Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

from math import pi, sqrt, atan 

 

from rocketprops.rocket_prop import get_prop 

from rocketprops.unit_conv_data import get_value # for any units conversions 

from rocketisp.efficiency.calc_noz_kinetics import calc_IspODK 

from rocketisp.efficiency.eff_vaporization import calc_C1_C2, fracVaporized 

from rocketisp.model_summ import ModelSummary 

from rocketisp.parse_docstring import get_desc_and_units 

 

# acoustic mode multipliers 

modeSvnD = {'1T':1.8413,'2T':3.0543,'1R':3.8317,'3T':4.2012,'4T':5.3175, 

'1T1R':5.3313,'2T1R':6.7060,'2R':7.0156,'3T1R':8.0151,'1T2R':8.5263} 

 

 

def temperature_clamp(value, name, min_value, max_value): 

"""Check to see if name is limited in range.""" 

if value < min_value+1: 

new_val = min_value+1 

s = 'WARNING... %s changed from %g to %g degR (MUST be >=%g and <=%g'%(name, value, new_val, min_value, max_value) 

#print( s ) 

return new_val, s 

if value > max_value-1: 

new_val = max_value-1 

s = 'WARNING... %s changed from %g to %g degR (MUST be >=%g and <=%g'%(name, value, new_val, min_value, max_value) 

#print( s ) 

return new_val, s 

 

return value, '' 

 

 

class Injector: 

""" 

Injector object holds basic information about the injector. 

Injector design features are calculated 

including chamber losses due to the injector, Em, Mix and Vap. 

 

:param coreObj: CoreStream object  

:param Tox: degR, temperature of oxidizer 

:param Tfuel: degR, temperature of fuel 

:param elemEm: intra-element Rupe mixing factor (0.7 below ave, 0.8 ave, 0.9 above ave) 

:param fdPinjOx: fraction of Pc used as oxidizer injector pressure drop 

:param fdPinjFuel: fraction of Pc used as fuel injector pressure drop 

:param dpOxInp: psia,input value of injector pressure drop for oxidizer (overrides fdPinjOx) 

:param dpFuelInp: psia,input value of injector pressure drop for fuel (overrides fdPinjFuel) 

:param setNelementsBy: flag determines how to calculate number of elements ( "acoustics", "elem_density", "input") 

:param elemDensInp: elem/in**2, input value for element density (setNelementsBy == "elem_density") 

:param NelementsInp: input value for number of elements (setNelementsBy == "input") 

:param OxOrfPerEl: number of oxidizer orifices per element 

:param FuelOrfPerEl: number of fuel orifices per element 

:param lolFuelElem: flag for like-on-like fuel element (determines strouhal multiplier) 

:param setAcousticFreqBy: flag indicating how to determine design frequency. (can be "mode" or "freq") 

:param desAcousMode: driving acoustic mode of injector OR acoustic mode multiplier (setNelementsBy=="acoustics" and setAcousticFreqBy=="mode") 

:param desFreqInp: Hz, driving acoustic frequency of injector (sets D/V if setNelementsBy=="acoustics" and setAcousticFreqBy=="freq") 

 

:param CdOxOrf: flow coefficient of oxidizer orifices 

:param CdFuelOrf: flow coefficient of fuel orifices 

:param dropCorrOx: oxidizer drop size multiplier (showerhead=3.0, like-doublet=1.0, vortex=0.5, unlike-doublet=0.33) 

:param dropCorrFuel: fuel drop size multiplier (showerhead=3.0, like-doublet=1.0, vortex=0.5, unlike-doublet=0.33) 

:param DorfMin: in, minimum orifice diameter (lower limit) 

:param LfanOvDorfOx: fan length / oxidizer orifice diameter 

:param LfanOvDorfFuel: fan length / fuel orifice diameter 

:type coreObj: CoreStream 

:type Tox: None or float 

:type Tfuel: None or float 

:type elemEm: float 

:type fdPinjOx: float 

:type fdPinjFuel: float 

:type dpOxInp: None or float 

:type dpFuelInp: None or float 

:type setNelementsBy: str 

:type elemDensInp: float 

:type NelementsInp: float 

:type OxOrfPerEl: float 

:type FuelOrfPerEl: float 

:type lolFuelElem: bool 

:type setAcousticFreqBy: str 

:type desAcousMode: str or float 

:type desFreqInp: None or float 

:type CdOxOrf: float 

:type CdFuelOrf: float 

:type dropCorrOx: float 

:type dropCorrFuel: float 

:type DorfMin: float 

:type LfanOvDorfOx: float 

:type LfanOvDorfFuel: float 

:return: Injector object 

:rtype: Injector 

 

:ivar sgOx: g/ml, oxidizer density 

:ivar dHvapOx: BTU/lbm, oxidizer heat of vaporization 

:ivar surfOx: lbf/in, oxidizer surface tension 

:ivar viscOx: poise, oxidizer viscosity 

:ivar MolWtOx: g/gmole, oxidizer molecular weight 

:ivar sgFuel: g/ml, fuel density 

:ivar dHvapFuel: BTU/lbm, fuel heat of vaporization 

:ivar surfFuel: lbf/in, fuel surface tension 

:ivar viscFuel: poise, fuel viscosity 

:ivar MolWtFuel: g/gmole, fuel molecular weight 

:ivar dpOx: psid, oxidizer injector pressure drop 

:ivar dpFuel: psid, fuel injector pressure drop 

 

:ivar des_freq: Hz, chamber design acoustic frequency 

:ivar DorfFlForHzLimit: in, fuel orifice Diameter for frequency in Hewitt Correlation 

 

:ivar Nelements: number of elements on injector face 

:ivar NFuelOrf: number of fuel orifices on injector face 

:ivar NOxOrf: number of oxidizer orifices on injector face 

:ivar elemDensCalc: elem/in**2, element density on injector face 

:ivar NelemMakable: maximum number of makable elements giving correct flow rate (diam=DorfMin) 

 

:ivar velOx_fps: ft/s, velocity of injected oxidizer 

:ivar velFuel_fps: ft/s, velocity of injected fuel 

:ivar AfloOx: in**2, total flow area of oxidizer 

:ivar AfloFuel: in**2, total flow area of fuel 

:ivar DorfOx: in, oxidizer orifice diameter 

:ivar DorfFuel: in, fuel orifice diameter 

 

""" 

 

def __init__(self, coreObj, # CoreStream object 

Tox=None, Tfuel=None, elemEm=0.8, 

fdPinjOx=0.25, fdPinjFuel=0.25, dpOxInp=None, dpFuelInp=None, 

setNelementsBy='acoustics', # can be "acoustics", "elem_density", "input" 

elemDensInp=5, NelementsInp=100, 

OxOrfPerEl=1.0, FuelOrfPerEl=1.0, 

lolFuelElem=False, 

setAcousticFreqBy='mode', # can be "mode" or "freq" 

desAcousMode='3T', desFreqInp=5000, 

CdOxOrf=0.75, CdFuelOrf=0.75, dropCorrOx=0.33, dropCorrFuel=0.33, 

DorfMin=0.008, 

LfanOvDorfOx=20.0, LfanOvDorfFuel=20.0): 

""" 

Injector object holds basic information about the injector. 

Injector design features are calculated 

including chamber losses due to the injector, Em, Mix and Vap. 

""" 

self.coreObj = coreObj 

self.geomObj = coreObj.geomObj 

 

# build propellant objects 

self.oxProp = get_prop( self.coreObj.oxName ) 

self.fuelProp = get_prop( self.coreObj.fuelName ) 

 

self.TminOx, self.TmaxOx = self.oxProp.T_data_range() 

self.TminFuel, self.TmaxFuel = self.fuelProp.T_data_range() 

 

self.Tox_warning = '' 

self.Tfuel_warning = '' 

 

if Tox is None: 

Tox = min(530.0, self.oxProp.Tnbp) 

else: 

Tox, self.Tox_warning = temperature_clamp(Tox, 'Tox', self.TminOx, self.TmaxOx) 

self.Tox = Tox 

 

if Tfuel is None: 

Tfuel = min(530.0, self.fuelProp.Tnbp) 

else: 

Tfuel,self.Tfuel_warning = temperature_clamp(Tfuel, 'Tfuel', self.TminFuel, self.TmaxFuel) 

self.Tfuel = Tfuel 

 

self.elemEm = min(1.0, elemEm) # intra-element mixing parameter for injector 

self.fdPinjOx = fdPinjOx 

self.fdPinjFuel = fdPinjFuel 

self.dpOxInp = dpOxInp 

self.dpFuelInp = dpFuelInp 

self.setNelementsBy = setNelementsBy.lower() # just in case user screw up. 

self.used_Nelem_criteria = self.setNelementsBy # assume for now that intention is satisfied 

 

self.elemDensInp = elemDensInp 

self.NelementsInp = NelementsInp 

self.OxOrfPerEl = OxOrfPerEl 

self.FuelOrfPerEl = FuelOrfPerEl 

 

self.lolFuelElem = lolFuelElem 

if lolFuelElem: 

self.strouhal_mult = 0.1 # LOL element uses 0.1 strouhal multiplier 

else: 

self.strouhal_mult = 0.2 # unlike element uses 0.2 strouhal multiplier 

 

self.desAcousMode = desAcousMode 

if desAcousMode in modeSvnD: 

self.desAcousMult = modeSvnD[ desAcousMode ] 

else: 

self.desAcousMult = float( desAcousMode ) # let it raise exception if not a float 

self.desFreqInp = desFreqInp 

 

self.setAcousticFreqBy = setAcousticFreqBy.lower() # can be "mode" or "freq" 

 

self.CdOxOrf = CdOxOrf 

self.CdFuelOrf = CdFuelOrf 

self.dropCorrOx = dropCorrOx 

self.dropCorrFuel = dropCorrFuel 

self.DorfMin = DorfMin 

self.LfanOvDorfOx = LfanOvDorfOx 

self.LfanOvDorfFuel = LfanOvDorfFuel 

 

# get oxidizer propellant properties 

self.sgOx = self.oxProp.SG_compressed( Tox, self.coreObj.Pc ) # g/ml 

self.dHvapOx = self.oxProp.HvapAtTdegR( Tox ) # BTU/lbm 

self.surfOx = self.oxProp.SurfAtTdegR( Tox ) # lbf/in 

 

self.viscOx = self.oxProp.ViscAtTdegR( Tox ) # poise 

self.viscOx = get_value( self.viscOx, 'poise', 'lbm/s/ft') 

 

self.MolWtOx = self.oxProp.MolWt 

#print('sgOx=',self.sgOx) 

 

# get fuel propellant properties 

self.sgFuel = self.fuelProp.SG_compressed( Tfuel, self.coreObj.Pc ) # g/ml 

self.dHvapFuel = self.fuelProp.HvapAtTdegR( Tfuel ) # BTU/lbm 

self.surfFuel = self.fuelProp.SurfAtTdegR( Tfuel ) # lbf/in 

self.viscFuel = self.fuelProp.ViscAtTdegR( Tfuel ) # poise 

self.viscFuel = get_value( self.viscFuel, 'poise', 'lbm/s/ft') 

 

self.MolWtFuel = self.fuelProp.MolWt 

#print('sgFuel=',self.sgFuel) 

 

# --------- start vaporization calcs -------- 

self.rhoOx = rho = get_value( self.sgOx, 'SG', 'lbm/in**3' ) 

self.rhoFuel = rho = get_value( self.sgFuel, 'SG', 'lbm/in**3' ) 

 

self.calc_element_attr() # e.g. Nelements, injection velocities, elements diam, etc. 

#self.evaluate() 

 

# get input descriptions and units from doc string 

self.inp_descD, self.inp_unitsD, self.is_inputD = get_desc_and_units( self.__doc__ ) 

 

def __call__(self, name): 

return getattr(self, name ) # let it raise exception if no name attr. 

 

def evaluate(self, DOREVAL=False): 

""" 

Calculates chamber losses due to the injector, Em, Mix and Vap. 

""" 

 

# recalc CoreStream in case a basic parameter has changed. 

self.coreObj.evaluate() 

 

self.calc_element_attr() # e.g. Nelements, injection velocities, elements diam, etc. 

 

effObj = self.coreObj.effObj 

 

# calc intra-element mixing efficiency and reset BasicThruster effEm 

#if self.calc_effEm: 

if not effObj['Em'].is_const: 

effEm = self.calculate_effEm() # calc intra-element mixing efficiency 

msg = 'Rupe Em=%g'%self.elemEm 

effObj.set_value( 'Em', effEm, value_src=msg, re_evaluate=DOREVAL) 

 

# calc inter-element mixing efficiency 

#if self.calc_effMix: 

if not effObj['Mix'].is_const: 

effMix = self.calculate_effMix() # calc inter-element mixing efficiency (2 deg estimate) 

msg = 'mixAngle=%.2f deg'%self.mixAngle 

effObj.set_value( 'Mix', effMix, value_src=msg, re_evaluate=DOREVAL) 

 

# vaporization efficiency 

#if self.calc_effVap: 

if not effObj['Vap'].is_const: 

effVap = self.calculate_effVap() 

msg = 'gen vaporized length' 

self.coreObj.effObj.set_value( 'Vap', effVap, value_src=msg, re_evaluate=DOREVAL) 

 

 

# recalc CoreStream in case a basic parameter has changed. 

# self.coreObj.evaluate() <-- handled by re_evaluate flags 

 

 

def calculate_effVap(self): 

"""calculate vaporization efficiency""" 

self.C1fuel, self.C2fuel = calc_C1_C2(self.fuelProp, self.Tfuel, self.rhoFuel, self.dHvapFuel, 

self.surfFuel, self.viscFuel, self.MolWtFuel) 

#print('C1fuel=%g, C2fuel=%g'%(self.C1fuel, self.C2fuel) ) 

 

self.C1ox, self.C2ox = calc_C1_C2(self.oxProp, self.Tox, self.rhoOx, self.dHvapOx, 

self.surfOx, self.viscOx, self.MolWtOx) 

#print('C1ox=%g, C2ox=%g'%(self.C1ox, self.C2ox) ) 

 

# now figure out dropo sizes 

#C MEDIAN DROPLET RADIUS 

self.rDropOx = 0.05 * self.DorfOx * self.C1ox * self.dropCorrOx 

self.rDropFuel = 0.05 * self.DorfFuel * self.C1fuel * self.dropCorrFuel 

 

CR = self.geomObj.CR 

#C CHAMBER SHAPE FACTOR 

self.ShapeFact = (1.0 + 1.0/sqrt(CR) + 1./ CR )/3. 

 

# GENERALIZED VAPORIZATION LENGTH 

# Taken from Technical Report R-67, Propellant Vaporization as a Design Criterion 

# for Rocket-Engine Combustion Chambers by Richard J. Priem and Marcus F. Heidmann 

# see: https://digital.library.unt.edu/ark:/67531/metadc56386/ 

# or: https://www.google.com/books/edition/Propellant_Vaporization_as_a_Design_Crit/Jt4QAQAAIAAJ?hl=en&gbpv=1 

 

CFX = (self.geomObj.Lcham_cyl/CR**.44 + .83*self.geomObj.Lcham_conv/(CR**.22 * self.ShapeFact**.33))\ 

*(self.coreObj.Pc/300.)**.66 

self.genVapLenOx = CFX/(self.C2ox*(self.rDropOx/.003)**1.45 * (self.velOx_ips/1200.)**.75) 

self.genVapLenFuel = CFX/(self.C2fuel*(self.rDropFuel/.003)**1.45 * (self.velFuel_ips/1200.)**.75) 

 

self.fracVapOx = fracVaporized( self.genVapLenOx ) 

self.fracVapFuel = fracVaporized( self.genVapLenFuel ) 

 

 

# get vaporized MR 

self.mrVap = self.coreObj.MRcore * self.fracVapOx / self.fracVapFuel 

 

# get total vaporized propellant (ox + fuel) 

self.fracVapTot = (self.fracVapOx*self.coreObj.wdotOx + self.fracVapFuel*self.coreObj.wdotFl_cInit) / \ 

self.coreObj.wdotTot_cInit 

 

# calc vaporization efficiency (protect against excess fracVapTot) 

if self.fracVapTot < 1.0: 

#vapIsp = self.coreObj.ceaObj.get_Isp( Pc=self.coreObj.Pc, MR=self.mrVap, eps=self.geomObj.eps) 

#effVap = min(1.0, self.fracVapTot * vapIsp / self.coreObj.IspODE) 

 

# better to use ODK values for Vap loss 

IspODK = calc_IspODK(self.coreObj.ceaObj, Pc=self.coreObj.Pc, eps=self.geomObj.eps, Rthrt=self.geomObj.Rthrt, 

pcentBell=self.geomObj.pcentBell, MR=self.coreObj.MRcore) 

vapIspODK = calc_IspODK(self.coreObj.ceaObj, Pc=self.coreObj.Pc, eps=self.geomObj.eps, Rthrt=self.geomObj.Rthrt, 

pcentBell=self.geomObj.pcentBell, MR=self.mrVap) 

effVap = min(1.0, self.fracVapTot * vapIspODK / IspODK) 

else: 

effVap = 1.0 

 

return effVap 

 

 

def calculate_effEm(self): 

"""calc intra-element mixing efficiency""" 

 

if self.elemEm >= 1.0: 

self.effEm = 1.0 

return 1.0 

 

mrLow = self.coreObj.MRcore * self.elemEm 

mrHi = self.coreObj.MRcore / self.elemEm 

 

IspODK = calc_IspODK(self.coreObj.ceaObj, Pc=self.coreObj.Pc, eps=self.geomObj.eps, Rthrt=self.geomObj.Rthrt, 

pcentBell=self.geomObj.pcentBell, MR=self.coreObj.MRcore) 

 

odkLoIsp = calc_IspODK(self.coreObj.ceaObj, Pc=self.coreObj.Pc, eps=self.geomObj.eps, Rthrt=self.geomObj.Rthrt, 

pcentBell=self.geomObj.pcentBell, MR=mrLow) 

odkHiIsp = calc_IspODK(self.coreObj.ceaObj, Pc=self.coreObj.Pc, eps=self.geomObj.eps, Rthrt=self.geomObj.Rthrt, 

pcentBell=self.geomObj.pcentBell, MR=mrHi) 

 

xm1=(1.+mrLow)/(1.+self.elemEm)/(1.+self.coreObj.MRcore) 

xm2=1.0-xm1 

effEm = (xm1*odkLoIsp + xm2*odkHiIsp) / IspODK 

 

return max(effEm, 0.00001) 

 

def calculate_effMix(self): 

"""calc inter-element mixing efficiency""" 

DiamElem = self.geomObj.Dinj * sqrt(pi/4.0/self.Nelements) - (self.DorfOx+self.DorfFuel)/2.0 

DiamElem = max(DiamElem,0.0) 

self.mixAngle = atan( DiamElem / self.geomObj.Lcham )*(180.0/pi) 

effMix = 1. - .01*(self.mixAngle/2.)**2 

#print('DiamElem',DiamElem, ' effMix',effMix, ' mixAngle',self.mixAngle, ' L', self.geomObj.Lcham ) 

return max(effMix, 0.00001) 

 

def calc_element_attr(self): 

"""calc Nelements, injection velocities, elements diam, etc.""" 

 

if self.dpOxInp is None: 

self.dpOx = self.fdPinjOx * self.coreObj.Pc 

else: 

self.dpOx = self.dpOxInp 

self.fdPinjOx = self.dpOxInp / self.coreObj.Pc 

 

if self.dpFuelInp is None: 

self.dpFuel = self.fdPinjFuel * self.coreObj.Pc 

else: 

self.dpFuel = self.dpFuelInp 

self.fdPinjFuel = self.dpFuelInp / self.coreObj.Pc 

 

# calc chamber sonic velocity 

aODE = self.coreObj.ceaObj.get_SonicVelocities(Pc=self.coreObj.Pc, 

MR=self.coreObj.MRcore, 

eps=self.geomObj.eps)[0] 

# estimate effective sonic velocity in chamber 

self.sonicVel = aODE * 0.9 

 

velFl_ips = sqrt( 24.0 * 32.174 * self.dpFuel / self.rhoFuel ) # in/sec 

 

# start out assuming that used Nelement criteria will be the intended criteria 

self.used_Nelem_criteria = self.setNelementsBy 

 

# calc number of elements and element density 

if self.setNelementsBy == 'input': 

self.Nelements = self.NelementsInp 

self.NOxOrf = max( 1.0, self.Nelements * self.OxOrfPerEl) 

self.NFuelOrf = max( 1.0, self.Nelements * self.FuelOrfPerEl) 

self.elemDensCalc = self.Nelements / self.geomObj.Ainj 

 

elif self.setNelementsBy == 'acoustics': 

if self.setAcousticFreqBy == "mode": 

self.des_freq = self.desAcousMult * self.sonicVel / pi / (self.geomObj.Dinj/12.0) 

elif self.setAcousticFreqBy == "freq": 

self.des_freq = self.desFreqInp 

else: 

raise exception( 'setAcousticFreqBy = "%s", must be "mode" or "freq"'%self.setAcousticFreqBy ) 

 

self.DorfFlForHzLimit = self.strouhal_mult * velFl_ips / self.des_freq 

 

wdotFlOrif = velFl_ips * self.rhoFuel * self.CdFuelOrf * self.DorfFlForHzLimit**2 * pi / 4.0 

 

self.NFuelOrf = float(int( 0.5 + max(1.0, self.coreObj.wdotFl_cInit / wdotFlOrif))) 

self.Nelements = max(1.0, self.NFuelOrf / self.FuelOrfPerEl) 

self.NOxOrf = max( 1.0, self.Nelements * self.OxOrfPerEl) 

self.elemDensCalc = self.Nelements / self.geomObj.Ainj 

 

elif self.setNelementsBy == 'elem_density': 

self.Nelements =float(int( 0.5 + max( 1.0, self.elemDensInp * self.geomObj.Ainj ))) 

self.NOxOrf = max( 1.0, self.Nelements * self.OxOrfPerEl) 

self.NFuelOrf = max( 1.0, self.Nelements * self.FuelOrfPerEl) 

self.elemDensCalc = self.elemDensInp 

else: 

raise Exception('setNelementsBy="%s" must be "acoustics", "elem_density" or "input"'%self.setNelementsBy) 

 

 

gcc = 32.174 * 12.0 * 2.0 

PIO4 = pi / 4.0 

self.velOx_ips = sqrt(gcc*self.dpOx/self.rhoOx) # in/sec 

self.velFuel_ips = sqrt(gcc*self.dpFuel/self.rhoFuel) # in/sec 

 

self.AfloOx = self.coreObj.wdotOx/(self.rhoOx*self.CdOxOrf*self.velOx_ips) 

self.AfloFuel = self.coreObj.wdotFl_cInit/(self.rhoFuel*self.CdFuelOrf*self.velFuel_ips) 

 

NelemMaxFuel = self.AfloFuel / (self.DorfMin**2 * PIO4 * self.FuelOrfPerEl) 

NelemMaxOx = self.AfloOx / (self.DorfMin**2 * PIO4 * self.OxOrfPerEl) 

self.NelemMakable = max(1.0, min( int(NelemMaxFuel), int(NelemMaxOx) )) 

 

if self.Nelements > self.NelemMakable: 

self.used_Nelem_criteria = 'DorfMin=%g'%self.DorfMin 

self.Nelements = self.NelemMakable 

self.NOxOrf = self.Nelements * self.OxOrfPerEl 

self.NFuelOrf = self.Nelements * self.FuelOrfPerEl 

self.elemDensCalc = self.Nelements / self.geomObj.Ainj 

 

 

self.DorfOx = sqrt(self.AfloOx/(PIO4*self.NOxOrf)) 

self.DorfFuel = sqrt(self.AfloFuel/(PIO4*self.NFuelOrf)) 

 

 

# calc (or recalc) des_freq based on actual fuel orifice 

self.des_freq = self.strouhal_mult * velFl_ips / self.DorfFuel 

self._3T_freq = modeSvnD['3T'] * self.sonicVel / pi / (self.geomObj.Dinj/12.0) 

 

self.velOx_fps = self.velOx_ips / 12.0 # convert from in/sec to ft/sec 

self.velFuel_fps = self.velFuel_ips / 12.0 # convert from in/sec to ft/sec 

 

# evaluate chug stability based on core stream properties 

mwODE,gamODE = self.coreObj.MWchm, self.coreObj.gammaChm 

cstarERE, TcombODE = self.coreObj.cstarERE, self.coreObj.TcODE 

 

self.tResid = cstarERE * self.geomObj.Vcham * mwODE / 18540.0 / TcombODE / self.geomObj.At / 32.174 

self.tauOx = self.LfanOvDorfOx * self.DorfOx / self.velOx_ips # vel is in/sec 

self.tauFuel = self.LfanOvDorfFuel * self.DorfFuel / self.velFuel_ips 

 

self.tauOvResOx = self.tauOx / self.tResid 

self.tauOvResFuel = self.tauFuel / self.tResid 

 

def reqd_dPinjOvPc( tauOvRes ): 

C1 = 1.0/(0.4961 + 0.4031/tauOvRes) 

C2 = 1.0/(0.25 + 0.009649*tauOvRes) 

return 1.0/(C1 + C2/tauOvRes) 

 

self.fdPinjOxReqd = reqd_dPinjOvPc( self.tauOvResOx ) 

self.fdPinjFuelReqd = reqd_dPinjOvPc( self.tauOvResFuel ) 

 

 

def summ_print(self, show_core_stream=True): 

""" 

print to standard output, the current state of Injector instance. 

""" 

print( self.get_summ_str() ) 

 

 

def get_summ_str(self, show_core_stream=True, 

alpha_ordered=True, numbered=False, add_trailer=True, 

fillchar='.', max_banner=76, intro_str=''): 

 

""" 

return string of the current state of Injector instance. 

""" 

 

M = self.get_model_summ_obj() 

 

if show_core_stream: 

sc = self.coreObj.get_summ_str(numbered=numbered, 

add_trailer=add_trailer, fillchar=fillchar, 

max_banner=max_banner, intro_str=intro_str) 

else: 

sc = '' 

 

return sc + '\n' +\ 

M.summ_str(alpha_ordered=alpha_ordered, numbered=numbered, 

add_trailer=add_trailer, fillchar=fillchar, 

max_banner=max_banner, intro_str=intro_str) 

 

def get_html_str(self, show_core_stream=True, alpha_ordered=True, numbered=False, intro_str=''): 

M = self.get_model_summ_obj() 

 

if show_core_stream: 

sc = self.coreObj.html_table_str(numbered=numbered, intro_str=intro_str) 

else: 

sc = '' 

 

return sc + '\n' +\ 

M.html_table_str( alpha_ordered=alpha_ordered, numbered=numbered, intro_str=intro_str) 

 

def get_model_summ_obj(self): 

""" 

return ModelSummary object for current state of Injector instance. 

""" 

 

M = ModelSummary( '%s/%s Injector'%(self.coreObj.oxName, self.coreObj.fuelName) ) 

M.add_alt_units('psia', ['MPa','atm','bar']) 

M.add_alt_units('psid', ['MPa','atm','bar']) 

M.add_alt_units('lbf', 'N') 

M.add_alt_units('lbm/s', 'kg/s') 

M.add_alt_units('ft/s', 'm/s') 

M.add_alt_units('sec', ['N-sec/kg', 'km/sec']) 

M.add_alt_units('degR', ['degK','degC','degF']) 

#M.add_alt_units('Hz', 'kHz') 

M.add_alt_units('elem/in**2', 'elem/cm**2') 

M.add_alt_units('in', ['mil','mm']) 

M.add_alt_units('mil', ['micron','mm']) 

 

M.add_alt_units( 'g/ml', ['lbm/inch**3', 'lbm/ft**3'] ) 

M.add_alt_units( 'lbf/in', ['N/m', 'mN/m', 'dyne/cm'] ) 

M.add_alt_units('poise', ['cpoise', 'Pa*s', 'lbm/hr/ft']) 

M.add_alt_units( 'BTU/lbm', ['cal/g', 'J/g'] ) 

M.add_alt_units('in**2', 'cm**2') 

 

category_setD = {} # index=category name, value=set of parameter names in category 

category_setD['Ox Properties'] = set() 

category_setD['Fuel Properties'] = set() 

M.add_inp_category( '' ) # show unlabeled category 1st 

M.add_out_category( '' ) # show unlabeled category 1st 

 

for name in self.is_inputD.keys(): 

if name.lower().find('ox') >= 0: 

category_setD['Ox Properties'].add( name ) 

if name.lower().find('fuel') >= 0: 

category_setD['Fuel Properties'].add( name ) 

 

# dpOx dpFuel 

def get_cat( name ): 

for cn, nameset in category_setD.items(): 

if name in nameset: 

return cn 

return '' 

 

specialFmtD = {'DorfFuel':'%.4f', 'DorfOx':'%.4f', 'DorfMin':'%.4f'} 

# function to add parameters from __doc__ string to ModelSummary 

def add_param( name, desc='', fmt='', units='', value=None): 

 

if name in self.inp_unitsD: 

units = self.inp_unitsD[name] 

 

if desc=='' and name in self.inp_descD: 

desc = self.inp_descD[name] 

 

if value is None: 

try: 

value = getattr( self, name ) 

except: 

return 

 

if fmt=='': 

fmt = specialFmtD.get( name, '' ) 

 

if self.is_inputD.get(name, False): 

M.add_inp_param( name, value, units, desc, fmt=fmt, category=get_cat(name)) 

else: 

M.add_out_param( name, value, units, desc, fmt=fmt, category=get_cat(name)) 

 

# build a list of __doc__ parameters that should be ignored by ModelSummary 

ignoreL = ['coreObj', 'geomObj', 'effObj'] 

 

# ignore some Nelemens inputs if they do not apply 

if self.setNelementsBy == "acoustics": 

 

ignoreL.extend( ['elemDensInp', 'NelementsInp'] ) 

if self.setAcousticFreqBy == "mode": 

ignoreL.append( 'desFreqInp' ) 

else: 

ignoreL.append( 'desAcousMode' ) 

else: 

ignoreL.extend( ['desAcousMode', 'desFreqInp', 'DorfFlForHzLim'] ) 

 

# ignore delta P inputs if they do not apply 

if self.dpFuelInp is None: 

ignoreL.append( 'dpFuelInp' ) 

else: 

ignoreL.append( 'fdPinjFuel' ) 

 

if self.dpOxInp is None: 

ignoreL.append( 'dpOxInp' ) 

else: 

ignoreL.append( 'fdPinjOx' ) 

 

# iterate through __doc__ parameters and add them to ModelSummary 

for name in self.is_inputD.keys(): 

if name not in ignoreL: 

add_param( name ) 

 

# some conditional output NOT in :ivar xxx: section 

#if self.calc_effVap: 

if hasattr(self, 'rDropOx'): 

# only print internal vaporization values if calc'd 

#M.add_out_param( name, value, units, desc, fmt=fmt, category=get_cat(name)) 

M.add_out_param('rDropOx', get_value(self.rDropOx,'inch','mil'), 'mil', 'median ox droplet radius', 

fmt='%.4f', category='Vaporization') 

M.add_out_param('rDropFuel', get_value(self.rDropFuel,'inch','mil'), 'mil', 'median fuel droplet radius', 

fmt='%.4f', category='Vaporization') 

 

M.add_out_param('chamShapeFact', self.ShapeFact, '', 'chamber shape factor', 

fmt='%.4f', category='Vaporization') 

 

M.add_out_param('genVapLenOx', self.genVapLenOx, '', 'Priem generalized vaporization length of oxidizer', 

fmt='%.2f', category='Vaporization') 

M.add_out_param('genVapLenFuel', self.genVapLenFuel, '', 'Priem generalized vaporization length of fuel', 

fmt='%.2f', category='Vaporization') 

M.add_out_param('fracVapOx', self.fracVapOx, '', 'fraction of vaporized oxidizer', 

fmt='%.4f', category='Vaporization') 

M.add_out_param('fracVapFuel', self.fracVapFuel, '', 'fraction of vaporized fuel', 

fmt='%.4f', category='Vaporization') 

 

M.add_out_param('mrVap', self.mrVap,'', 'vaporized mixture ratio', fmt='%.4f', category='Vaporization') 

 

# some stability parameters 

#M.add_out_param( name, value, units, desc, fmt=fmt, category=get_cat(name)) 

M.add_out_param('tauOx', self.tauOx*1000.0 , 'ms','oxidizer lag time (tau/tResid=%g)'%self.tauOvResOx, category='Combustion Stability') 

M.add_out_param('tauFuel', self.tauFuel*1000.0 , 'ms','fuel lag time (tau/tResid=%g)'%self.tauOvResFuel, category='Combustion Stability') 

M.add_out_param('tResid', self.tResid*1000.0 , 'ms','residual time in chamber', 

fmt='%.4f', category='Combustion Stability') 

 

M.add_out_param('fdPinjOxReqd', self.fdPinjOxReqd, '', 'minimum required oxidizer dP/Pc', category='Combustion Stability') 

M.add_out_param('fdPinjFuelReqd', self.fdPinjFuelReqd, '', 'minimum required fuel dP/Pc', category='Combustion Stability') 

 

M.add_out_param(' cham sonicVel', self.sonicVel, 'ft/s', 'approximate gas sonic velocity in chamber', category='Combustion Stability') 

 

# show the acoustic modes in chamber 

# calc 3T and 1L for printout only 

f3T = modeSvnD['3T'] * self.sonicVel / pi / (self.geomObj.Dinj/12.0) 

freq1L = self.sonicVel * 12.0 / 2.0 / self.geomObj.Lcham 

 

modeL = [(freq1L,'1L')] # list of (freq, name) 

modeL.append( ( 0.8 * modeSvnD['1T'] * self.sonicVel / pi / (self.geomObj.Dinj/12.0), '80% of 1T') ) 

modeL.append( ( 0.8 * modeSvnD['1R'] * self.sonicVel / pi / (self.geomObj.Dinj/12.0), '80% of 1R') ) 

modeL.append( ( 0.8 * modeSvnD['3T'] * self.sonicVel / pi / (self.geomObj.Dinj/12.0), '80% of 3T') ) 

modeL.append( ( 0.999999 * modeSvnD['3T'] * self.sonicVel / pi / (self.geomObj.Dinj/12.0), ' 3T') ) 

 

modeL.append( (self.des_freq, '=====> DESIGN') ) 

 

for name, mult in modeSvnD.items(): 

modeL.append( (mult * self.sonicVel / pi / (self.geomObj.Dinj/12.0), name) ) 

modeL.sort() 

 

M.add_out_category('Acoustic Modes', allowsort=False) 

for (freq, name) in modeL: 

comment = modeCommentD.get( name, '') 

M.add_out_param(name, '%i'%int(freq), 'Hz', comment, category='Acoustic Modes') 

#M.add_out_param( name, value, units, desc, fmt=fmt, category=get_cat(name)) 

 

 

 

# -------------------- WARNING AND ASSUMPTION ADDITIONS -------------------------- 

# maybe add some warnings and assumptions 

 

mode, mode_freq, mode_msg = self.get_closest_mode() 

 

if self.coreObj.add_barrier: 

M.add_assumption( 'NOTE: Injector elements are designed by Initial Core Flow ONLY.' ) 

M.add_assumption( ' Fuel Film Cooling orifices must be designed separately.' ) 

 

M.add_assumption( 'NOTE: number of elements set by '+ self.setNelementsBy ) 

 

# parameters that are NOT attributes OR are conditional 

if self.setNelementsBy == "acoustics": 

if self.setAcousticFreqBy == "mode": 

if self.desAcousMode in modeSvnD: 

msg = self.desAcousMode #+ ' where: Svn mult = %g'%self.desAcousMult 

else: 

msg = 'Svn multiplier = %g'%self.desAcousMult 

elif self.setAcousticFreqBy == "freq": 

msg = 'freq=%g Hz'%self.desFreqInp 

 

M.add_assumption(' Acoustic frequency set by %s'%msg) 

mil = get_value(self.DorfFlForHzLimit,'inch','mil') 

 

if self.DorfFuel < self.DorfFlForHzLimit * 0.999: 

M.add_warning( 'WARNING... Fuel Orifice Diameter is Less Than D/V Requirement of %.1f mil'%mil ) 

else: 

M.add_assumption( 'Fuel Orifice Diameter Meets Stability Requirement of >= %.1f mil'%mil ) 

 

 

elif self.setNelementsBy == "input": 

M.add_assumption(' Number of elements = %g'%self.NelementsInp) 

elif self.setNelementsBy == "elem_density": 

M.add_assumption(' Element Density = %g elem/in**2'%self.elemDensInp) 

 

 

if self.used_Nelem_criteria != self.setNelementsBy: 

M.add_warning( 'WARNING... Number of elements set by: ' + self.used_Nelem_criteria ) 

M.add_warning( ' original intent was: ' + self.setNelementsBy ) 

 

 

M.add_assumption( 'Chamber design frequency set by: ' + self.used_Nelem_criteria +\ 

' to: %g Hz,'%round(self.des_freq) + mode_msg ) 

 

if self.des_freq > f3T * 1.01: 

M.add_warning( 'WARNING... Design frequency is above recommended 3T limit of %i Hz'%int(f3T) ) 

 

if self.DorfOx < self.DorfMin * 0.999: 

mil = get_value(self.DorfMin,'inch','mil') 

M.add_warning( 'WARNING... Oxidizer Orifice Diameter is Less Than minimum limit of %.1f mil'%mil ) 

 

if self.DorfFuel < self.DorfMin * 0.999: 

mil = get_value(self.DorfMin,'inch','mil') 

M.add_warning( 'WARNING... Fuel Orifice Diameter is Less Than minimum limit of %.1f mil'%mil ) 

 

if self.Tox_warning: 

M.add_warning( self.Tox_warning ) 

if self.Tfuel_warning: 

M.add_warning( self.Tfuel_warning ) 

 

if self.dpOx/self.coreObj.Pc < self.fdPinjOxReqd: 

M.add_warning('WARNING... Oxidizer pressure drop is below stability requirement') 

M.add_warning(' Oxidizer dP/Pc=%g, should be >= %g'%(self.dpOx/self.coreObj.Pc, self.fdPinjOxReqd) ) 

 

if self.dpFuel/self.coreObj.Pc < self.fdPinjFuelReqd: 

M.add_warning('WARNING... Fuel pressure drop is below stability requirement') 

M.add_warning(' Fuel dP/Pc=%g, should be >= %g'%(self.dpFuel/self.coreObj.Pc, self.fdPinjFuelReqd) ) 

 

 

 

#if self.dpOxInp is None: 

# M.add_assumption('dPinjector oxidizer set by fdPinjOx = %g'%self.fdPinjOx) 

#else: 

# M.add_assumption('dPinjector oxidizer set by dpOxInp = %.1f psia'%self.dpOxInp) 

 

#if self.dpFuelInp is None: 

# M.add_assumption('dPinjector fuel set by fdPinjFuel = %g'%self.fdPinjFuel) 

#else: 

# M.add_assumption('dPinjector fuel set by dpFuelInp = %.1f psia'%self.dpFuelInp) 

 

return M 

 

def get_closest_mode(self): 

"""Get the name and frequency of the closest mode to des_freq""" 

freq1L = self.sonicVel * 12.0 / 2.0 / self.geomObj.Lcham 

modeL = [(freq1L,'1L')] # list of (freq, name) 

for name, mult in modeSvnD.items(): 

modeL.append( (mult * self.sonicVel / pi / (self.geomObj.Dinj/12.0), name) ) 

 

diff = float('inf') 

mode = 'unknown' 

mode_freq = 0.0 

for freq, name in modeL: 

d = abs( self.des_freq - freq ) 

if d < diff: 

diff = d 

mode = name 

mode_freq = freq 

 

if mode=='1T' and self.des_freq < mode_freq: 

mode = '%g%% 1T'%round( 100.0 * self.des_freq / mode_freq ) 

mode_freq = self.des_freq 

 

mode_msg = ' (%s=%i Hz)'%(mode, int(mode_freq)) 

if mode.find('%') > 0: 

mode_msg = '(%s)'%mode 

 

return mode, mode_freq, mode_msg 

 

 

#print(' xxx =', '%g'%self.xxx, 'xxx') 

modeCommentD = {'80% of 1T':'no damping required here', 

'80% of 1R':'baffles-only work here', 

'3T':'<== MAX FREQUENCY... KEEP Hz HERE OR BELOW', 

'80% of 3T':'cavities-only work here', 

'=====> DESIGN':'<== DESIGN IS HERE', 

' 3T':'baffles + cavities OR multi-tuned cavities'} 

 

 

if __name__ == '__main__': 

from rocketisp.geometry import Geometry 

from rocketisp.stream_tubes import CoreStream 

from rocketisp.efficiencies import Efficiencies 

 

geomObj = Geometry(Rthrt=5.868/2, 

CR=2.5, eps=150, pcentBell=80, 

RupThroat=1.5, RdwnThroat=1.0, RchmConv=1.0, cham_conv_deg=30, 

LchmOvrDt=3.10, LchmMin=2.0, LchamberInp=16) 

 

effObj = Efficiencies() 

#effObj.set_const('ERE', 0.98) 

 

core = CoreStream( geomObj, effObj, oxName='N2O4', fuelName='MMH', MRcore=1.85, 

Pc=150, CdThroat=0.995, 

pcentFFC=14.0, ko=0.035) 

 

I = Injector(core, elemEm=0.8, fdPinjOx=0.3, fdPinjFuel=0.3, elemDensInp=7.0, NelementsInp=676, 

setNelementsBy="acoustics",#'elem_density', # can be "acoustics", "elem_density", "input" 

desFreqInp=2000, #Tox=9999, Tfuel=0, 

setAcousticFreqBy='mode', desAcousMode='2T')#, DorfMin=0.05) 

I.evaluate() 

I.summ_print() 

 

#M = I.get_model_summ_obj() 

#print( M.summ_str() )