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1. Introduction

Standard gas-phase electron diffraction is a powerful technique
for the study of molecular structure, through the simple con-
cept of interference between the electron scattering from each
pair of atomic nuclei in the molecule. Thousands of molecular
structures have been determined by this technique over the
past seventy years.[1] Scattering from a typical thermal gas
sample, in which molecules are randomly located and random-
ly oriented, is axially symmetric about the incident electron
beam, with the interference contributions yielding circular dif-
fraction rings (albeit on an intense incoherent atomic scatter-
ing background) in the intensity pattern detected on a screen
placed beyond the sample. Oscillation frequencies in the radial
intensity pattern reflect the distribution of intramolecular
atomic separation distances, and in the ideal case, extraction
of the internuclear separations by Fourier analysis allows the
three-dimensional structure of the molecule to be deduced.

Over the last ten years, ultrafast electron diffraction (UED)
has been developed for the purpose of using electron diffrac-
tion as a direct probe of the molecular structure of isolated
molecules as they evolve after excitation by a femtosecond
laser pulse. With this technique, the rise and decay of structur-
ally distinct populations—resulting, for example, from dissocia-
tion or isomerization of the sample of excited molecules—can
be observed in real time, and the structures of intermediate
states with lifetimes as short as picoseconds can be directly de-
termined. Overviews of the work of the Caltech group in this
field, which has provided unique insights into numerous mo-
lecular systems, have recently been published.[2,3]

From the beginning of UED, it has been recognized that the
vectorial nature of the molecule–radiation interaction imposes

an orientational anisotropy on the transient populations creat-
ed by the laser excitation.[4] Specifically, the distribution of mo-
lecular transition-dipole-moment vectors of excited molecules
at the instant of excitation is determined by a cosine-squared
dependence of the absorption strength on the angle between
each such vector and the laser polarization vector of a linearly
polarized laser pulse. Theoretical calculations of electron dif-
fraction scattering patterns for samples frozen at this initial
configuration have been presented for a variety of assump-
tions for linear[4,5] as well as nonlinear[4] molecules, demonstrat-
ing pronounced deviations from isotropic theory. In gas-phase,
collisionless samples, this initial anisotropy will decay due to
rotation of the individual molecules of the sample on a time-
scale dictated by the molecular moments of inertia, the direc-
tion of the transition dipole in the molecular frame, and the
sample rotational temperature, and this timescale has been
within the time resolution of several picoseconds employed
for many of the already completed UED studies. For this
reason, and because the anisotropy which remains after the in-
itial decay is typically much smaller than the starting value, iso-
tropic theory has been applied successfully in fitting experi-
mental results to date.

However, as UED has matured, the importance of under-
standing more completely the nature of orientation effects has
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The technique of ultrafast electron diffraction allows direct mea-
surement of changes which occur in the molecular structures of
isolated molecules upon excitation by femtosecond laser pulses.
The vectorial nature of the molecule–radiation interaction also
ensures that the orientation of the transient populations created
by the laser excitation is not isotropic. Here, we examine the in-
fluence on electron diffraction measurements—on the femtosec-
ond and picosecond timescales—of this induced initial anisotro-
py and subsequent inertial (collision-free) molecular reorientation,
accounting for the geometry and dynamics of a laser-induced re-
action (dissociation). The orientations of both the residual
ground-state population and the excited- or product-state popu-
lations evolve in time, with different characteristic rotational de-

phasing and recurrence times due to differing moments of iner-
tia. This purely orientational evolution imposes a corresponding
evolution on the electron scattering pattern, which we show may
be similar to evolution due to intrinsic structural changes in the
molecule, and thus potentially subject to misinterpretation. The
contribution of each internuclear separation is shown to depend
on its orientation in the molecular frame relative to the transition
dipole for the photoexcitation; thus not only bond lengths, but
also bond angles leave a characteristic imprint on the diffraction.
Of particular note is the fact that the influence of anisotropy per-
sists at all times, producing distinct differences between the
asymptotic “static” diffraction image and the predictions of iso-
tropic diffraction theory.
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remained clear. Improvements in signal-to-noise and time reso-
lution have made the investigation of time-dependent orienta-
tion on diffraction even more essential, especially so in studies
of cold or large (and thus slowly rotating) molecules, for which
the initial, highly aligned population distributions would per-
sist on picosecond and longer timescales. A formal theoretical
treatment, using density matrices, of time-dependent orienta-
tion in UED has been published, specialized to a bound dia-
tomic molecule.[6] For this limited case, the focus was on vibra-
tional and rotational coherences without development of the
consequences.

Here we develop the theory of the influence of time-depen-
dent orientation on electron diffraction measurements, on the
femtosecond and picosecond timescales, and illustrate the
consequences within the context of UED studies of chemical
reactions. For this purpose, we incorporate the theory of reor-
ientation dynamics for prompt dissociation reactions, as devel-
oped previously,[7, 8] assuming inertial (collision-free) symmetric-
top rotation and accounting for the anisotropic distributions of
the angular momentum of dissociation products, and connect
it with the orientation-dependent diffraction for static anisotro-
py.[4] Examples are presented to illustrate clearly the conse-
quences of the evolving anisotropy of both the ground- and
product-state populations at all times.

2. Theory

2.1. The Role of Molecular Orientation in UED

A schematic representation of the UED experiment is given in
Figure 1. Within a vacuum chamber, packets of electrons of
wavelength l and wave vector k0 (k0 ¼ 2p

l ) are directed at a
stream of gas-phase molecules emanating from a molecular
beam, and the resulting pattern of scattered electron intensity
is collected in the far field by a planar detector. An isotropic
gas sample will produce electron scattering that is cylindrically
symmetric about k0, as illustrated in the Figure. Each direction
of elastic scattering is associated with a particular wave vector
k, also of magnitude 2p

l , and a momentum transfer vector
s ¼ k0 � k with magnitude s ¼ 4p

l sin q=2ð Þ, where q is the
angle between k and k0. The geometric phase shift at the de-
tector in the direction of k between the electron waves scat-
tered from two atoms, atom i and atom l, is s � ril , where ril is
the internuclear separation vector of the atomic pair.

Also crossing the scattering volume is a beam of femtosec-
ond laser pulses characterized by the linear polarization e, and
the delay between the times of passage of a laser pulse and
an electron pulse is precisely determined and adjustable. At
the instant that the light pulse crossed the sample, referred to
as t=0, a fraction of those molecules having transition dipoles
favorably oriented with respect to the direction of e will be
promoted to an excited state, creating an anisotropic sample
(see Figure 1, inset). (It is perhaps useful to note here that, in
technical usage, distributions of laser-excited and unexcited
ensembles, with axial symmetry about e and a plane of sym-
metry normal to e (D1hpoint group), are “aligned” rather than
“oriented”, the latter designation being reserved for distribu-

tions lacking the symmetry plane.[9] Our use of “orientation”
herein, in reference to any vector or set of vectors, should thus
be understood in its broad sense as simply referring to the an-
gular aspect of position.) After t=0, the sample anisotropy will
evolve in a manner determined by the free and independent
rotation of both the ground-state and excited-state molecules.
In the remainder of this section, we examine the effect on elec-
tron scattering of this evolving anisotropy.

Following the notation of Williamson and Zewail (WZ),[4] the
general expression for the molecular scattering intensity term
in electron diffraction from a sample of molecules with N
atoms is given by Equation (1):

IMðt; sÞ ¼ C
XN

i¼1

XN

l¼1
l 6¼i

fiðsÞj j flðsÞj j Re ei hiðsÞ�hlðsÞð Þ eis�rilðtÞ
� �� �

Vib;Rot

h i
ð1Þ

Figure 1. Schematic of the apparatus for ultrafast gas-phase electron diffrac-
tion (UED). A linearly polarized laser pulse excites a gas-phase molecular
sample in a vacuum chamber, and the sample is probed by a time-delayed
electron pulse, with the crossing angle of electron beam and laser beam
near 908. The electron pulse approaching the sample is represented as a
tight packet of electrons with a longitudinal extent equal to vDt where v is
the electron velocity and Dt is the pulse width. Upon leaving the sample
volume, the pulse consists of a core of unscattered electrons surrounded by
an expanding cloud of scattered electrons, with intensity variations illustrat-
ed schematically by the ring structure shown in the Figure. The electron dif-
fraction pattern is recorded in the far field for a small range of scattering
angles by a planar detector centered on the unscattered electron beam
path. Each point on the detector is characterized by a particular value of
scattering angle q and azimuthal angle f, to which correspond a unique
electron wave vector k and momentum-transfer vector s. The radial distance
between the detection point and the unscattered beam spot, labeled s’, is
given in the Figure in terms of s, k, and camera length L, the distance from
the sample volume to the detector along the unscattered beam. Inset : A
schematic time series of snapshots of transition dipoles of a molecular gas
sample in the interaction volume of the UED apparatus. At t=0, the laser
pulse with vertical polarization crosses the volume, creating an excited pop-
ulation consisting of molecules with transition dipoles preferentially aligned
in the vertical direction (dark lines). Rotation at many different angular veloc-
ities of the molecules of both the excited and unexcited populations causes
dephasing of the alignment or loss of the initial order. On a much longer
timescale, this order may be recovered at the time of a rotational recurrence
by rephasing of the alignment.
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This is the intensity in the direction of an elastically scattered
electron of wave vector k, with momentum transfer s, as de-
fined above. The argument of the double summation repre-
sents interference between scattering from a pair of atoms at
instantaneous internuclear separation ril, and includes the
atomic scattering amplitude fiðsÞj j and atomic scattering phase
hi(s) of each atom. The averaging indicated by the angle brack-
ets must account for the fact that, in a real sample at any in-
stant in time, the vector ril will take on a range of values, char-
acterized by vibrational and rotational distributions. Individual
ril’s will also evolve in time (see below). The dependence on t
of temporally evolving quantities is indicated explicitly in Equa-
tion (1), as it is throughout the Article.

The distribution pertinent to the Equation (1) rotational, or
orientational, average is the distribution in the direction of ril.
In the time-dependent problem, this distribution depends on
the distribution of kinetically distinct rotational states (which
we write Pj(j), where j is the rotational angular momentum
vector in a molecule-fixed frame at t=0) as well as on the ini-
tial orientational distribution of molecules in the lab frame. It is
the average over both of these distributions, represented by
the term [Eq. (2)]:

Filðt;sÞ ¼ eis�rilðtÞ
� �

Rot , ð2Þ

which is the focus of this paper. (We note that F is usually
used for the structure factor in crystallography, which differs
from the definition of Fil given here; also l is used as an atomic
index, instead of the usual j, in order to reserve the latter
symbol for reference to rotational angular momentum.) The vi-
brational average will not be dealt with here, and all scattering
calculations will be in the rigid-molecule limit, with fixed
values of the lengths ril= rilj j. For quantitative comparison with
experiment, vibrational averaging of Filðt;sÞ will be important
to consider, but such averaging is not expected to alter the
conclusions on the nature and scope of orientational effects
reached from the model calculations carried out here. The
normal effect of vibrational averaging is to broaden radial dis-
tributions, as discussed later.

Geometrical relationships used in carrying out the orienta-
tional average are defined in Figure 2, consistent with the no-
tation of WZ.[4] The electrons are incident along the laboratory
z axis, and scattering from the sample volume, near the coordi-
nate origin, is detected on a surface normal to this axis at a
large positive z (see Figure 1). The direction of the absorption
transition dipole moment, m1, for any selected molecule can be
defined by spherical coordinates (W,Y) as shown. The direction
of the wave vector k of a scattered electron is specified in the
same coordinate system by (q,f), as shown in Figure 1. The
angles Wil and a define the direction relative to m1 of a particu-
lar internuclear separation, ril, of the molecule. Rotational
motion causes ril, and thus also Wil and a, to evolve in time.

The laser excitation, at time t=0, separates the sample at
subsequent times into two subensembles—the excited and
the unexcited—characterized by specific orientational distribu-
tions of their transition dipoles at t=0, Sex

0 W;Yð Þ and
Sun
0 W;Yð Þ. Not only do these two molecular ensembles have

different initial spatial distributions, but their molecules have
distinct structures and undergo different rotational dynamics,
so they must be treated independently. The orientational distri-
bution of transition dipoles at t=0, m1(0), within each suben-
semble depends on the direction of the laser polarization
vector e. In this paper we will assume that the laser is linearly
polarization and that the excitation is weak enough to avoid
saturation effects; therefore the distribution of the excited
population will be proportional to (e·m1(0))

2. With the total
population normalized to unit amplitude over the sphere, that
is, [Eq. (3)]:

1
4p

Zp
0

Z2p
0

Sex
0 W;Yð Þ þ Sun

0 W;Yð Þ
� �

sinW dY dW ¼ 1, ð3Þ

and a relative excitation yield of f ex, the distribution of the ex-
cited population is given by Equation (4):

Sex
0 W;Yð Þ ¼ 3f ex � ê � m̂1ð0Þð Þ2, ð4Þ

where ê and m̂1 are unit vectors in the directions of e and m1.
The unexcited distribution is the complement to this [Eq. (5)]:

Sun
0 W;Yð Þ ¼ 1� 3f ex ê � m̂1ð0Þð Þ2, ð5Þ

where it is understood that f ex is always less than 1=3.

The laser polarization vector can be restricted to lie in the xz
plane without loss of generality. If the angle it forms in this
plane with the z axis is d, ê � m̂1ð0Þð Þ2can be expressed as
[Eq. (6)]:

ê � m̂1ð0Þð Þ2¼ cos2 d cos2 Wþ 2 cos d sin d cosW sinW cosY

þ sin2 d sin2 W cos2 Y :
ð6Þ

Figure 2. Geometry used in the calculation of anisotropic ultrafast electron
diffraction of an internuclear separation ril. The x,y,z axes represent a labora-
tory-fixed reference frame. The polar coordinates of the excitation transition
dipole moment, m1, are W and Y and the wave vector of incident electrons,
k0, lies along the z axis. The angles Wil and a specify the direction of ril rela-
tive to m1. The plane defined by k0 and m1, represented by the large shaded
right triangle, serves as a reference for measurement of the angle a in a
plane normal to m1.
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Because of the initial sample isotropy and the nature of the
excitation process, within the ensemble of molecules having a
given transition dipole direction (W,Y), both the excited and
unexcited subensembles must have cylindrical symmetry
about m1(0) at all time. Thus, the distribution of ril will always
be uniform in a.

With this in mind, the average over initial molecular orienta-
tion, which is one part of the rotational average that appears
in the scattering expression, Equation (1), can be written as
Equation (7):[4]

Fd;ex=un
il ðt;s,jÞ ¼ 1=4p

Zp
0

Z2p
0

Sex=un
0 W;Yð Þ 1

2p

Z2p
0

eis�rilðtÞda

2
4

3
5 sinW dY dW:

ð7Þ

Here the variable j indicates that this expression applies to a
specific rotational state population since the functional form of
ril(t) depends on the rotational state. With each rotational state
making a contribution to electron scattering in proportion to
its population, Pj(j), the final step in the rotational average can
be written as Equation (8):

Filðt;sÞ ¼
X
j

PjðjÞFilðt;s,jÞ
 !,X

j

PjðjÞ 
 Filðt;s,jÞh ij: ð8Þ

The sum over j in Equation (8), if viewed classically, becomes
an integration over a continuous, Boltzmann distribution of an-
gular momenta, or if viewed quantum-mechanically, is a sum
over quantum states. The quantum-classical distinction is dis-
cussed further in the next section.

Based on Figure 2, the following expression can be derived
for the laboratory frame Cartesian coordinates of the vector
ril(t) [Eq. (9)]:

[4]

rilðtÞ ¼ ril

ðsinWilðtÞ cosaðtÞ cosWþ cosWilðtÞ sinWÞ cosY � sinWilðtÞ sinaðtÞ sinY
ðsinWilðtÞ cosaðtÞ cosWþ cosWilðtÞ sinWÞ sinY þ sinWilðtÞ sinaðtÞ cosY
cosWilðtÞ cosW� sinWilðtÞ cosaðtÞ sinW

2
64

3
75

ð9Þ

where typographical errors in Eq. (29) of ref. [4] have been cor-
rected. The s vector in the same coordinate frame is [Eq. (10)]:

s ¼ s ð-cos�cosðq =2Þ, -sin�cosðq =2Þ, sinðq =2ÞÞ: ð10Þ

Upon substituting for Sex=un
0 W;Yð Þ, s, and ril in Equation (7)

by the above expressions, using Equation (6) for ê � m̂1ð0Þð Þ2 in
Sex=un
0 W;Yð Þ, and carrying out the triple integration, we have

obtained a solution in terms of infinite series summations,
which can be evaluated numerically, and expressions in terms
of standard functions have been found for the important cases
of excitation polarization either parallel or perpendicular to k0,
as detailed below.

In the case referred to as perpendicular excited, that is, with
the laser polarized perpendicular to the electron beam (d=p/
2) and Sex

0 W;Yð Þ=3f ex sin2 W cos2 Y , the series solution is

found to be identical to the expression given by WZ (under
their assumption of f ex ¼ 1

3) [Eq. (11)]:

F?;ex
il ðt;s,jÞ ¼ 3f ex

j1ðsrilÞ
sril

� sin2 WilðtÞ þ 2� 3 sin2 WilðtÞð Þ cos2 q
2
cos2 �

� �
j2ðsrilÞ

2

� �
ð11Þ

where j1 and j2 are spherical Bessel functions,[10] and cos2 q=2ð Þ
can also be written as 1� s2

�
4k2

0

� �
. All time dependence in

this expression is contained in the angle Wil, representing
motion of ril relative to the transition dipole m1(0). Similarly, a
closed-form expression, found to be equal to the parallel excit-
ed case (d=0, Sex

0 W;Yð Þ=3f ex cos2 W) result, is [Eq. (12)]:

Fjj ;ex
il ðt;s,jÞ ¼ 3f ex

j1ðsrilÞ
sril

� sin2 WilðtÞ þ 2� 3 sin2 WilðtÞð Þ sin2 q

2

� �
j2ðsrilÞ

2

� �
:

ð12Þ

As expected, F?;ex
il ðt;s,jÞ, for which e is parallel to the x axis,

shows a dependence on the azimuthal scattering coordinate f
which is symmetric with respect to the xz plane, while
Fjj ;ex

il ðt;s,jÞ is independent of f.
It is intuitively obvious that, if the transition dipole distribu-

tion of a molecular ensemble is isotropic, such as for the total
sample at t=0, then the distribution of any ril in that ensemble
is also isotropic. The form of Fil(s) for such an isotropic sample
is simply j0(sril)= sin(sril)/sril, when the population is taken as 1
(S W;Yð Þ=1). From this observation and the form of Sex

0 W;Yð Þ
and Sun

0 W;Yð Þ it is easily seen that [Eq. (13)]:

Fd;un
il ðt;s,jÞ ¼ j0ðsrilÞ � Fd;ex

il ðt;s,jÞ ð13Þ

for any value of d, where �Fd;ex
il ðt;s,jÞ rep-

resents missing diffraction from that seg-
ment of the population of the ground
state that was excited by the laser pulse.
Its time dependence is therefore deter-
mined in this case by the rotational
motion of the ground state, despite the
ex label.

As a check on Equations (11) and (12), one may note that an
isotropic distribution of transition dipoles of total population 1
results by adding the distributions created by three hypotheti-
cal excitations with e along the three Cartesian axes, each with
f ex=1/3. It must therefore be true that [Eq. (14)]:

Fjj ;ex
il ðt;s,jÞ þ F?x ;ex

il ðt;s,jÞ þ F
?y ;ex
il ðt;s,jÞ ¼ j0ðsrilÞ: ð14Þ

This result is easily confirmed from Equations (11) and (12)
using the properties of the spherical Bessel functions, when it
is recognized, from symmetry, that rotation of e from the x to
the y axis will simply change the cos2f factor in F?x ;ex

il ðt;s,jÞ to
sin2f in F

?y ;ex
il ðt;s,jÞ.

Equations (11), (12), and (13) allow one to calculate the elec-
tron diffraction pattern from excited and unexcited subensem-
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bles of a sample irradiated by a femtosecond pulse, account-
ing for the orientational anisotropy imposed on the distribu-
tion of m1(0) by the light field, for a given rotational state pop-
ulation, since sin2 WilðtÞ is determined by the rotational motion
of the molecules in question. For a real sample with a distribu-
tion of rotational states, the j average of Equation (8) must be
carried out on the expressions in Equations (11) or (12) to
obtain Filðt;sÞ. When this is done, the only quantity that de-
pends on j, sin2 WilðtÞ, is simply replaced by sin2 WilðtÞh ij, for ex-
ample, [Eq. (15)]:

Fjj ;ex
il ðt;sÞ ¼ 3f ex

j1ðsrilÞ
sril

� sin2 WilðtÞh ijþ 2� 3 sin2 WilðtÞh ij
� �

sin2 q

2

� �
j2ðsrilÞ

2

� �
ð15Þ

For sin2 WilðtÞh ij one may write:

sin2 WilðtÞh ij¼ 1 � cos2 WilðtÞh ij¼ 1 � m̂1ð0Þ � r̂ilðtÞ½ � 2h ij, ð16Þ

where r̂ilðtÞ ¼ rilðtÞ=ril , that is, it can be expressed in terms of
the average value of the square of the time correlation func-
tion of two unit vectors fixed to the molecular frame. The
same is true for the polarization anisotropy [Eq. (17)]:

rðtÞ ¼ 0:4 P2 m̂1ð0Þ � m̂2ðtÞ½ �h ij¼ 0:6 m̂1ð0Þ � m̂2ðtÞ½ � 2h ij�0:2 ð17Þ

where m̂2 is a unit vector in the direction of a probe transition
dipole and P2(x)=0.5(3x2 � 1) is the second-order Legendre
polynomial. Thus, one may write [Eq. (18)]:

sin2 WilðtÞh ij¼ 1� 5
3 rðtÞ m̂2¼r̂il

�� þ 0:2
� �

ð18Þ

from which it is clear that the complete calculation of a time-
resolved diffraction signal requires the equivalent of calculat-
ing the time-resolved anisotropies for probe dipoles parallel to
each atom pair in the molecule.

When Equation (18) is inserted in Equation (15) and its
equivalent for F?;ex

il ðt;sÞ, some rearrangement of terms leads to
the following simple expressions [Eqs. (19) and (20)]:

Fjj ;ex
il ðt;sÞ ¼ f ex j0ðsrilÞ þ 5=2 1� 3 sin2 q

2

� �
j2ðsrilÞ rðtÞjm̂2¼r̂il

� �
ð19Þ

F? ;ex
il ðt;sÞ ¼ f ex j0ðsrilÞ þ 5=2 1� 3 cos2

q

2
cos2 �

� �
j2ðsrilÞ rðtÞjm̂2¼r̂il

� �
ð20Þ

These show that the electron scattering can be decomposed
into an isotropic part, j0(sril), and a part proportional to the ani-
sotropy of ril, both of which are scaled by the population
factor f ex. It is now interesting to compare the above equations
for anisotropic diffraction to that describing the physical popu-
lation after photoexcitation. It can be shown for the case at
hand (of molecular populations created by unsaturated excita-
tion by linearly polarized light of an electric dipole transition)

that the excited-state distribution of any internuclear separa-
tion is given at all times t by Equation (21):

S� t;V;Fð Þ ¼ f ex 1þ 5 rðtÞ P2ðcosVÞ½ �, ð21Þ

where V and F are polar coordinates about the excitation po-
larization, e. Note that V and F are equal to W and Y only for
e along the z axis, and in that case S� t;V;Fð Þ, when applied
to the transition dipole at t=0 (r(t)=0.4), reduces to parallel
excited Sex

0 W;Yð Þ as defined earlier. Equation 21 is in the form
of a multipole expansion[9] of the orientational distribution.
Comparison with Equations (19) and (20) shows that the iso-
tropic and r(t) dependent diffraction terms are each the scat-
tering of a specific moment of the ril(t) distribution, as mani-
fested for e along z and x. In other words, the direct term-by-
term correspondence between diffraction and spectroscopic
anisotropies is expressed in Equations (19), (20), and (21).

According to Equation (21), the scalar quantity r(t) uniquely
determines the total orientational distribution of each ril(t) ;
from this fact, it follows immediately that all orientational as-
pects of the calculation of electron diffraction patterns must
be reducible to a calculation of anisotropies, as found above.
Any established procedure for the calculation of time-resolved
polarization anisotropies can be used, including fully quantum
mechanical formulations for molecules of arbitrary shape.[11, 12]

In the cases we will treat here, including dissociation reactions,
the symmetric-top, semiclassical equations of refs. [7] and [8]
will be used, and these are reviewed in the following section.

2.2. Rotational Coherence in Chemical Reactions

It was shown in the previous section that UED scattering pat-
terns are dependent upon the time correlation of each internu-
clear separation vector in a molecule with the direction of its
excitation transition dipole at t=0. This is an intrinsic property
of the rotational motion of the molecule, depending only on
its structure and the magnitude and initial direction of the ro-
tational angular momentum vector in the molecular frame.
From the standpoint of rotational dynamics, the structure is
fully characterized by the three principal inertial axes and cor-
responding principal moments of inertia. Restricting our dis-
cussion here to rigid, symmetric-top molecules, two of the mo-
ments will be equal, and the inertial axis corresponding to the
unique moment is referred to as the figure axis of the top. The
rotational constants of the molecule about its figure axis and
about any axis perpendicular to it, respectively, are designated
B j j and B? , where Bi=�h=ð4p IiÞ for moment of inertia Ii.

The nature of the inertial, or unforced, rotational motion
executed by a classical symmetric top is illustrated in Figure 3.
The total angular momentum vector is j, and its projection on
the figure axis is kj. During the course of the motion, the angle
of inclination, qj, of the figure axis to j remains constant, which
results in a constant magnitude for kj of jj j cos qj . The body ro-
tates about its figure axis at a fixed angular frequency[13]

[Eq. (22)]:
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wr ¼ 1
�

Ijj þ 1=I?
� �

kj

�� �� ¼ 4pðBjj-B?Þ kj

�� ����h ð22Þ

and the figure axis nutates, or sweeps out a cone, at angular
frequency [Eq. (23)]:

wn ¼ jj j=I? ¼ 4pB? jj j=�h: ð23Þ

The quantum origin of time-dependent molecular orienta-
tion in photoexcited samples is the creation of excited states
which are coherent superpositions of individual rotational
quantum states—hence the designation of such a time-depen-
dent behavior as rotational coherence. For symmetric-top mol-
ecules, the quantum states are labeled by the quantum num-
bers (j, kj, m), and the specific coherent rotational wave packet
evolution is determined by the initial values of j and kj only,

[14]

assuming that all m levels are initially equally populated (
 iso-
tropic sample). In all cases in which comparisons have been
made, it has been found that the quantum behavior for a
given (j, kj) converges quantitatively to that given by the classi-
cal theory of symmetric-top rotation for j= jj j=�h and kj= kj

�� ����h,
even at relatively low j values, and, with application of certain
quantum corrections to the terms representing temporal mod-
ulations, at all times.[8] Thus, all features of the state-resolved
evolution may be understood by appealing to the classical pic-
ture. The transition from dealing with single states to the cal-
culation of macroscopic, or ensemble-averaged, properties, as
indicated in Equation (8), requires that the detailed properties
of the j distribution be specified. Herein, for the purpose of ac-
curate reproduction of quantum recurrence behavior at longer
times, all calculations are carried out for integer values of j and
kj and with the above-mentioned quantum corrections, which
are listed at the end of this section. One should note, however,
that at the early times in which we are mostly interested, the
same orientation properties would also be found using a con-
tinuous, classical distribution, unless the sample were rotation-
ally very cold.

The form of rotation of a molecule with particular values of j
and kj, as shown in Figure 3, can be translated into an explicit
expression for the anisotropy r(t) [Eq. (17)] when the directions
in the molecular frame of the two unit vectors involved in the
correlation are specified. This was done in the appendix of

ref. [8] for assumptions which will be adequate for the cases to
be covered herein. Specifically, the two vectors, which, for the
present purposes, will be referred to as m̂1ð0Þ and r̂ilðtÞ, are re-
stricted to lie in a single plane containing the figure axis of the
molecule. This condition is always satisfied if the transition
dipole of the excitation is parallel to the figure axis, that is, for
a parallel excitation transition. Also, j is assumed to be uni-
formly distributed in the azimuthal coordinate of the molecular
frame, as is always the case in a thermal ensemble of symmet-
ric tops, since the rotational energy does not depend on this
coordinate.

With the definitions wno =4pB? and wro =4p(Bjj-B?), where
wno and wro are referred to as the fundamental angular fre-
quencies of nutation and rotation, and with m̂1; jj; m̂1;?

� �
and

r̂il; jj; r̂il;?
� �

the Cartesian components of m̂1ð0Þ and r̂ilðtÞ parallel
and perpendicular to the figure axis in the plane common to
all three vectors, one obtains the following expression
[Eq. (24)] for the classical rotational-energy-resolved anisotropy
(i. e. after averaging over the above-mentioned uniform azimu-
thal distribution):

rm̂1 ;̂ril
ðj;qj; tÞ ¼ 1=10 1=2m̂

2
1;? � m̂2

1;jj

� �
1=2̂r2il;? � r̂2il;jj

� �
� fð3 cos2 qj � 1Þ2

þ12 sin2 qj cos
2 qj cosðjwn0tÞþ3 sin4 qj cosð2jwn0tÞ

�
þm̂2

1;? � r̂2il;? cosð2kjwr0tÞ � 9=80 sin4ð
�

qj þ 3=20ð1� cos4 qjÞ cosðjwn0tÞ

þ3=80ð1þ 6 cos2 qj þ cos4 qjÞ cosð2jwn0tÞÞ � sinð2kjwr0tÞ
� 3=10 cos qj sin

2 qj sinðjwn0tÞ þ 3=20ðcos qj þ cos3 qjÞ sinð2jwn0tÞ
� � �
þ3=5m̂1;? � m̂1;jj � r̂il;? � r̂il;jj cosðkjwr0tÞ � 3 sin2ð

�
qj cos

2 qj

þð2� sin2 qj � 4 sin2 qj cos
2 qjÞ cosðjwn0tÞ

þð2 sin2 qj � sin4 qjÞ cosð2jwn0tÞ
�
þ sinðkjwr0tÞ

� 2 cos qjð1� 2 cos2 qjÞ sinðjwn0tÞ � 2 cos qj sin
2 qj sinð2jwn0tÞ

� � �
ð24Þ

where cosqj=kj/j. This is Equation (4A) of ref. [8] , but with cor-
rection of the typographical errors of one missing parenthesis
and a missing 2 in the first sin(2jwn0t). To obtain r(t), the rota-
tional ensemble average must be completed, accounting for
the distribution of population among rotational-energy levels
[Eq. (25)]:

rðtÞ ¼
X
j

Pjðj; qjÞrm̂1 ;̂ril
ðj; qj; tÞ

 !,X
j

Pjðj; qjÞ ð25Þ

In the case of electron diffraction, the anisotropy of Equa-
tion (25) will be used in Equations (19) or (20) for every atom
pair of the reactant and of the product, as indicated by the
summations in Equation (1). For calculations for different atom
pairs of a given molecule, only the values of r̂il;jj; r̂il;?

� �
change

in Equations (24) and (25), and, thus, r(t) for every such atom
pair can be written as a sum of the form [Eq. (26)]:

rðtÞ ¼ 1=2̂r2il;? � r̂2il;jj

� �
� r1ðtÞ þ r̂2il;? � r2ðtÞ þ r̂il;? � r̂il;jj � r3ðtÞ ð26Þ

for the same three functions r1(t), r2(t), and r3(t), found by

Figure 3. Rotational motion of a symmetric top. The vector j is the total ro-
tational angular momentum and kj is its projected component along the
figure axis, which is inclined by a fixed angle, qj, from j. wn and wr are the
constant angular frequencies of nutation of the figure axis about j and rota-
tion of the molecule about the figure axis.
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applying Equation (25) to those three terms of Equation (24)
that are cofactors of the r̂il-dependent coefficients of Equa-
tion (26). Using this relation, the total scattering of a molecule
of any size can be calculated by carrying out the computation-
ally demanding rotational averaging only once to determine
r1(t), r2(t), and r3(t).

To complete the description of our calculations, there re-
mains the determination of the rotational-energy-level distribu-
tion Pjðj; qjÞ. In this Article, we must deal not only with intact
molecules, but with dissociation products. For the first group,
we assume all samples are characterized by a Boltzmann distri-
bution. When carrying out the average represented by Equa-
tion (25), the summation over j can be replaced by a double
summation over integral j and kj, in which case the proper
energy-level population factor is [Eq. (27)]:

Pjðj; qjÞ ¼ ð2j þ 1Þ � e�Erot=kb T , ð27Þ

with Erot=B? � jðj þ 1Þ þ ðBjj � B?Þk2
j . The normalization termP

j

Pjðj; qjÞ then converges to the value of the rotational parti-
tion function [Eq. (28)]:

Q ¼ pk3
BT3

� �
h3BjjB

2
?

� ��1�  1=2: ð28Þ

For the products of dissociation, the calculation of Pjðj; qjÞ
will be simplified by restricting consideration to dissociation of
thermal samples of reactant molecules by prompt and impul-
sive loss of one atom upon excitation. These conditions require
that the separation time be much shorter than the rotation
period (prompt dissociation) and that fragment interactions in
the exit channel be negligible. This case was treated in detail
in ref. [7] , and the angular momentum of the molecular prod-
uct was shown to be composed of two independent contribu-
tions from (1) an impulsive torque and (2) the initial rotation of
the reactant. The torque-induced angular momentum is zero if
the separation impulse is directed toward the product mole-
cule center of mass, or if no energy is released in the dissocia-
tion. In the examples that will be considered below, an impulse
along the breaking bond satisfies the former condition and
zero torque is taken as a reasonable assumption.

The second contribution to product rotation is the rotational
angular momentum retained from the reactant. The general
expression for retained angular momentum is [Eq. (29)]:[7]

jr ¼ IP IRð Þ�1J ð29Þ

where IP and IR are inertia tensors of the product and reactant
molecules, and J is the reactant angular momentum. For the
present purposes, we will consider only the case of a reactant
composed of a symmetric top product molecule plus one addi-
tional atom on its figure axis (which is taken as the z axis of a
molecule-fixed frame), at distance zA from its center of mass.
The reactant is then also a symmetric top, and the figure axes
of reactant and molecular product are parallel. In this case,
Equation (29), in the molecule-fixed frame, reduces to Equa-
tion (30):

jr ¼

IP
?

IP
? þ m z2

A

0 0

0
IP
?

IP
? þ m z2

A

0

0 0 1

0
BBBBBBBBB@

1
CCCCCCCCCA
J ð30Þ

where m is the reduced mass of the two product fragments
(molecule and atom) and IP

? is the product molecule moment
of inertia about any axis perpendicular to its figure axis.

Under the conditions outlined above, the total angular mo-
mentum of the molecular product will be jr. Since J is thermal
and therefore uniformly distributed in the azimuthal coordi-
nate about the figure axis, j will be as well, which ensures that
the use of Equation (24) is appropriate for the product aniso-
tropies. (In cases where the torque is nonzero, or the reactant
not a symmetric top, the assumption of Equation (24) of a uni-
form azimuthal distribution of j may not be valid. In such
cases, the product anisotropy must be calculated by the more
general prescription given in ref. [7] .) The energy-level popula-
tions, Pjðj; qjÞ, required for Equation (25) are determined by at-
tributing the Boltzmann populations for each J of the reactant
to the product of angular momentum j as defined by Equa-
tion (30).

It was noted above that some adjustments need to be
made for a classically derived expression such as Equation (24)
to give quantitative agreement with the full quantum treat-
ment at long times. These consist of replacing terms which os-
cillate at the classical frequencies with comparable terms oscil-
lating at the correct quantum beat frequencies corresponding
to the actual rotational-state level splittings. The following sub-
stitutions are made, with f(x) representing either cos(x) or sin(x)
[Eqs. (31a)–(31c)]:

f jwn0tð Þ ! 1
2 f jwn0tð Þ þ f j þ 1ð Þwn0tð Þ½ �; ð31aÞ

f 2jwn0tð Þ ! f 2j þ 1ð Þwn0tð Þ; ð31bÞ

and

f kjwr0t
� �

! 1
2 f kj þ 1=2

� �
wr0t

� �
þ f kj � 1=2

� �
wr0t

� ��  
: ð31cÞ

3. Applications

In this section, some examples are provided to illustrate time
dependence in UED due solely to orientational evolution. In all
cases, we assume that laser and electron pulses are infinitely
short and that the sample volume is infinitely small, so that
the effective temporal response is a delta function, and that
structural changes occur instantly at t=0. Thus, all changes in
the diffraction pattern after t=0 are due to rotation. The initial
sample is thermal, and 10% of reactant molecules absorb a
photon from the laser pulse (f ex=0.1). After t=0, the sample
consists of 90% of the population as an unexcited oriented re-
actant ensemble and 10% as an excited oriented ensemble of
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product molecules with appropriate nonthermal j distribution.
Dissociated atoms are assumed to contribute nothing to the
molecular scattering.

An electron wavelength of 0.07 N is used (�30 keV). Calcula-
tions are done for an s range of 0 to 25 N�1, and resolution of
0.05 N�1. The appropriate expression for Fil(t ; s) for each atom
pair of both reactant and product is substituted in Equa-
tion (1), with the constant C set to a value of one, to obtain
the molecular scattering intensity IM(t ; s). Modified molecular
scattering sM(t ; s) is calculated as [Eq. (32)]:

sMðt; sÞ ¼ sIMðt; sÞ
faðsÞj j fbðsÞj j , ð32Þ

with normalization by the scattering factors of some arbitrary
atom pair ab of the molecule. Difference patterns are refer-
enced to the steady state scattering from the isotropic reactant
population present before the arrival of the laser pulse: DsM(t ;
t<0; s)= sM(t ; s) � sM( t<0; s).

Radial distribution functions are calculated by Equation (33):

f ðt; rÞ ¼
Zsmax

0

sMðt; sÞ expð�kds2Þ sinðsrÞds ð33Þ

where an exponential damping term, with damping constant
kd, is used to suppress spurious oscillations. Integration ex-
tends to smax=25 N�1. For an isotropic sample, every atom pair
in a molecule gives rise to a peak in the radial distribution at a
radial position approximately equal to the internuclear separa-
tion, with amplitude determined by the atomic scattering fac-
tors and the separation. The widths of different peaks would in
a real sample be dependent on the mean amplitude of vibra-
tion associated with the particular atom pair, and also on the
value chosen for the damping constant kd in Equation (33).
Here, where we have assumed rigid structures, we use kd=

0.012 N2 and the resulting plots are similar to what one would
expect for a slightly smaller kd and a nonrigid molecule having
a common vibrational amplitude for all its internuclear separa-
tions.

A simple case to consider, but one that also shows many of
the important properties of anisotropic UED, is that of iodine
absorption to a dissociative state via a parallel transition
dipole. Electron diffraction from static ensembles of iodine
molecules aligned by laser absorption has already been treated
by WZ for a variety of assumptions, including excitation polari-
zation both parallel and perpendicular to the electron beam. In
the latter case, the scattering intensity varies with the azimu-
thal angle f, as seen in Equation (20). For simplicity, we will re-
strict our consideration here to the parallel case, Equation (19),
in which the cylindrical symmetry of the scattering pattern is
preserved, and focus instead on the new element of time de-
pendence.

The diffraction pattern of interest after t=0 is that of the
parallel, unexcited iodine ground state, with rI�I=2.666 N,
since dissociation of excited molecules is considered instanta-
neous. To calculate this pattern, we use Equations (1), (8), (13),

and (19). As mentioned in connection with Equation (13), the
anisotropy needed for Equation (19) is one involving the lost
internuclear separation vectors, rI�I, of molecules of the
ground-state iodine population that dissociate upon excitation
by the laser, leaving a hole in the diffraction pattern [as indi-
cated by the negative sign of Eq. (13)] . This r(t) is shown in
Figure 4. Because the transition dipole is parallel to the I�I

bond, the form of r(t) is that typical of linear molecule rotation-
al coherence for the ( j j , j j ) dipole case. At t=0, the rI�I inter-
nuclear separation vectors of the excited population are in a
cosine-squared distribution aligned along the laser polarization
direction (laboratory z axis), and this distribution corresponds
to the r(0) value of 0.4. Thereafter, the orientation of the (now
virtual) population dephases, as its individual molecules rotate
with thermally (T=2958 K) distributed angular momenta. The
initial distribution of rI�I , however, imposes a permanent sine-
squared distribution on the orientation of the angular momen-
ta of the population because j is perpendicular to the molecu-
lar axis (qj=908) for a linear molecule; thus even when fully
dephased, the lost rI�I are not randomly oriented, in which
case the value of r(t) would be zero, but attain an asymptotic
distribution with r(t)=0.1.

A general characteristic of thermal rotational coherence that
is evident in Figure 4 is the fact that r(t) falls to a minimum
(here at 1.44 ps) before reaching its asymptote. This feature is
a remnant of the oscillations of the single energy level aniso-
tropies that persists because dephasing takes longer, due to
the limited width of the thermal angular momentum distribu-
tion, than required for molecules near the peak of the distribu-
tion to rotate through an angle approaching 908. At longer

Figure 4. Time-resolved anisotropy of a virtual ground-state iodine popula-
tion, at a single fixed structure (B?=1.1206 GHz), for femtosecond laser ex-
citation via a transition dipole moment parallel to the I�I bond. The sample
rotational temperature is 2958 K. The inset shows the behavior on a longer
timescale, revealing the first out-of-phase and in-phase rotational recurrenc-
es at 223.1 and 446.2 ps.
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times, and periodically for as long as the sample remains colli-
sion-free, the distribution refocuses to give out-of-phase (sine-
squared rI�I distribution) and in-phase (cosine-squared rI�I dis-
tribution) anisotropy recurrences, as determined by the quan-
tum nature of the angular momentum and the specific circum-
stances which apply in this case.[14] The first of each of these
recurrences is shown in the inset of Figure 4. It should be
noted that the case illustrated is that of a single rigid structure,
while for a real room-temperature iodine sample, all molecules
are not in the ground vibrational state and centrifugal distor-
tion changes the bond length as a function of j. The resulting
variation in moment of inertia in the sample causes recurrenc-
es to consist of multiple, broadened peaks,[15] in contrast to
the single sharp peaks shown in the Figure.

According to Equation (19), the anisotropy of Figure 4 is im-
printed directly onto the electron diffraction patterns of the ir-
radiated sample, as shown in Figure 5. We assume a 10% total

excitation yield, and calculate DsM(t ; t<0; s) at the characteris-
tic times t=0+ , 0.3 ps, 1.44 ps and 70 ps, and compare with
DsM(t>0; t<0; s) for a hypothetical isotropic excitation of 10%
of the sample. Difference curves are used to represent the
scattering because sM(t ; s) for a small excitation yield is domi-
nated by the background ground state. Two iodine scattering
factor amplitudes have been used in Equation (32) for this
single atom pair, resulting in a simple sinusoidal form for iso-
tropic dissociation [Eq. (34)]:

DsMiso
il ðt;t < 0;sÞ ¼ �2f ex sinðsrilÞ

ril

ð34Þ

Two difference curves of Figure 5, t=0+ and isotropic
theory, can be compared to the two calculations labeled, re-
spectively, excited and isotropic in Figure 5 of WZ, with, how-
ever a reversal of sign because the respective populations
have been lost in the present case. Also note that the scatter-
ing losses represent equal populations for each curve in
Figure 5, while the excited population was assumed to be 1/3
of the isotropic one by WZ.

The following points are evident from Figure 5. When the
anisotropy with respect to the z-axis is positive and large, that
is, when the lost atomic pairs are in a distribution preferentially
oriented parallel to the electron beam (at t=0+ and 0.3 ps),
the sM(t ; s) difference curve decays quickly with s and is very
strongly reduced relative to the isotropic case, except at low s.
This apparent weakness of molecular scattering intensity for
such high anisotropy distributions derives from the relatively
rapid change of interference fringe spatial frequency with
angle for small angles of tilt of ril from the z axis, leading to a
dephasing with s of the constructive addition of oscillations
contributed by different segments of the distribution. Thus, in
an isotropic sample, most of the net molecular intensity for s>
2 N�1 derives from internuclear distances that are more nearly
perpendicular than parallel to the electron beam. This basic
orientation-dependent difference in scattering pattern is the
source of all of the effects that will be seen for the parallel po-
larization cases discussed in this paper. When the anisotropy
drops to its minimum value, r(1.44 ps)=0.0146, the difference
signal closely approaches that of the isotropic excitation, for
which r(t) 
 0. At longer time, the orientation of rI�I of the
completely rotationally-dephased virtual population of excited
molecules again favors the z axis and hence shows a reduced
scatter (smaller loss), with some distortion at low s.

It is also notable that the DsM(t ; t<0; s) curves at all times
intersect at a series of common points. This phenomenon re-
sembles that of spectroscopic isosbestic points and can be
similarly explained. Each distribution given by Equation (21)
can also be expressed as a conserved population f ex divided in
various ways between two fundamental distributions, 3 cos2 V
and 3=2 sin2 V. The value of DsM(t ; t<0; s) of the total distribu-
tion must then be constant at all points at which the DsM(t ;
t<0; s) curves of these two fundamental distributions intersect,
provided that f ex is constant, as assumed here. Mathematically,
these stationary points are easily recognized as the zeros of
the coefficient of r(t) in Eq. (19), which are simply the zeros of
j2(sril).

Using Equation (33) and the DsM(t ; t<0; s) data of Figure 5,
one may calculate the radial distribution difference curves,
Df(t ; t<0; r), shown in Figure 6. These confirm the conclusions
drawn above from the DsM(t ; t<0; s) plots, but also clearly dis-
play two additional characteristics. First, the apparent bond
length distribution of the lost I2 population, as indicated by
the negative intensity in Df(t ; t<0; r), is extremely broad at
very early time with maximum amplitude at an r value lower
than the actual 2.666 N bond length, and second, the asymp-

Figure 5. Modified molecular scattering difference plots at four selected
times in the evolution of a room temperature (T=2958K) iodine sample fol-
lowing 10% dissociation by a femtosecond laser pulse. The transition dipole
moment is parallel to the I�I bond and the laser is polarized along the labo-
ratory z axis (parallel to the electron beam). Also shown for comparison (and
almost coincident with the 1.44 ps data) is the predicted DsM(t ; t<0; s) for
all positive times assuming an isotropic and instantaneous depletion of 10%
of the sample (solid line).
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totic Df(t ; t<0; r) peak is not only 20% smaller in peak ampli-
tude than expected from the isotropic theory, but its line
shape is also different, having a distinct tale extending to low
r. Again, it is seen that the anisotropic UED signal very closely
approximates the isotropic theory only near 1.44 ps, when the
value of r(t) reaches its minimum value. One stationary point
appears in the Df(t ; t<0; r) plots, at r=2.4459 N in this case
(dependent on the value of kd), which follows, as for DsM(t ;
t<0; s), from a two-component description of the underlying
distributions.

The detailed time evolution of the point of maximum abso-
lute value on the Df(t ; t<0; r) curve is represented in Figure 7
by plots of both its position and its amplitude. Over the first
300 fs, the peak changes little in amplitude as it shifts to
longer r. The amplitude then grows toward its maximum abso-
lute value at 1.44 ps, at which time it also reaches a maximum
in peak position, of 2.666 N, indicated by the dashed line. Both
values then retreat from their maxima, with the peak position
changing only very slightly, reaching an asymptotic value (at
the resolution of the calculation) of 2.658 N by �5 ps. The rel-
ative reduction in the amplitude is much greater, and therefore
it can be seen that a slight decay continues for tens of picosec-
onds (see Figure 7, inset), mirroring the evolution of the aniso-
tropy of Figure 4.

Although the laser-induced change in I2 population in the
case under consideration is complete within the laser pulse at
t=0, the DsM(t ; t<0; s) and Df(t ; t<0; r) curves continue to
change dramatically over a time range of several picoseconds
due to evolving orientation, as shown in Figures 5, 6, and 7.
One quantity that is found to accurately reflect only the popu-
lation change is the integral of rDf(t ; t<0; r), which is also plot-
ted in Figure 7. Combining the general expressions for IM(t ; s)
and sM(t ; s), with C in Equation (1) again set to one, the contri-
bution of a single atom pair to DsM(t ; t<0; s) is [Eq. (35)]:

DsMilðt;t < 0;sÞ ¼ 2s
fiðsÞj j flðsÞj j
faðsÞj j fbðsÞj j

cosðhiðsÞ � hlðsÞÞ Fd;ex
il ðt; sÞ þ Fd;un

il ðt; sÞ � j0ðsrilÞ
� �

¼ 2s
fiðsÞj j flðsÞj j
faðsÞj j fbðsÞj j cosðhiðsÞ � hlðsÞÞ Fd;ex

il ðt; sÞ
��

product�Fd;ex
il ðt; sÞ

��
ground
state

� �
ð35Þ

For the homonuclear diatomic, for which the influence of
the scattering factors can be totally eliminated from the above
equation, it can be shown under proper consideration of the
damping and integration limits in Equation (33) that for either
the parallel or perpendicular polarization case [Eq. (36)]:

Z1
0

rDf ðt;t < 0;rÞdr ¼ p f exproduct � f exground state

� �
, ð36Þ

where f exproduct and f exground state are the yields of bound product
atom pairs and loss of reactant atom pairs, respectively, that is,
a contribution of pf ex is associated with each term of Fjj ;ex

il ðt;sÞ
or F? ;ex

il ðt;sÞ in Equation (35), independent of ril, kd, and the
evolving orientational distribution of the relevant population.

For the example at hand, the value of the integral in Equa-
tion (36) jumps from 0 for t<0 to �0.314159 for all t>0
(Figure 7). This behavior reflects exactly an instantaneous dis-
sociation of 10% of I2 molecules, with f exproduct =0 since all excit-

Figure 6. Radial-distribution-difference curves of parallel-excited iodine, de-
rived from the scattering signals of Figure 5. A damping constant of
kd=0.012 N2 was used.

Figure 7. Time dependence of the position and amplitude of the radial-dis-
tribution-difference peak of parallel-excited iodine, for conditions described
in the caption to Figure 5. While both quantities depend on the value of the
constant kd, their extremes always occur at 1.44 ps, the time of minimum

anisotropy in Figure 4. Also shown is
R1
0

rDf ðt; t < 0; rÞ dr as a function of

time for the anisotropic dissociation. Convergence of the integrals was
reached with an upper r limit of 4 N.
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ed molecules dissociate, and f exground state =0.1. It should be noted
that this equation remains valid under more general conditions
than those assumed here, for example, for molecules in which
the bond distance is not fixed and for reactions which are not
instantaneous, in the latter case yielding a pure measure of
the net percentage change in number of bound atom pairs in
the sample, whether in the product or the reactant, at any
point in time. For example, if an excitation changed the bond
length but left the molecule intact, f exproduct would be equal to
f exground state and the integral would be zero. Of course, in the case
of molecules on a slow dissociative trajectory, the point at
which the separating atoms no longer constitute an effectively
“intact” molecule, but instead contribute only to the incoher-
ent atomic scattering background becomes a technical issue
that must be addressed in the analysis, as is the limited range
of s that is available from experiments.

As a final point, it should be noted that the consequences
of rotational recurrences in the anisotropy (as seen in the inset
of Figure 4) could, with sufficient time resolution, also be ob-
served in UED. Since recurrence times are determined by mo-
lecular structure, their observation by UED could be used for
structural measurements, as are recurrence observations by nu-
merous other ultrafast spectroscopic techniques.[11, 12] To illus-
trate this possibility, Df(t ; t<0; r) has been calculated at the
times of the out-of-phase and in-phase recurrences, and these
are shown in Figure 8, with the steady state signal of Figure 6
replotted for comparison. (As noted in connection with the re-
currences of Figure 4, two factors which must be considered in
a real sample at finite temperature, the vibrational distribution
and centrifugal distortion, have been ignored for these calcula-
tions.)

The scattering changes dramatically at each recurrence,
almost doubling the Df(t ; t<0; r) peak at the out-of-phase re-

currence, and returning to the t=0+ appearance at the in-
phase recurrence. However, the integral of Equation (36) re-
mains equal to �0.314159 at these times as well, emphasizing
that the change in scattering pattern reflects only reorientation
of a fixed population. At the out-of-phase and in-phase recur-
rences, the dissociated molecules, if they had remained intact,
would be in sine-squared and cosine-squared distributions, re-
spectively, relative to the z axis, and thus largely perpendicular
in the first case, and parallel in the second, to the electron
beam, which results in the large discrepancy in the nature of
the scattering.

Each of these recurrences, for which r(t)=�0.2 and 0.4, re-
spectively, corresponds to full occupation of one of the two
fundamental distributions discussed above in connection with
the existence of stationary points. This being the case, every
characteristic property of the evolving distribution must always
have a value intermediate to those associated with these two
times. The anisotropy (Figure 4) represents one such property;
likewise, all Df(t ; t<0; r) curves lie between limits set by
Df(223.1 ps; t<0; r) and Df(446.2 ps; t<0; r) and can be ex-
pressed as appropriately weighted averages of the two, as fol-
lows from Equations (19), (32), and (33); for example, at the
steady state (r(t)=0.1), the weighting is equal and Df(70 ps;
t<0; r) is the mean of Df(223.1 ps; t<0; r) and Df(446.2 ps; t<
0; r), as is evident from Figure 8.

The positive amplitude at low r in Df(223.1 ps; t<0; r) is an
interesting feature arising because the orientation of the undis-
sociated molecules at that time is biased toward the z-axis.
Their positive contribution to the radial distribution is there-
fore broadened, resulting in a larger hole at 2.666 N and posi-
tive difference at low r, just as the negative contribution of
similarly oriented missing molecules is broadened at t=0+ .

In summary, the rotational coherence created by the femto-
second excitation is both responsible for the timescale of
growth and evolution of the diffraction pattern and significant-
ly affects the asymptotic, or steady state, scattering, while only
population dynamics is reflected by the integral of rDf(t ; t<0;
r). In this case, for example, the dramatic increase in amplitude
of the negative peak in Df(t ; t<0; r) from t=0 to 1.44 ps re-
veals the average rate of rotation of the sample molecules
rather than a change in the dissociated population. This tem-
poral evolution could thus be used to determine the sample
rotational temperature. Rotation and dephasing times of a
thermal sample scale as (T)�

1=2 , and rotational coherence behav-
ior similar to that shown but on different timescales is to be
expected at all temperatures for which the j=0 population is
not a large fraction of the total.

From the preceding example, in which the orientation of a
single bond and a single state is involved, we now turn to a
more complex case, that of photodissociation of CF3I. Here, we
must account for multiple internuclear separations and two
different molecules, CF3I and CF3. We use the same ground
state structure[16] as used by WZ in their calculation for perpen-
dicular laser polarization of diffraction by the unexcited popu-
lation only. For a complete picture of anisotropic UED, we
assume a 10% excitation yield via a parallel transition dipole
(along the C�I bond) leading to instantaneous loss of the

Figure 8. Radial distribution differences of parallel-excited iodine, at the
times of an out-of-phase and an in-phase rotational coherence recurrence,
compared with the steady-state signal from Figure 6. Other conditions are
described in the caption to Figure 5.
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iodine atom, and calculate the total scattering due to the un-
excited thermal ground state CF3I and the product CF3. The ro-
tational distribution of CF3 is that given by applying Equa-
tion (30) to the CF3I thermal distribution, assuming that the
product structure is the same when free as when bound
within the reactant.

Figure 9 shows the radial distribution difference curves for
the total diffraction signal at a series of different times, again
compared to the isotropic theory calculation for 10% dissocia-

tion. Also plotted for reference is �0.1 P f(r) of an isotropic
sample of CF3I, indicating the relative amplitudes and positions
associated with each of the four distinct internuclear separa-
tions, as labeled in the Figure, with the C�I bond and FF dis-
tance being almost equal (rCI=2.141 N and rFF=2.154 N). The
calculations account for the multiplicities for CF3I of one C�I
bond and three C-F, FI, and FF distances, and for CF3 of three
C-F and FF distances. In each case, two fluorine scattering-
factor amplitudes were used in the calculation of sM(t ; s)
[Eq. (32)] . Coincidence between the FI peak of the Df(t ; t<0; r)
curve for isotropic dissociation theory for t>0 and that of
�0.1 P f(r) of CF3I illustrates the 10% loss of FI atom pairs by
dissociation, as expected. The isotropic dissociation curve
shows a loss at the CI/FF peak of about half of the 10% refer-
ence, corresponding to loss of 10% C-I and no FF, while the
fact that no peak appears at the C�F bond distance shows
that isotropic dissociation causes no change in the total C-F
distribution in the sample.

Considering now the four anisotropic Df(t ; t<0; r) curves in
Figure 9, general features seen in the previous example for I2
are again evident. The two internuclear separations that are
lost, CI and FI, contribute negative peaks in Df(t ; t<0; r), but at
t=0+ , these have very different shapes in the anisotropic than

in the isotropic calculation, with the peak from the C�I bond
being significantly shifted from the actual C�I bond distance
of 2.14 N, as was true for the I�I bond of I2. Because both the
C�I bond of CF3I and the I�I bond of I2 are coincident with
their respective excitation dipole moments, the excited popu-
lations at t=0+ share identical cosine-squared distributions
and comparable diffraction properties are expected. A smaller
shift is seen in the FI peak of CF3I because the FI nonbonded
separations are inclined by 25.58 from the transition dipole
and are therefore not as strongly aligned. Because both CI and
FI peaks are severely broadened and overlapping, the apparent
peak amplitudes at early time are not readily comparable to
that of the I–I peak of I2. However, at steady-state conditions,
represented here by the 12 ps data, the amplitudes of both of
the Df(t ; t<0; r) peaks are again lower than expected from iso-
tropic theory, as was the case for I2. Finally, there is again a
point in the radial distribution difference curves, at �2.578 N,
that is effectively stationary, though not exactly so as in the I2
case. The involvement of many different distributions for differ-
ent ril, and two different courses of time evolution in the
ground and product state ensembles invalidates the simple
form of the two component explanation advanced for iodine,
but the close coincidence at a single point of all curves here is
certainly suggestive of a general property. We will return to
this point further below.

In addition to the presence of multiple bonds, another new
element which plays a role here is the effect of the product
orientation. The total population of CF and FF separations is
not changed by dissociation, but the rotational motion execut-
ed by the segment of those populations belonging to CF3

product molecules does change. At t=0+ , the distributions of
the total population of these separations remains isotropic, as
evidenced by the fact that Df(0+, t<0; r) shows no distortion in
the vicinity of the C�F bond distance of 1.33 N. By 1.2 ps and
in the steady state behavior, however, a positive-going devia-
tion from the smooth trend of Df(t ; t<0; r) has appeared. (The
time of 1.2 ps was chosen for the calculations because the ani-
sotropies of the figure axes of both CF3I and CF3 are near their
minimum values at this point, which is thus comparable to
1.44 ps for I2. The general appearance of these anisotropies is
similar to that of I2 in Figure 4, though they have different
asymptotic values because of differences in molecular shape
and j distribution.)

This effect is understood by considering Equation (30). The
component of angular momentum along the figure axis (mole-
cule-fixed z axis) is conserved from CF3I (J) to CF3 (jr) while the
perpendicular components are greatly reduced (by about a
factor of six). Fragmentation, therefore, increases the average
value of kj/j, which corresponds to a decrease in qj , and a
tighter cone of nutation, as shown in Figure 3. A reduced nuta-
tion cone means that the internuclear separation vectors of
product molecules have a range of motion reduced from that
which would have applied had the molecule remained intact.
Since the transition dipoles of excited molecules, and there-
fore, in this case, the CF3 figure axes are strongly aligned at t=
0+ , they will tend to remain unusually close to the laser polari-
zation, or laboratory z axis, at all time, corresponding to a high

Figure 9. Radial-distribution-difference curves for anisotropic UED scattering
of CF3I dissociation to CF3 + I at four times. The laser polarization is parallel
to k0, T=2958 K, and the transition dipole moment is parallel to the C�I
bond. The structure of CF3I is shown, and the structural parameters of Typke
et al.[16] for CF3I were used in the calculations for both CF3I and CF3. The
solid curve is a calculation for the dissociation assuming isotropic distribu-
tions and the light dotted curve is a scaled radial distribution of the reactant
only, labeled with the atom pair(s) responsible for each peak.
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anisotropy (r(t)=0.2 at the asymptote with a minimum value
of 0.14 at 1.2 ps). Since rCF is almost perpendicular to the
figure axis, the rCF’s in CF3 will be preferentially oriented per-
pendicular to the z axis and to k0, and thus will give enhanced
molecular scattering, producing a positive difference peak.

The same reasoning applies to rFF, implying that a positive
peak due to the FF atom pairs of the product population re-
duces the amplitude of the overlapping negative CI peak. Such
a reduction might be revealed by a comparison of the aniso-
tropic CI/FF and FI peak amplitudes relative to those of the iso-
tropic theory. At the steady state (12 ps), ground-state aniso-
tropy effects, such as the expected low r tail of the FI peak
and the fact that the CI ground-state anisotropy is greater
than that of FI, complicate the situation, but at 1.2 ps, r(t) for
the ground state approaches zero (j r(t) j � 0.013 for all
ground-state atom pairs), so ground-state differences from iso-
tropic theory should be very small (cf. I2 Df(t ; t<0; r) at 1.44 ps
in Figure 6). The large discrepancy at CI/FF from the isotropic
theory (reduction of 9.8% vs. 1.6% at FI) at 1.2 ps can there-
fore only be a product effect, consistent with a positive FF con-
tribution of amplitude comparable to that which is evident for
CF at the same time.

To reveal more clearly the role of product orientation, the
product- and ground-state contributions to the total Df(t ; t<0;
r) have been plotted separately in Figure 10 for anisotropic dis-
sociation at 1.2 ps and for the isotropic dissociation at t>0.
These contributions are displayed in the form of f(t ; r) for the
product and Df(t ; t<0; r) for the ground state. As reasoned
above, the anisotropic ground state distribution is very similar
to the isotropic one, with minor discrepancies of opposite sign

for internuclear separation vectors approximately parallel (FI
and CI) and perpendicular (FF and CF) to the figure axis. Larger
differences appear in the two peaks of the product radial dis-
tributions, with the amplitudes of both peaks of the anisotrop-
ic calculation being larger, relative to the adjacent baseline,
than those of the isotropic case. Since the product CF and FF
peaks exactly cancel the corresponding dips in the ground
state Df(t ; t<0; r) for the isotropic case, it follows that the
larger anisotropic product peaks leave a net positive contribu-
tion for those atom pairs in the total Df(t ; t<0; r) (Figure 9).
The slightly negative baseline at low r in the anisotropic prod-
uct f(t ; r) recalls the effect of opposite sign seen at the out-of-
phase recurrence of I2 (Figure 8) where the distribution of lost
molecules was biased toward alignment with the xy plane as
are the product CF and FF separations of the anisotropic calcu-
lation here. It is the negative low r tail of the product FF peak
that causes the total anisotropic 1.2 ps Df(t ; t<0; r) of Figure 9
to lie below the isotropic curve at the C�F bond distance.

For I2, with a single atom pair, the integral in Equation (36)
provided an orientation-independent measure of the change
in bound population. For the CF3I dissociation, ten atom pairs
must be considered, and the atomic scattering factors are elim-
inated from Equation (35) only for the three FF atom pairs.
Thus, it is remarkable that the r-weighted integral of the total
Df(t ; t<0; r) is again independent of orientation, despite large
differences among the anisotropic Df(t ; t<0; r) curves. Given
that the Gaussian damping factor applied to DsM(t ; t<0; s) in
Equation (33) does not effect the value of the integral in Equa-
tion (36), the influence of scattering factors can be understood
under the condition that the s-dependence that they introduce
into DsMil(t ; t<0; s), can be decomposed into a weighted sum
of Gaussians centered at s=0, that is, [Eq. 37]:

fiðsÞj j flðsÞj j
faðsÞj j fbðsÞj j cosðhiðsÞ � hlðsÞÞ ¼

X
n

ane�kns2 : ð37Þ

It then follows immediately that the contribution made to the
integral of rDf(t ; t<0; r) by each atom pair that suffers a net
loss of population from reactant to product is [Eq. (38)]:

�
X

n

anp f ex ¼ � fið0Þj j flð0Þj j
fað0Þj j fbð0Þj j cosðhið0Þ � hlð0ÞÞp f ex, ð38Þ

where f ex is the fractional loss of population. In the dissocia-
tion of CF3I, the sum of these quantities for the three FI and
one CI atom pairs is �7.39755, which is equal to the value ob-
tained by numerical integration (from r=0 to 8 N) of each r-
weighted Df(t ; t<0; r) curve of Figure 9, and also for radial dis-
tributions calculated with other values of kd. Thus the propor-
tionality to f ex is maintained, and the constant value indicates
that, in this case, the population of bound atom pairs does not
change after the initial loss occurs at t=0.

As a final example of anisotropic UED, we consider the case
of CH3I dissociation. The treatment of this problem is very simi-
lar in most respects to that of CF3I, with the distinction that,
unlike CF3, which was fixed at its reactant structure upon disso-
ciation, the CH3 structure will change from reactant to frag-

Figure 10. Separate reaction-product (CF3) and ground-state contributions
to two of the radial-distribution-difference curves of Figure 9. The reactant
f(r) was subtracted from the ground-state distributions, while f(t ; r) is plotted
for the products without subtraction. The isotropic ground state Df(t>0;
t<0; r) is equal to �0.1 P f(r) of the reactant, as plotted in Figure 9. The
labels identify the atom pairs associated with each peak.
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ment. CH3I and CH3 structural parameters are taken from Herz-
berg.[17] A 10% excitation yield with transition dipole parallel
to the C�I bond is again assumed, and Pjðj; qjÞ for product CH3

is given by Equation (30) using a value of IP
?=1.952 amuN2

based on the structure of CH3 within CH3I. The small size of
this moment of inertia relative to m z2

A=53.41 amuN2 leads to a
very high residual anisotropy of the product figure axis, of
�0.36. Given the low values of jr , however, this is a case in
which caution should be exercised in relying on the quantita-
tive accuracy of the semiclassical treatment applied.

Time-resolved radial-distribution difference curves for aniso-
tropic and isotropic dissociation theory, and the isotropic CH3I
ground state f(r), were calculated using two hydrogen scatter-
ing factor amplitudes for the normalization in Equation (32).
These are plotted in Figure 11. With the HH separation absent
due to the weak electron scattering of hydrogen, the CI and HI
internuclear separations lost to dissociation are both free of
overlap with any observable product internuclear separation.

Thus, the CI and HI peaks of the isotropic theory Df(t>0; t<0;
r) coincide fully with �0.1 P f(r) of CH3I. A slight change in C�
H bond length upon dissociation, from 1.106 N to 1.079 N, pro-
duces a derivative line shape in the isotropic theory Df(t>0;
t<0; r) centered at 1.09 N.

The general features of the time-dependent anisotropic data
shown in Figure 11 are by now familiar : negative contributions
to Df(t ; t<0; r) for the two lost separations, CI and HI, with se-
verely broadened peaks at t=0+ that evolve over time to
reach an asymptotic steady state with amplitudes smaller than

those of the isotropic theory; a pronounced shift of the CI
peak at t=0+ ; and a positive peak at the C�H bond distance
at long time due to high product anisotropy. Since there is no
product interference in this case, the percentage reductions in
the anisotropic relative to the isotropic calculation of the CI
and HI negative peaks are very similar to each other, both at
the time of minimum ground state anisotropy, t=0.6 ps, (re-
duction of �2%) and at the steady state (11%).

Among the differences between the CH3I calculations and
those of CF3I is the shorter time required to reach either the
minimum ground state anisotropy (0.6 ps vs. 1.2 ps) or the
steady-state condition, represented here by the data at 7.4 ps,
due to the smaller moments of inertia of CH3I. There is also
now structure due to the C�H bonds in Df(t ; t<0; r) at t=0+

and 0.3 ps while C-F of CF3I made no contribution at such
early times. At t=0+ , this difference is totally due to the
change in product structure which has been assumed here.
Not only does the bond length change as noted above, but
the orientation of each C�H bond shifts 17.78 from its position
in the reactant (aICH=107.78) to the planar geometry of the
product, leading to an initial sine-squared distribution relative
to the z-axis. Such a distribution is optimum for enhancing the
radial distribution amplitude at r= ril, as shown by the strong
2.666 N peak in Df(t ; t<0; r) at the out-of-phase recurrence of
I2 (Figure 8), so the total CH signal exceeds that of the refer-
ence isotropic distribution, adding a positive contribution to
the derivative shape arising from the change in bond length.
Note that the bond angle change has no direct effect on the
isotropic theory: the isotropic Df(t ; t<0; r) reflects the change
in bond-length only.

At t=0.3 ps, the strong positive C-H peak that appears in
CH3I Df(t ; t<0; r) is in marked contrast to the absence of a C-F
peak at the same time for CF3I (Figure 9). Contributing to this
difference is not only the change in structure, but also the in-
fluence of the high product anisotropy which is revealed earli-
er due to the faster rotation of the hole in the ground state
CH3I distribution. The fact that the CH3 anisotropy is much
higher than that of CF3 (see above) is also a factor in produc-
ing relatively more prominent positive peaks at 0.3 ps and all
later times.

The integral of rDf(t ; t<0; r) for each Df(t ; t<0; r) in Figure 9
is found equal to �43.477, again reflecting the fact that no
population change occurs after t=0. The small hydrogen
atomic scattering factor amplitudes used in Equation (32),
compared to the carbon and iodine factors which appear in
IM(t ; s), are responsible for the large value of this integral com-
pared to that for an equal dissociation yield of CF3I. However,
the numeric value in this case differs slightly from that
(�44.053) found by assuming the validity of Equation (38). The
condition underlying Equation (38), although sufficient, is thus
not necessary to ensure orientation independence of the inte-
gral. While a fuller investigation is needed of the conditions for
validity of this property, the high degree of consistency for the
two polyatomic cases given here suggest a broad generality.

Similarly, the existence also for CH3I of a near-stationary
point in Df(t ; t<0; r) supports our earlier observation that such
points apparently are an intrinsic feature of anisotropic UED, at

Figure 11. Radial-distribution-difference curves of anisotropic UED scattering
of CH3I dissociation to planar CH3 + I at four times. The laser polarization is
parallel to k0, T=2958K, and the transition dipole moment is parallel to the
C�I bond. Structural parameters used for CH3I and CH3 are those given by
Herzberg.[17] The solid curve is a calculation for the dissociation assuming
isotropic distributions and the light dotted curve is a scaled radial distribu-
tion of the reactant only, labeled with the atom pair responsible for each
peak. (No peak is seen at the HH internuclear separation of 1.82 N)
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least under the specific set of conditions assumed for the ex-
amples in this work. As noted earlier for iodine, one require-
ment for the existence of the stationary points of DsM(t ; t<0;
s) or Df(t ; t<0; r) for that simple system is a constant popula-
tion; conversely, the value at such a point is a pure measure of
population, independent of anisotropy, and could, at least in
theory, fill the same role as the integral of rDf(t ; t<0; r). Explor-
ing such possibilities by determining the origin and properties
of these points, including any restrictions on the conditions
under which they arise, is among the objectives of ongoing
work in our laboratory.

4. Conclusions

Herein, we have treated the effect of the rotation of oriented
molecular ensembles on the temporal evolution of diffraction
on the actual ultrafast timescale of the rotational motion. In
particular, we considered the most common case for inducing
anisotropic molecular orientation, excitation by polarized
pulsed laser beams, and incorporated the concepts of rotation-
al coherence of molecules subject to free rotation under colli-
sionless conditions. We invoked the classical dynamics of rota-
tion to determine the time dependence of the orientational
distributions of internuclear separation vectors, ril, for which
molecular scattering intensities were calculated. As shown in
our work on rotational coherence,[8] such distributions very
closely approximate the probability distributions of quantum
wave packets created by coherent excitation. The role of prod-
uct orientation following prompt laser-induced dissociation re-
actions was also examined.

We found that the diffraction pattern depends on the polari-
zation anisotropy of the separation vector, rðtÞ m̂2¼r̂il

�� , and de-
rived a simple expression showing term-by-term the scattering
contributions of the multipole expansion of the evolving ril ori-
entational distribution. The diffraction pattern differs dramati-
cally from isotropic theory when the absolute value of that ani-
sotropy is large, notably near t=0 and rotational recurrence
times. However, deviations from isotropic theory were also ap-
parent for steady-state orientational distributions, which, in the
absence of collisions, may display substantial residual anisotro-
pies. These anisotropies were shown in certain cases to be
magnified by the kinematics of dissociation, resulting in the
appearance of positive peaks in the radial distribution differ-
ence curves without any population change associated with
the internuclear separation in question. In the cases presented,
both the value of the radial distribution difference function at
certain specific stationary (“isosbestic”) points and the integral
of that function weighted by the separation variable r were
found to be independent of the orientational evolution of the
laser-aligned populations, and thus provided a picture of the
time-dependence of the total population of bound atom pairs.

For chemical reactions we considered the case of prompt
dissociation, for which all evolution of the diffraction depends
solely on the timescale of orientation effects. In future work,
we will consider the role of anisotropy for non-prompt reac-
tions. The role of non-rigidity of real samples, with implications
for reaction dynamics as well as vibrational amplitudes, must

also be addressed. Incorporating finite experimental pulse
widths and sample volumes is necessary for comparing transi-
ent features of the diffraction patterns in theory and experi-
ment. In this regard, the existence demonstrated here of
steady-state or asymptotic differences between anisotropic
and isotropic theory is particularly significant, since these will
be detectible without severe restrictions on experimental time-
resolution. In essence, they reflect simply the fact that isolated
molecules remain in distinct spatial modes of rotational
motion in the lab frame due to conservation of angular mo-
mentum, and the molecules in each such mode have charac-
teristic time-averaged probabilities for both polarized light ab-
sorption and electron scattering. Such findings are important
to experiments designed for steady-state orientation, such as
those involving orientation by multipole electric fields.

It is already clear from the results presented here that it is
essential to understand the practical consequences of aniso-
tropic and time-dependent orientations for their exploitation
in structural determinations and for the accurate interpretation
of UED data, including extraction of rates of population
change and reaction yields. This field of inquiry also has prom-
ise for revealing novel applications of diffraction of aligned
molecules. Such samples clearly add to the degrees of freedom
available to the diffractionist to explore complex structures be-
cause bond angles have explicit roles in the scattering pat-
terns, as seen in expressions such as Equation (15). It is simple
with the laser-induced alignment studied here to “rotate” the
sample relative to the electron beam, as done routinely in crys-
tallography, to get different views of the same structure. Stud-
ies of reaction dynamics may also benefit from increased scru-
tiny of the role of anisotropy, since almost all reactions will
have implications for the rotational distribution of products.
Such studies of real systems will require departing from some
of the idealized assumptions in the current work, but we be-
lieve that the development given here reveals many of the
fundamental principles at play and establishes reference points
with which future theoretical and experimental studies may be
compared.

Note added in proof: Herein, explicit scattering expressions
were given for two special cases, those of parallel and perpern-
dicular laser polarization. The corresponding expression for the
case of arbitrary polarization has now been obtained and will
be discussed in detail, including “magic-angle” conditions, in a
forthcoming publication.

Acknowledgments

This research was supported by the National Science Foundation
and the Air Force Office of Scientific Research.

Keywords: femtochemistry · gas-phase reactions · molecular
structures · oriented molecules · ultrafast electron diffraction

[1] Stereochemical Applications of Gas-Phase Electron Diffraction (Eds. : I. Har-
gittai, M. Hargittai), VCH, New York, 1988, and references therein.

[2] A. H. Zewail, Phil. Trans. R. Soc. A 2005 , 364, 315–329.

ChemPhysChem 2005, 6, 2261 – 2276 8 2005 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim www.chemphyschem.org 2275

Oriented Molecular Structures in Space and Time

www.chemphyschem.org


[3] R. Srinivasan, V. A. Lobastov, C.-Y. Ruan, A. H. Zewail, Helv. Chim. Acta
2003, 86, 1763–1838.

[4] J. C. Williamson, A. H. Zewail, J. Phys. Chem. 1994, 98, 2766–2781.
[5] A. A. Ischenko, L. SchRfer, J. D. Ewbank, J. Mol. Struct. 1996, 376, 157–

171.
[6] W.-K. Liu, S. H. Lin, Phys. Rev. A 1997, 55, 641–647.
[7] J. S. Baskin, A. H. Zewail, J. Phys. Chem. 1994, 98, 3337–3351.
[8] J. S. Baskin, A. H. Zewail, J. Phys. Chem. A 2001, 105, 3680–3692.
[9] R. N. Zare, Angular Momentum, Wiley, New York, 1988, p. 226.

[10] G. Arfken, Mathematical Methods for Physicists, 2nd ed. , Academic Press,
New York, 1970, p. 522.

[11] P. M. Felker, A. H. Zewail in Femtosecond Chemistry, Vol. I (Eds. : J. Manz,
L. Wçste), VCH, New York, 1994, pp. 193—260, and references therein.

[12] P. M. Felker, J. Phys. Chem. 1992, 96, 7844–7857.
[13] G. Herzberg, Molecular Spectra and Molecular Structure, Vol. II, Van No-

strand Reinhold, New York, 1945, p. 23.
[14] P. M. Felker, A. H. Zewail, J. Chem. Phys. 1987, 86, 2460–2482; P. M.

Felker, J. S. Baskin, A. H. Zewail, J. Phys. Chem. 1986, 90, 724–728.
[15] M. Gruebele, A. H. Zewail, J. Chem. Phys. 1993, 98, 883–902.
[16] V. Typke, M. Dakkouri, H. Oberhammer, J. Mol. Struct. 1978, 49, 85–96.
[17] G. Herzberg, Molecular Spectra and Molecular Structure, Vol. III, Van Nos-

trand Reinhold, New York, 1966, pp. 609, 621.

Received: June 23, 2005

2276 www.chemphyschem.org 8 2005 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim ChemPhysChem 2005, 6, 2261 – 2276

A. H. Zewail and J. S. Baskin

www.chemphyschem.org

