
to obtain the rotation matrix R̂M .

5. Form the observable,

Il0(qP , t) =
∑
Q

wQ
∑
M

wM(R̂z
M)2Yl0(R̂†MΩQ)I ẑ(qP ,ΩQ, t)
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X-Ray Scattering vs. Electron Diffraction: For ultrafast x-ray scattering, the form
factors fA(q) are the Fourier transform of the electronic density of a spherical atom (possibly
selected to reflect the density of the local chemical environment in the true molecule),

fA(q) ≡
∫
R3

dr1 ρ
e
A(~r1)ei~q·~r1

These form factors are tabulated for many common atoms at

http://lampx.tugraz.at/~hadley/ss1/crystaldiffraction/atomicformfactors/formfactors.php

(accessed 01/18/2018). The specific parametrization is,

fA(q) ≡
4∑
i=1

ai exp

(
−bi

( q

4π

)2
)

+ c

With 9 parameters a1−4 b1−4, and c per atom type. Units are Å−1.

To switch to ultrafast electron diffraction, one must also account for scattering off of the
nucleus and for a modified Jacobian element,

fUED
A (q) ≡ 1

q2

[
ZA − fXRAY

A (q)
]

See M. Ben-Nunn, J. Cao, and K. Wilson, JPCA, 101, 8744 (1997) for details.
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