Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

""" 

The typing module: Support for gradual typing as defined by PEP 484. 

 

At large scale, the structure of the module is following: 

* Imports and exports, all public names should be explicitly added to __all__. 

* Internal helper functions: these should never be used in code outside this module. 

* _SpecialForm and its instances (special forms): Any, NoReturn, ClassVar, Union, Optional 

* Two classes whose instances can be type arguments in addition to types: ForwardRef and TypeVar 

* The core of internal generics API: _GenericAlias and _VariadicGenericAlias, the latter is 

currently only used by Tuple and Callable. All subscripted types like X[int], Union[int, str], 

etc., are instances of either of these classes. 

* The public counterpart of the generics API consists of two classes: Generic and Protocol 

(the latter is currently private, but will be made public after PEP 544 acceptance). 

* Public helper functions: get_type_hints, overload, cast, no_type_check, 

no_type_check_decorator. 

* Generic aliases for collections.abc ABCs and few additional protocols. 

* Special types: NewType, NamedTuple, TypedDict (may be added soon). 

* Wrapper submodules for re and io related types. 

""" 

 

import abc 

from abc import abstractmethod, abstractproperty 

import collections 

import collections.abc 

import contextlib 

import functools 

import operator 

import re as stdlib_re # Avoid confusion with the re we export. 

import sys 

import types 

from types import WrapperDescriptorType, MethodWrapperType, MethodDescriptorType 

 

# Please keep __all__ alphabetized within each category. 

__all__ = [ 

# Super-special typing primitives. 

'Any', 

'Callable', 

'ClassVar', 

'ForwardRef', 

'Generic', 

'Optional', 

'Tuple', 

'Type', 

'TypeVar', 

'Union', 

 

# ABCs (from collections.abc). 

'AbstractSet', # collections.abc.Set. 

'ByteString', 

'Container', 

'ContextManager', 

'Hashable', 

'ItemsView', 

'Iterable', 

'Iterator', 

'KeysView', 

'Mapping', 

'MappingView', 

'MutableMapping', 

'MutableSequence', 

'MutableSet', 

'Sequence', 

'Sized', 

'ValuesView', 

'Awaitable', 

'AsyncIterator', 

'AsyncIterable', 

'Coroutine', 

'Collection', 

'AsyncGenerator', 

'AsyncContextManager', 

 

# Structural checks, a.k.a. protocols. 

'Reversible', 

'SupportsAbs', 

'SupportsBytes', 

'SupportsComplex', 

'SupportsFloat', 

'SupportsInt', 

'SupportsRound', 

 

# Concrete collection types. 

'ChainMap', 

'Counter', 

'Deque', 

'Dict', 

'DefaultDict', 

'List', 

'OrderedDict', 

'Set', 

'FrozenSet', 

'NamedTuple', # Not really a type. 

'Generator', 

 

# One-off things. 

'AnyStr', 

'cast', 

'get_type_hints', 

'NewType', 

'no_type_check', 

'no_type_check_decorator', 

'NoReturn', 

'overload', 

'Text', 

'TYPE_CHECKING', 

] 

 

# The pseudo-submodules 're' and 'io' are part of the public 

# namespace, but excluded from __all__ because they might stomp on 

# legitimate imports of those modules. 

 

 

def _type_check(arg, msg, is_argument=True): 

"""Check that the argument is a type, and return it (internal helper). 

 

As a special case, accept None and return type(None) instead. Also wrap strings 

into ForwardRef instances. Consider several corner cases, for example plain 

special forms like Union are not valid, while Union[int, str] is OK, etc. 

The msg argument is a human-readable error message, e.g:: 

 

"Union[arg, ...]: arg should be a type." 

 

We append the repr() of the actual value (truncated to 100 chars). 

""" 

invalid_generic_forms = (Generic, _Protocol) 

if is_argument: 

invalid_generic_forms = invalid_generic_forms + (ClassVar, ) 

 

if arg is None: 

return type(None) 

if isinstance(arg, str): 

return ForwardRef(arg) 

if (isinstance(arg, _GenericAlias) and 

arg.__origin__ in invalid_generic_forms): 

raise TypeError(f"{arg} is not valid as type argument") 

if (isinstance(arg, _SpecialForm) and arg not in (Any, NoReturn) or 

arg in (Generic, _Protocol)): 

raise TypeError(f"Plain {arg} is not valid as type argument") 

if isinstance(arg, (type, TypeVar, ForwardRef)): 

return arg 

if not callable(arg): 

raise TypeError(f"{msg} Got {arg!r:.100}.") 

return arg 

 

 

def _type_repr(obj): 

"""Return the repr() of an object, special-casing types (internal helper). 

 

If obj is a type, we return a shorter version than the default 

type.__repr__, based on the module and qualified name, which is 

typically enough to uniquely identify a type. For everything 

else, we fall back on repr(obj). 

""" 

if isinstance(obj, type): 

if obj.__module__ == 'builtins': 

return obj.__qualname__ 

return f'{obj.__module__}.{obj.__qualname__}' 

if obj is ...: 

return('...') 

if isinstance(obj, types.FunctionType): 

return obj.__name__ 

return repr(obj) 

 

 

def _collect_type_vars(types): 

"""Collect all type variable contained in types in order of 

first appearance (lexicographic order). For example:: 

 

_collect_type_vars((T, List[S, T])) == (T, S) 

""" 

tvars = [] 

for t in types: 

if isinstance(t, TypeVar) and t not in tvars: 

tvars.append(t) 

if isinstance(t, _GenericAlias) and not t._special: 

tvars.extend([t for t in t.__parameters__ if t not in tvars]) 

return tuple(tvars) 

 

 

def _subs_tvars(tp, tvars, subs): 

"""Substitute type variables 'tvars' with substitutions 'subs'. 

These two must have the same length. 

""" 

if not isinstance(tp, _GenericAlias): 

return tp 

new_args = list(tp.__args__) 

for a, arg in enumerate(tp.__args__): 

if isinstance(arg, TypeVar): 

for i, tvar in enumerate(tvars): 

if arg == tvar: 

new_args[a] = subs[i] 

else: 

new_args[a] = _subs_tvars(arg, tvars, subs) 

if tp.__origin__ is Union: 

return Union[tuple(new_args)] 

return tp.copy_with(tuple(new_args)) 

 

 

def _check_generic(cls, parameters): 

"""Check correct count for parameters of a generic cls (internal helper). 

This gives a nice error message in case of count mismatch. 

""" 

if not cls.__parameters__: 

raise TypeError(f"{cls} is not a generic class") 

alen = len(parameters) 

elen = len(cls.__parameters__) 

if alen != elen: 

raise TypeError(f"Too {'many' if alen > elen else 'few'} parameters for {cls};" 

f" actual {alen}, expected {elen}") 

 

 

def _remove_dups_flatten(parameters): 

"""An internal helper for Union creation and substitution: flatten Unions 

among parameters, then remove duplicates. 

""" 

# Flatten out Union[Union[...], ...]. 

params = [] 

for p in parameters: 

if isinstance(p, _GenericAlias) and p.__origin__ is Union: 

params.extend(p.__args__) 

elif isinstance(p, tuple) and len(p) > 0 and p[0] is Union: 

params.extend(p[1:]) 

else: 

params.append(p) 

# Weed out strict duplicates, preserving the first of each occurrence. 

all_params = set(params) 

if len(all_params) < len(params): 

new_params = [] 

for t in params: 

if t in all_params: 

new_params.append(t) 

all_params.remove(t) 

params = new_params 

assert not all_params, all_params 

return tuple(params) 

 

 

_cleanups = [] 

 

 

def _tp_cache(func): 

"""Internal wrapper caching __getitem__ of generic types with a fallback to 

original function for non-hashable arguments. 

""" 

cached = functools.lru_cache()(func) 

_cleanups.append(cached.cache_clear) 

 

@functools.wraps(func) 

def inner(*args, **kwds): 

try: 

return cached(*args, **kwds) 

except TypeError: 

pass # All real errors (not unhashable args) are raised below. 

return func(*args, **kwds) 

return inner 

 

 

def _eval_type(t, globalns, localns): 

"""Evaluate all forward reverences in the given type t. 

For use of globalns and localns see the docstring for get_type_hints(). 

""" 

if isinstance(t, ForwardRef): 

return t._evaluate(globalns, localns) 

if isinstance(t, _GenericAlias): 

ev_args = tuple(_eval_type(a, globalns, localns) for a in t.__args__) 

if ev_args == t.__args__: 

return t 

res = t.copy_with(ev_args) 

res._special = t._special 

return res 

return t 

 

 

class _Final: 

"""Mixin to prohibit subclassing""" 

 

__slots__ = ('__weakref__',) 

 

def __init_subclass__(self, *args, **kwds): 

if '_root' not in kwds: 

raise TypeError("Cannot subclass special typing classes") 

 

class _Immutable: 

"""Mixin to indicate that object should not be copied.""" 

 

def __copy__(self): 

return self 

 

def __deepcopy__(self, memo): 

return self 

 

 

class _SpecialForm(_Final, _Immutable, _root=True): 

"""Internal indicator of special typing constructs. 

See _doc instance attribute for specific docs. 

""" 

 

__slots__ = ('_name', '_doc') 

 

def __new__(cls, *args, **kwds): 

"""Constructor. 

 

This only exists to give a better error message in case 

someone tries to subclass a special typing object (not a good idea). 

""" 

if (len(args) == 3 and 

isinstance(args[0], str) and 

isinstance(args[1], tuple)): 

# Close enough. 

raise TypeError(f"Cannot subclass {cls!r}") 

return super().__new__(cls) 

 

def __init__(self, name, doc): 

self._name = name 

self._doc = doc 

 

def __eq__(self, other): 

if not isinstance(other, _SpecialForm): 

return NotImplemented 

return self._name == other._name 

 

def __hash__(self): 

return hash((self._name,)) 

 

def __repr__(self): 

return 'typing.' + self._name 

 

def __reduce__(self): 

return self._name 

 

def __call__(self, *args, **kwds): 

raise TypeError(f"Cannot instantiate {self!r}") 

 

def __instancecheck__(self, obj): 

raise TypeError(f"{self} cannot be used with isinstance()") 

 

def __subclasscheck__(self, cls): 

raise TypeError(f"{self} cannot be used with issubclass()") 

 

@_tp_cache 

def __getitem__(self, parameters): 

if self._name == 'ClassVar': 

item = _type_check(parameters, 'ClassVar accepts only single type.') 

return _GenericAlias(self, (item,)) 

if self._name == 'Union': 

if parameters == (): 

raise TypeError("Cannot take a Union of no types.") 

if not isinstance(parameters, tuple): 

parameters = (parameters,) 

msg = "Union[arg, ...]: each arg must be a type." 

parameters = tuple(_type_check(p, msg) for p in parameters) 

parameters = _remove_dups_flatten(parameters) 

if len(parameters) == 1: 

return parameters[0] 

return _GenericAlias(self, parameters) 

if self._name == 'Optional': 

arg = _type_check(parameters, "Optional[t] requires a single type.") 

return Union[arg, type(None)] 

raise TypeError(f"{self} is not subscriptable") 

 

 

Any = _SpecialForm('Any', doc= 

"""Special type indicating an unconstrained type. 

 

- Any is compatible with every type. 

- Any assumed to have all methods. 

- All values assumed to be instances of Any. 

 

Note that all the above statements are true from the point of view of 

static type checkers. At runtime, Any should not be used with instance 

or class checks. 

""") 

 

NoReturn = _SpecialForm('NoReturn', doc= 

"""Special type indicating functions that never return. 

Example:: 

 

from typing import NoReturn 

 

def stop() -> NoReturn: 

raise Exception('no way') 

 

This type is invalid in other positions, e.g., ``List[NoReturn]`` 

will fail in static type checkers. 

""") 

 

ClassVar = _SpecialForm('ClassVar', doc= 

"""Special type construct to mark class variables. 

 

An annotation wrapped in ClassVar indicates that a given 

attribute is intended to be used as a class variable and 

should not be set on instances of that class. Usage:: 

 

class Starship: 

stats: ClassVar[Dict[str, int]] = {} # class variable 

damage: int = 10 # instance variable 

 

ClassVar accepts only types and cannot be further subscribed. 

 

Note that ClassVar is not a class itself, and should not 

be used with isinstance() or issubclass(). 

""") 

 

Union = _SpecialForm('Union', doc= 

"""Union type; Union[X, Y] means either X or Y. 

 

To define a union, use e.g. Union[int, str]. Details: 

- The arguments must be types and there must be at least one. 

- None as an argument is a special case and is replaced by 

type(None). 

- Unions of unions are flattened, e.g.:: 

 

Union[Union[int, str], float] == Union[int, str, float] 

 

- Unions of a single argument vanish, e.g.:: 

 

Union[int] == int # The constructor actually returns int 

 

- Redundant arguments are skipped, e.g.:: 

 

Union[int, str, int] == Union[int, str] 

 

- When comparing unions, the argument order is ignored, e.g.:: 

 

Union[int, str] == Union[str, int] 

 

- You cannot subclass or instantiate a union. 

- You can use Optional[X] as a shorthand for Union[X, None]. 

""") 

 

Optional = _SpecialForm('Optional', doc= 

"""Optional type. 

 

Optional[X] is equivalent to Union[X, None]. 

""") 

 

 

class ForwardRef(_Final, _root=True): 

"""Internal wrapper to hold a forward reference.""" 

 

__slots__ = ('__forward_arg__', '__forward_code__', 

'__forward_evaluated__', '__forward_value__', 

'__forward_is_argument__') 

 

def __init__(self, arg, is_argument=True): 

if not isinstance(arg, str): 

raise TypeError(f"Forward reference must be a string -- got {arg!r}") 

try: 

code = compile(arg, '<string>', 'eval') 

except SyntaxError: 

raise SyntaxError(f"Forward reference must be an expression -- got {arg!r}") 

self.__forward_arg__ = arg 

self.__forward_code__ = code 

self.__forward_evaluated__ = False 

self.__forward_value__ = None 

self.__forward_is_argument__ = is_argument 

 

def _evaluate(self, globalns, localns): 

if not self.__forward_evaluated__ or localns is not globalns: 

if globalns is None and localns is None: 

globalns = localns = {} 

elif globalns is None: 

globalns = localns 

elif localns is None: 

localns = globalns 

self.__forward_value__ = _type_check( 

eval(self.__forward_code__, globalns, localns), 

"Forward references must evaluate to types.", 

is_argument=self.__forward_is_argument__) 

self.__forward_evaluated__ = True 

return self.__forward_value__ 

 

def __eq__(self, other): 

if not isinstance(other, ForwardRef): 

return NotImplemented 

return (self.__forward_arg__ == other.__forward_arg__ and 

self.__forward_value__ == other.__forward_value__) 

 

def __hash__(self): 

return hash((self.__forward_arg__, self.__forward_value__)) 

 

def __repr__(self): 

return f'ForwardRef({self.__forward_arg__!r})' 

 

 

class TypeVar(_Final, _Immutable, _root=True): 

"""Type variable. 

 

Usage:: 

 

T = TypeVar('T') # Can be anything 

A = TypeVar('A', str, bytes) # Must be str or bytes 

 

Type variables exist primarily for the benefit of static type 

checkers. They serve as the parameters for generic types as well 

as for generic function definitions. See class Generic for more 

information on generic types. Generic functions work as follows: 

 

def repeat(x: T, n: int) -> List[T]: 

'''Return a list containing n references to x.''' 

return [x]*n 

 

def longest(x: A, y: A) -> A: 

'''Return the longest of two strings.''' 

return x if len(x) >= len(y) else y 

 

The latter example's signature is essentially the overloading 

of (str, str) -> str and (bytes, bytes) -> bytes. Also note 

that if the arguments are instances of some subclass of str, 

the return type is still plain str. 

 

At runtime, isinstance(x, T) and issubclass(C, T) will raise TypeError. 

 

Type variables defined with covariant=True or contravariant=True 

can be used to declare covariant or contravariant generic types. 

See PEP 484 for more details. By default generic types are invariant 

in all type variables. 

 

Type variables can be introspected. e.g.: 

 

T.__name__ == 'T' 

T.__constraints__ == () 

T.__covariant__ == False 

T.__contravariant__ = False 

A.__constraints__ == (str, bytes) 

 

Note that only type variables defined in global scope can be pickled. 

""" 

 

__slots__ = ('__name__', '__bound__', '__constraints__', 

'__covariant__', '__contravariant__') 

 

def __init__(self, name, *constraints, bound=None, 

covariant=False, contravariant=False): 

self.__name__ = name 

if covariant and contravariant: 

raise ValueError("Bivariant types are not supported.") 

self.__covariant__ = bool(covariant) 

self.__contravariant__ = bool(contravariant) 

if constraints and bound is not None: 

raise TypeError("Constraints cannot be combined with bound=...") 

if constraints and len(constraints) == 1: 

raise TypeError("A single constraint is not allowed") 

msg = "TypeVar(name, constraint, ...): constraints must be types." 

self.__constraints__ = tuple(_type_check(t, msg) for t in constraints) 

if bound: 

self.__bound__ = _type_check(bound, "Bound must be a type.") 

else: 

self.__bound__ = None 

def_mod = sys._getframe(1).f_globals['__name__'] # for pickling 

if def_mod != 'typing': 

self.__module__ = def_mod 

 

def __repr__(self): 

if self.__covariant__: 

prefix = '+' 

elif self.__contravariant__: 

prefix = '-' 

else: 

prefix = '~' 

return prefix + self.__name__ 

 

def __reduce__(self): 

return self.__name__ 

 

 

# Special typing constructs Union, Optional, Generic, Callable and Tuple 

# use three special attributes for internal bookkeeping of generic types: 

# * __parameters__ is a tuple of unique free type parameters of a generic 

# type, for example, Dict[T, T].__parameters__ == (T,); 

# * __origin__ keeps a reference to a type that was subscripted, 

# e.g., Union[T, int].__origin__ == Union, or the non-generic version of 

# the type. 

# * __args__ is a tuple of all arguments used in subscripting, 

# e.g., Dict[T, int].__args__ == (T, int). 

 

 

# Mapping from non-generic type names that have a generic alias in typing 

# but with a different name. 

_normalize_alias = {'list': 'List', 

'tuple': 'Tuple', 

'dict': 'Dict', 

'set': 'Set', 

'frozenset': 'FrozenSet', 

'deque': 'Deque', 

'defaultdict': 'DefaultDict', 

'type': 'Type', 

'Set': 'AbstractSet'} 

 

def _is_dunder(attr): 

return attr.startswith('__') and attr.endswith('__') 

 

 

class _GenericAlias(_Final, _root=True): 

"""The central part of internal API. 

 

This represents a generic version of type 'origin' with type arguments 'params'. 

There are two kind of these aliases: user defined and special. The special ones 

are wrappers around builtin collections and ABCs in collections.abc. These must 

have 'name' always set. If 'inst' is False, then the alias can't be instantiated, 

this is used by e.g. typing.List and typing.Dict. 

""" 

def __init__(self, origin, params, *, inst=True, special=False, name=None): 

self._inst = inst 

self._special = special 

if special and name is None: 

orig_name = origin.__name__ 

name = _normalize_alias.get(orig_name, orig_name) 

self._name = name 

if not isinstance(params, tuple): 

params = (params,) 

self.__origin__ = origin 

self.__args__ = tuple(... if a is _TypingEllipsis else 

() if a is _TypingEmpty else 

a for a in params) 

self.__parameters__ = _collect_type_vars(params) 

self.__slots__ = None # This is not documented. 

if not name: 

self.__module__ = origin.__module__ 

 

@_tp_cache 

def __getitem__(self, params): 

if self.__origin__ in (Generic, _Protocol): 

# Can't subscript Generic[...] or _Protocol[...]. 

raise TypeError(f"Cannot subscript already-subscripted {self}") 

if not isinstance(params, tuple): 

params = (params,) 

msg = "Parameters to generic types must be types." 

params = tuple(_type_check(p, msg) for p in params) 

_check_generic(self, params) 

return _subs_tvars(self, self.__parameters__, params) 

 

def copy_with(self, params): 

# We don't copy self._special. 

return _GenericAlias(self.__origin__, params, name=self._name, inst=self._inst) 

 

def __repr__(self): 

if (self._name != 'Callable' or 

len(self.__args__) == 2 and self.__args__[0] is Ellipsis): 

if self._name: 

name = 'typing.' + self._name 

else: 

name = _type_repr(self.__origin__) 

if not self._special: 

args = f'[{", ".join([_type_repr(a) for a in self.__args__])}]' 

else: 

args = '' 

return (f'{name}{args}') 

if self._special: 

return 'typing.Callable' 

return (f'typing.Callable' 

f'[[{", ".join([_type_repr(a) for a in self.__args__[:-1]])}], ' 

f'{_type_repr(self.__args__[-1])}]') 

 

def __eq__(self, other): 

if not isinstance(other, _GenericAlias): 

return NotImplemented 

if self.__origin__ != other.__origin__: 

return False 

if self.__origin__ is Union and other.__origin__ is Union: 

return frozenset(self.__args__) == frozenset(other.__args__) 

return self.__args__ == other.__args__ 

 

def __hash__(self): 

if self.__origin__ is Union: 

return hash((Union, frozenset(self.__args__))) 

return hash((self.__origin__, self.__args__)) 

 

def __call__(self, *args, **kwargs): 

if not self._inst: 

raise TypeError(f"Type {self._name} cannot be instantiated; " 

f"use {self._name.lower()}() instead") 

result = self.__origin__(*args, **kwargs) 

try: 

result.__orig_class__ = self 

except AttributeError: 

pass 

return result 

 

def __mro_entries__(self, bases): 

if self._name: # generic version of an ABC or built-in class 

res = [] 

if self.__origin__ not in bases: 

res.append(self.__origin__) 

i = bases.index(self) 

if not any(isinstance(b, _GenericAlias) or issubclass(b, Generic) 

for b in bases[i+1:]): 

res.append(Generic) 

return tuple(res) 

if self.__origin__ is Generic: 

i = bases.index(self) 

for b in bases[i+1:]: 

if isinstance(b, _GenericAlias) and b is not self: 

return () 

return (self.__origin__,) 

 

def __getattr__(self, attr): 

# We are careful for copy and pickle. 

# Also for simplicity we just don't relay all dunder names 

if '__origin__' in self.__dict__ and not _is_dunder(attr): 

return getattr(self.__origin__, attr) 

raise AttributeError(attr) 

 

def __setattr__(self, attr, val): 

if _is_dunder(attr) or attr in ('_name', '_inst', '_special'): 

super().__setattr__(attr, val) 

else: 

setattr(self.__origin__, attr, val) 

 

def __instancecheck__(self, obj): 

return self.__subclasscheck__(type(obj)) 

 

def __subclasscheck__(self, cls): 

if self._special: 

if not isinstance(cls, _GenericAlias): 

return issubclass(cls, self.__origin__) 

if cls._special: 

return issubclass(cls.__origin__, self.__origin__) 

raise TypeError("Subscripted generics cannot be used with" 

" class and instance checks") 

 

def __reduce__(self): 

if self._special: 

return self._name 

 

if self._name: 

origin = globals()[self._name] 

else: 

origin = self.__origin__ 

if (origin is Callable and 

not (len(self.__args__) == 2 and self.__args__[0] is Ellipsis)): 

args = list(self.__args__[:-1]), self.__args__[-1] 

else: 

args = tuple(self.__args__) 

if len(args) == 1 and not isinstance(args[0], tuple): 

args, = args 

return operator.getitem, (origin, args) 

 

 

class _VariadicGenericAlias(_GenericAlias, _root=True): 

"""Same as _GenericAlias above but for variadic aliases. Currently, 

this is used only by special internal aliases: Tuple and Callable. 

""" 

def __getitem__(self, params): 

if self._name != 'Callable' or not self._special: 

return self.__getitem_inner__(params) 

if not isinstance(params, tuple) or len(params) != 2: 

raise TypeError("Callable must be used as " 

"Callable[[arg, ...], result].") 

args, result = params 

if args is Ellipsis: 

params = (Ellipsis, result) 

else: 

if not isinstance(args, list): 

raise TypeError(f"Callable[args, result]: args must be a list." 

f" Got {args}") 

params = (tuple(args), result) 

return self.__getitem_inner__(params) 

 

@_tp_cache 

def __getitem_inner__(self, params): 

if self.__origin__ is tuple and self._special: 

if params == (): 

return self.copy_with((_TypingEmpty,)) 

if not isinstance(params, tuple): 

params = (params,) 

if len(params) == 2 and params[1] is ...: 

msg = "Tuple[t, ...]: t must be a type." 

p = _type_check(params[0], msg) 

return self.copy_with((p, _TypingEllipsis)) 

msg = "Tuple[t0, t1, ...]: each t must be a type." 

params = tuple(_type_check(p, msg) for p in params) 

return self.copy_with(params) 

if self.__origin__ is collections.abc.Callable and self._special: 

args, result = params 

msg = "Callable[args, result]: result must be a type." 

result = _type_check(result, msg) 

if args is Ellipsis: 

return self.copy_with((_TypingEllipsis, result)) 

msg = "Callable[[arg, ...], result]: each arg must be a type." 

args = tuple(_type_check(arg, msg) for arg in args) 

params = args + (result,) 

return self.copy_with(params) 

return super().__getitem__(params) 

 

 

class Generic: 

"""Abstract base class for generic types. 

 

A generic type is typically declared by inheriting from 

this class parameterized with one or more type variables. 

For example, a generic mapping type might be defined as:: 

 

class Mapping(Generic[KT, VT]): 

def __getitem__(self, key: KT) -> VT: 

... 

# Etc. 

 

This class can then be used as follows:: 

 

def lookup_name(mapping: Mapping[KT, VT], key: KT, default: VT) -> VT: 

try: 

return mapping[key] 

except KeyError: 

return default 

""" 

__slots__ = () 

 

def __new__(cls, *args, **kwds): 

if cls is Generic: 

raise TypeError("Type Generic cannot be instantiated; " 

"it can be used only as a base class") 

if super().__new__ is object.__new__ and cls.__init__ is not object.__init__: 

obj = super().__new__(cls) 

else: 

obj = super().__new__(cls, *args, **kwds) 

return obj 

 

@_tp_cache 

def __class_getitem__(cls, params): 

if not isinstance(params, tuple): 

params = (params,) 

if not params and cls is not Tuple: 

raise TypeError( 

f"Parameter list to {cls.__qualname__}[...] cannot be empty") 

msg = "Parameters to generic types must be types." 

params = tuple(_type_check(p, msg) for p in params) 

if cls is Generic: 

# Generic can only be subscripted with unique type variables. 

if not all(isinstance(p, TypeVar) for p in params): 

raise TypeError( 

"Parameters to Generic[...] must all be type variables") 

if len(set(params)) != len(params): 

raise TypeError( 

"Parameters to Generic[...] must all be unique") 

elif cls is _Protocol: 

# _Protocol is internal at the moment, just skip the check 

pass 

else: 

# Subscripting a regular Generic subclass. 

_check_generic(cls, params) 

return _GenericAlias(cls, params) 

 

def __init_subclass__(cls, *args, **kwargs): 

super().__init_subclass__(*args, **kwargs) 

tvars = [] 

if '__orig_bases__' in cls.__dict__: 

error = Generic in cls.__orig_bases__ 

else: 

error = Generic in cls.__bases__ and cls.__name__ != '_Protocol' 

if error: 

raise TypeError("Cannot inherit from plain Generic") 

if '__orig_bases__' in cls.__dict__: 

tvars = _collect_type_vars(cls.__orig_bases__) 

# Look for Generic[T1, ..., Tn]. 

# If found, tvars must be a subset of it. 

# If not found, tvars is it. 

# Also check for and reject plain Generic, 

# and reject multiple Generic[...]. 

gvars = None 

for base in cls.__orig_bases__: 

if (isinstance(base, _GenericAlias) and 

base.__origin__ is Generic): 

if gvars is not None: 

raise TypeError( 

"Cannot inherit from Generic[...] multiple types.") 

gvars = base.__parameters__ 

if gvars is None: 

gvars = tvars 

else: 

tvarset = set(tvars) 

gvarset = set(gvars) 

if not tvarset <= gvarset: 

s_vars = ', '.join(str(t) for t in tvars if t not in gvarset) 

s_args = ', '.join(str(g) for g in gvars) 

raise TypeError(f"Some type variables ({s_vars}) are" 

f" not listed in Generic[{s_args}]") 

tvars = gvars 

cls.__parameters__ = tuple(tvars) 

 

 

class _TypingEmpty: 

"""Internal placeholder for () or []. Used by TupleMeta and CallableMeta 

to allow empty list/tuple in specific places, without allowing them 

to sneak in where prohibited. 

""" 

 

 

class _TypingEllipsis: 

"""Internal placeholder for ... (ellipsis).""" 

 

 

def cast(typ, val): 

"""Cast a value to a type. 

 

This returns the value unchanged. To the type checker this 

signals that the return value has the designated type, but at 

runtime we intentionally don't check anything (we want this 

to be as fast as possible). 

""" 

return val 

 

 

def _get_defaults(func): 

"""Internal helper to extract the default arguments, by name.""" 

try: 

code = func.__code__ 

except AttributeError: 

# Some built-in functions don't have __code__, __defaults__, etc. 

return {} 

pos_count = code.co_argcount 

arg_names = code.co_varnames 

arg_names = arg_names[:pos_count] 

defaults = func.__defaults__ or () 

kwdefaults = func.__kwdefaults__ 

res = dict(kwdefaults) if kwdefaults else {} 

pos_offset = pos_count - len(defaults) 

for name, value in zip(arg_names[pos_offset:], defaults): 

assert name not in res 

res[name] = value 

return res 

 

 

_allowed_types = (types.FunctionType, types.BuiltinFunctionType, 

types.MethodType, types.ModuleType, 

WrapperDescriptorType, MethodWrapperType, MethodDescriptorType) 

 

 

def get_type_hints(obj, globalns=None, localns=None): 

"""Return type hints for an object. 

 

This is often the same as obj.__annotations__, but it handles 

forward references encoded as string literals, and if necessary 

adds Optional[t] if a default value equal to None is set. 

 

The argument may be a module, class, method, or function. The annotations 

are returned as a dictionary. For classes, annotations include also 

inherited members. 

 

TypeError is raised if the argument is not of a type that can contain 

annotations, and an empty dictionary is returned if no annotations are 

present. 

 

BEWARE -- the behavior of globalns and localns is counterintuitive 

(unless you are familiar with how eval() and exec() work). The 

search order is locals first, then globals. 

 

- If no dict arguments are passed, an attempt is made to use the 

globals from obj (or the respective module's globals for classes), 

and these are also used as the locals. If the object does not appear 

to have globals, an empty dictionary is used. 

 

- If one dict argument is passed, it is used for both globals and 

locals. 

 

- If two dict arguments are passed, they specify globals and 

locals, respectively. 

""" 

 

if getattr(obj, '__no_type_check__', None): 

return {} 

# Classes require a special treatment. 

if isinstance(obj, type): 

hints = {} 

for base in reversed(obj.__mro__): 

if globalns is None: 

base_globals = sys.modules[base.__module__].__dict__ 

else: 

base_globals = globalns 

ann = base.__dict__.get('__annotations__', {}) 

for name, value in ann.items(): 

if value is None: 

value = type(None) 

if isinstance(value, str): 

value = ForwardRef(value, is_argument=False) 

value = _eval_type(value, base_globals, localns) 

hints[name] = value 

return hints 

 

if globalns is None: 

if isinstance(obj, types.ModuleType): 

globalns = obj.__dict__ 

else: 

globalns = getattr(obj, '__globals__', {}) 

if localns is None: 

localns = globalns 

elif localns is None: 

localns = globalns 

hints = getattr(obj, '__annotations__', None) 

if hints is None: 

# Return empty annotations for something that _could_ have them. 

if isinstance(obj, _allowed_types): 

return {} 

else: 

raise TypeError('{!r} is not a module, class, method, ' 

'or function.'.format(obj)) 

defaults = _get_defaults(obj) 

hints = dict(hints) 

for name, value in hints.items(): 

if value is None: 

value = type(None) 

if isinstance(value, str): 

value = ForwardRef(value) 

value = _eval_type(value, globalns, localns) 

if name in defaults and defaults[name] is None: 

value = Optional[value] 

hints[name] = value 

return hints 

 

 

def no_type_check(arg): 

"""Decorator to indicate that annotations are not type hints. 

 

The argument must be a class or function; if it is a class, it 

applies recursively to all methods and classes defined in that class 

(but not to methods defined in its superclasses or subclasses). 

 

This mutates the function(s) or class(es) in place. 

""" 

if isinstance(arg, type): 

arg_attrs = arg.__dict__.copy() 

for attr, val in arg.__dict__.items(): 

if val in arg.__bases__ + (arg,): 

arg_attrs.pop(attr) 

for obj in arg_attrs.values(): 

if isinstance(obj, types.FunctionType): 

obj.__no_type_check__ = True 

if isinstance(obj, type): 

no_type_check(obj) 

try: 

arg.__no_type_check__ = True 

except TypeError: # built-in classes 

pass 

return arg 

 

 

def no_type_check_decorator(decorator): 

"""Decorator to give another decorator the @no_type_check effect. 

 

This wraps the decorator with something that wraps the decorated 

function in @no_type_check. 

""" 

 

@functools.wraps(decorator) 

def wrapped_decorator(*args, **kwds): 

func = decorator(*args, **kwds) 

func = no_type_check(func) 

return func 

 

return wrapped_decorator 

 

 

def _overload_dummy(*args, **kwds): 

"""Helper for @overload to raise when called.""" 

raise NotImplementedError( 

"You should not call an overloaded function. " 

"A series of @overload-decorated functions " 

"outside a stub module should always be followed " 

"by an implementation that is not @overload-ed.") 

 

 

def overload(func): 

"""Decorator for overloaded functions/methods. 

 

In a stub file, place two or more stub definitions for the same 

function in a row, each decorated with @overload. For example: 

 

@overload 

def utf8(value: None) -> None: ... 

@overload 

def utf8(value: bytes) -> bytes: ... 

@overload 

def utf8(value: str) -> bytes: ... 

 

In a non-stub file (i.e. a regular .py file), do the same but 

follow it with an implementation. The implementation should *not* 

be decorated with @overload. For example: 

 

@overload 

def utf8(value: None) -> None: ... 

@overload 

def utf8(value: bytes) -> bytes: ... 

@overload 

def utf8(value: str) -> bytes: ... 

def utf8(value): 

# implementation goes here 

""" 

return _overload_dummy 

 

 

class _ProtocolMeta(type): 

"""Internal metaclass for _Protocol. 

 

This exists so _Protocol classes can be generic without deriving 

from Generic. 

""" 

 

def __instancecheck__(self, obj): 

if _Protocol not in self.__bases__: 

return super().__instancecheck__(obj) 

raise TypeError("Protocols cannot be used with isinstance().") 

 

def __subclasscheck__(self, cls): 

if not self._is_protocol: 

# No structural checks since this isn't a protocol. 

return NotImplemented 

 

if self is _Protocol: 

# Every class is a subclass of the empty protocol. 

return True 

 

# Find all attributes defined in the protocol. 

attrs = self._get_protocol_attrs() 

 

for attr in attrs: 

if not any(attr in d.__dict__ for d in cls.__mro__): 

return False 

return True 

 

def _get_protocol_attrs(self): 

# Get all Protocol base classes. 

protocol_bases = [] 

for c in self.__mro__: 

if getattr(c, '_is_protocol', False) and c.__name__ != '_Protocol': 

protocol_bases.append(c) 

 

# Get attributes included in protocol. 

attrs = set() 

for base in protocol_bases: 

for attr in base.__dict__.keys(): 

# Include attributes not defined in any non-protocol bases. 

for c in self.__mro__: 

if (c is not base and attr in c.__dict__ and 

not getattr(c, '_is_protocol', False)): 

break 

else: 

if (not attr.startswith('_abc_') and 

attr != '__abstractmethods__' and 

attr != '__annotations__' and 

attr != '__weakref__' and 

attr != '_is_protocol' and 

attr != '_gorg' and 

attr != '__dict__' and 

attr != '__args__' and 

attr != '__slots__' and 

attr != '_get_protocol_attrs' and 

attr != '__next_in_mro__' and 

attr != '__parameters__' and 

attr != '__origin__' and 

attr != '__orig_bases__' and 

attr != '__extra__' and 

attr != '__tree_hash__' and 

attr != '__module__'): 

attrs.add(attr) 

 

return attrs 

 

 

class _Protocol(Generic, metaclass=_ProtocolMeta): 

"""Internal base class for protocol classes. 

 

This implements a simple-minded structural issubclass check 

(similar but more general than the one-offs in collections.abc 

such as Hashable). 

""" 

 

__slots__ = () 

 

_is_protocol = True 

 

def __class_getitem__(cls, params): 

return super().__class_getitem__(params) 

 

 

# Some unconstrained type variables. These are used by the container types. 

# (These are not for export.) 

T = TypeVar('T') # Any type. 

KT = TypeVar('KT') # Key type. 

VT = TypeVar('VT') # Value type. 

T_co = TypeVar('T_co', covariant=True) # Any type covariant containers. 

V_co = TypeVar('V_co', covariant=True) # Any type covariant containers. 

VT_co = TypeVar('VT_co', covariant=True) # Value type covariant containers. 

T_contra = TypeVar('T_contra', contravariant=True) # Ditto contravariant. 

# Internal type variable used for Type[]. 

CT_co = TypeVar('CT_co', covariant=True, bound=type) 

 

# A useful type variable with constraints. This represents string types. 

# (This one *is* for export!) 

AnyStr = TypeVar('AnyStr', bytes, str) 

 

 

# Various ABCs mimicking those in collections.abc. 

def _alias(origin, params, inst=True): 

return _GenericAlias(origin, params, special=True, inst=inst) 

 

Hashable = _alias(collections.abc.Hashable, ()) # Not generic. 

Awaitable = _alias(collections.abc.Awaitable, T_co) 

Coroutine = _alias(collections.abc.Coroutine, (T_co, T_contra, V_co)) 

AsyncIterable = _alias(collections.abc.AsyncIterable, T_co) 

AsyncIterator = _alias(collections.abc.AsyncIterator, T_co) 

Iterable = _alias(collections.abc.Iterable, T_co) 

Iterator = _alias(collections.abc.Iterator, T_co) 

Reversible = _alias(collections.abc.Reversible, T_co) 

Sized = _alias(collections.abc.Sized, ()) # Not generic. 

Container = _alias(collections.abc.Container, T_co) 

Collection = _alias(collections.abc.Collection, T_co) 

Callable = _VariadicGenericAlias(collections.abc.Callable, (), special=True) 

Callable.__doc__ = \ 

"""Callable type; Callable[[int], str] is a function of (int) -> str. 

 

The subscription syntax must always be used with exactly two 

values: the argument list and the return type. The argument list 

must be a list of types or ellipsis; the return type must be a single type. 

 

There is no syntax to indicate optional or keyword arguments, 

such function types are rarely used as callback types. 

""" 

AbstractSet = _alias(collections.abc.Set, T_co) 

MutableSet = _alias(collections.abc.MutableSet, T) 

# NOTE: Mapping is only covariant in the value type. 

Mapping = _alias(collections.abc.Mapping, (KT, VT_co)) 

MutableMapping = _alias(collections.abc.MutableMapping, (KT, VT)) 

Sequence = _alias(collections.abc.Sequence, T_co) 

MutableSequence = _alias(collections.abc.MutableSequence, T) 

ByteString = _alias(collections.abc.ByteString, ()) # Not generic 

Tuple = _VariadicGenericAlias(tuple, (), inst=False, special=True) 

Tuple.__doc__ = \ 

"""Tuple type; Tuple[X, Y] is the cross-product type of X and Y. 

 

Example: Tuple[T1, T2] is a tuple of two elements corresponding 

to type variables T1 and T2. Tuple[int, float, str] is a tuple 

of an int, a float and a string. 

 

To specify a variable-length tuple of homogeneous type, use Tuple[T, ...]. 

""" 

List = _alias(list, T, inst=False) 

Deque = _alias(collections.deque, T) 

Set = _alias(set, T, inst=False) 

FrozenSet = _alias(frozenset, T_co, inst=False) 

MappingView = _alias(collections.abc.MappingView, T_co) 

KeysView = _alias(collections.abc.KeysView, KT) 

ItemsView = _alias(collections.abc.ItemsView, (KT, VT_co)) 

ValuesView = _alias(collections.abc.ValuesView, VT_co) 

ContextManager = _alias(contextlib.AbstractContextManager, T_co) 

AsyncContextManager = _alias(contextlib.AbstractAsyncContextManager, T_co) 

Dict = _alias(dict, (KT, VT), inst=False) 

DefaultDict = _alias(collections.defaultdict, (KT, VT)) 

OrderedDict = _alias(collections.OrderedDict, (KT, VT)) 

Counter = _alias(collections.Counter, T) 

ChainMap = _alias(collections.ChainMap, (KT, VT)) 

Generator = _alias(collections.abc.Generator, (T_co, T_contra, V_co)) 

AsyncGenerator = _alias(collections.abc.AsyncGenerator, (T_co, T_contra)) 

Type = _alias(type, CT_co, inst=False) 

Type.__doc__ = \ 

"""A special construct usable to annotate class objects. 

 

For example, suppose we have the following classes:: 

 

class User: ... # Abstract base for User classes 

class BasicUser(User): ... 

class ProUser(User): ... 

class TeamUser(User): ... 

 

And a function that takes a class argument that's a subclass of 

User and returns an instance of the corresponding class:: 

 

U = TypeVar('U', bound=User) 

def new_user(user_class: Type[U]) -> U: 

user = user_class() 

# (Here we could write the user object to a database) 

return user 

 

joe = new_user(BasicUser) 

 

At this point the type checker knows that joe has type BasicUser. 

""" 

 

 

class SupportsInt(_Protocol): 

__slots__ = () 

 

@abstractmethod 

def __int__(self) -> int: 

pass 

 

 

class SupportsFloat(_Protocol): 

__slots__ = () 

 

@abstractmethod 

def __float__(self) -> float: 

pass 

 

 

class SupportsComplex(_Protocol): 

__slots__ = () 

 

@abstractmethod 

def __complex__(self) -> complex: 

pass 

 

 

class SupportsBytes(_Protocol): 

__slots__ = () 

 

@abstractmethod 

def __bytes__(self) -> bytes: 

pass 

 

 

class SupportsAbs(_Protocol[T_co]): 

__slots__ = () 

 

@abstractmethod 

def __abs__(self) -> T_co: 

pass 

 

 

class SupportsRound(_Protocol[T_co]): 

__slots__ = () 

 

@abstractmethod 

def __round__(self, ndigits: int = 0) -> T_co: 

pass 

 

 

def _make_nmtuple(name, types): 

msg = "NamedTuple('Name', [(f0, t0), (f1, t1), ...]); each t must be a type" 

types = [(n, _type_check(t, msg)) for n, t in types] 

nm_tpl = collections.namedtuple(name, [n for n, t in types]) 

# Prior to PEP 526, only _field_types attribute was assigned. 

# Now, both __annotations__ and _field_types are used to maintain compatibility. 

nm_tpl.__annotations__ = nm_tpl._field_types = collections.OrderedDict(types) 

try: 

nm_tpl.__module__ = sys._getframe(2).f_globals.get('__name__', '__main__') 

except (AttributeError, ValueError): 

pass 

return nm_tpl 

 

 

# attributes prohibited to set in NamedTuple class syntax 

_prohibited = ('__new__', '__init__', '__slots__', '__getnewargs__', 

'_fields', '_field_defaults', '_field_types', 

'_make', '_replace', '_asdict', '_source') 

 

_special = ('__module__', '__name__', '__qualname__', '__annotations__') 

 

 

class NamedTupleMeta(type): 

 

def __new__(cls, typename, bases, ns): 

if ns.get('_root', False): 

return super().__new__(cls, typename, bases, ns) 

types = ns.get('__annotations__', {}) 

nm_tpl = _make_nmtuple(typename, types.items()) 

defaults = [] 

defaults_dict = {} 

for field_name in types: 

if field_name in ns: 

default_value = ns[field_name] 

defaults.append(default_value) 

defaults_dict[field_name] = default_value 

elif defaults: 

raise TypeError("Non-default namedtuple field {field_name} cannot " 

"follow default field(s) {default_names}" 

.format(field_name=field_name, 

default_names=', '.join(defaults_dict.keys()))) 

nm_tpl.__new__.__annotations__ = collections.OrderedDict(types) 

nm_tpl.__new__.__defaults__ = tuple(defaults) 

nm_tpl._field_defaults = defaults_dict 

# update from user namespace without overriding special namedtuple attributes 

for key in ns: 

if key in _prohibited: 

raise AttributeError("Cannot overwrite NamedTuple attribute " + key) 

elif key not in _special and key not in nm_tpl._fields: 

setattr(nm_tpl, key, ns[key]) 

return nm_tpl 

 

 

class NamedTuple(metaclass=NamedTupleMeta): 

"""Typed version of namedtuple. 

 

Usage in Python versions >= 3.6:: 

 

class Employee(NamedTuple): 

name: str 

id: int 

 

This is equivalent to:: 

 

Employee = collections.namedtuple('Employee', ['name', 'id']) 

 

The resulting class has extra __annotations__ and _field_types 

attributes, giving an ordered dict mapping field names to types. 

__annotations__ should be preferred, while _field_types 

is kept to maintain pre PEP 526 compatibility. (The field names 

are in the _fields attribute, which is part of the namedtuple 

API.) Alternative equivalent keyword syntax is also accepted:: 

 

Employee = NamedTuple('Employee', name=str, id=int) 

 

In Python versions <= 3.5 use:: 

 

Employee = NamedTuple('Employee', [('name', str), ('id', int)]) 

""" 

_root = True 

 

def __new__(self, typename, fields=None, **kwargs): 

if fields is None: 

fields = kwargs.items() 

elif kwargs: 

raise TypeError("Either list of fields or keywords" 

" can be provided to NamedTuple, not both") 

return _make_nmtuple(typename, fields) 

 

 

def NewType(name, tp): 

"""NewType creates simple unique types with almost zero 

runtime overhead. NewType(name, tp) is considered a subtype of tp 

by static type checkers. At runtime, NewType(name, tp) returns 

a dummy function that simply returns its argument. Usage:: 

 

UserId = NewType('UserId', int) 

 

def name_by_id(user_id: UserId) -> str: 

... 

 

UserId('user') # Fails type check 

 

name_by_id(42) # Fails type check 

name_by_id(UserId(42)) # OK 

 

num = UserId(5) + 1 # type: int 

""" 

 

def new_type(x): 

return x 

 

new_type.__name__ = name 

new_type.__supertype__ = tp 

return new_type 

 

 

# Python-version-specific alias (Python 2: unicode; Python 3: str) 

Text = str 

 

 

# Constant that's True when type checking, but False here. 

TYPE_CHECKING = False 

 

 

class IO(Generic[AnyStr]): 

"""Generic base class for TextIO and BinaryIO. 

 

This is an abstract, generic version of the return of open(). 

 

NOTE: This does not distinguish between the different possible 

classes (text vs. binary, read vs. write vs. read/write, 

append-only, unbuffered). The TextIO and BinaryIO subclasses 

below capture the distinctions between text vs. binary, which is 

pervasive in the interface; however we currently do not offer a 

way to track the other distinctions in the type system. 

""" 

 

__slots__ = () 

 

@abstractproperty 

def mode(self) -> str: 

pass 

 

@abstractproperty 

def name(self) -> str: 

pass 

 

@abstractmethod 

def close(self) -> None: 

pass 

 

@abstractmethod 

def closed(self) -> bool: 

pass 

 

@abstractmethod 

def fileno(self) -> int: 

pass 

 

@abstractmethod 

def flush(self) -> None: 

pass 

 

@abstractmethod 

def isatty(self) -> bool: 

pass 

 

@abstractmethod 

def read(self, n: int = -1) -> AnyStr: 

pass 

 

@abstractmethod 

def readable(self) -> bool: 

pass 

 

@abstractmethod 

def readline(self, limit: int = -1) -> AnyStr: 

pass 

 

@abstractmethod 

def readlines(self, hint: int = -1) -> List[AnyStr]: 

pass 

 

@abstractmethod 

def seek(self, offset: int, whence: int = 0) -> int: 

pass 

 

@abstractmethod 

def seekable(self) -> bool: 

pass 

 

@abstractmethod 

def tell(self) -> int: 

pass 

 

@abstractmethod 

def truncate(self, size: int = None) -> int: 

pass 

 

@abstractmethod 

def writable(self) -> bool: 

pass 

 

@abstractmethod 

def write(self, s: AnyStr) -> int: 

pass 

 

@abstractmethod 

def writelines(self, lines: List[AnyStr]) -> None: 

pass 

 

@abstractmethod 

def __enter__(self) -> 'IO[AnyStr]': 

pass 

 

@abstractmethod 

def __exit__(self, type, value, traceback) -> None: 

pass 

 

 

class BinaryIO(IO[bytes]): 

"""Typed version of the return of open() in binary mode.""" 

 

__slots__ = () 

 

@abstractmethod 

def write(self, s: Union[bytes, bytearray]) -> int: 

pass 

 

@abstractmethod 

def __enter__(self) -> 'BinaryIO': 

pass 

 

 

class TextIO(IO[str]): 

"""Typed version of the return of open() in text mode.""" 

 

__slots__ = () 

 

@abstractproperty 

def buffer(self) -> BinaryIO: 

pass 

 

@abstractproperty 

def encoding(self) -> str: 

pass 

 

@abstractproperty 

def errors(self) -> Optional[str]: 

pass 

 

@abstractproperty 

def line_buffering(self) -> bool: 

pass 

 

@abstractproperty 

def newlines(self) -> Any: 

pass 

 

@abstractmethod 

def __enter__(self) -> 'TextIO': 

pass 

 

 

class io: 

"""Wrapper namespace for IO generic classes.""" 

 

__all__ = ['IO', 'TextIO', 'BinaryIO'] 

IO = IO 

TextIO = TextIO 

BinaryIO = BinaryIO 

 

 

io.__name__ = __name__ + '.io' 

sys.modules[io.__name__] = io 

 

Pattern = _alias(stdlib_re.Pattern, AnyStr) 

Match = _alias(stdlib_re.Match, AnyStr) 

 

class re: 

"""Wrapper namespace for re type aliases.""" 

 

__all__ = ['Pattern', 'Match'] 

Pattern = Pattern 

Match = Match 

 

 

re.__name__ = __name__ + '.re' 

sys.modules[re.__name__] = re