
MPhil in Data Intensive Science

Michaelmas Term 2024

C1 Research Computing Coursework
B. Bolliet

Attempt all parts of the coursework.

The anticipated number of marks allocated to each part of a question is indicated in the
right margin, to be assessed from the both the code repository and your report.

This coursework should be submitted via a GitLab repository which will be created for you.
Place all of your code and your report into this repository. The report should be in pdf
format and placed in a folder named report. You will be provided access to your
repository until 23:59pm on Wednesday the 18th of December, after which we will
assess whatever the repository contains at that time.

You are expected to submit code and associated material that demonstrates good software
development practices as covered in the C1 Research Computing module.

Your report should not exceed 3000 words (including tables, figure captions and appendices
but excluding references); please indicate its word count on its front cover. You are
reminded to comply with the requirements given in the Course Handbook regarding the
use of, and declaration of use of, autogeneration tools.

Failure to include the wordcount and a declarations of use of autogeneration tools will
result in automatic loss of marks.©

20
24

U
ni

ve
rs

ity
of

C
am

br
id

ge

DRAFT 4



2

Preamble

In this coursework you will create a package that performs automatic differentiation
using dual numbers.
This approach to compute derivatives with dual numbers is known as forward-mode
automatic differentiation. Automatic differentiation is at the core of learning algorithms
for deep neural networks. The forward mode is efficient for functions with relatively few
input variables but many output variables, think of a deep neural network with a few
nodes in the input layer and many nodes in the output layer. Formally dual numbers are

like complex numbers, but instead of a real and imaginary part, they have a real part and
a dual. In the same way the complex part of complex numbers is carried by 𝑖, the dual
part of a dual number is carried by 𝜖 . The major difference with complex numbers is that
instead of the imaginary unit 𝑖2 = −1, we have 𝜖2 = 0.

Consider the dual number 𝑥 = 𝑎 + 𝑏𝜖 . Then, 𝑥2 = (𝑎 + 𝑏𝜖)2 = 𝑎2 + 2𝑎𝑏𝜖 . Note that the
derivative of 𝑥2 with respect to 𝑥 is 2𝑎𝑥, thus, with 𝑏 = 1, the dual part of 𝑥2, i.e., 2𝑎𝑏𝜖 ,
is the derivative of 𝑥2 with respect to 𝑥 evaluated at 𝑥 = 𝑎. In fact, you can show that any
function 𝑓 (𝑥) can be extended to dual numbers and that its dual part is its derivative.
You have:

𝑓 (𝑎 + 𝑏𝜖) = 𝑓 (𝑎) + 𝑓 ′(𝑎)𝑏𝜖
We refer to the part of the course on differentiable programming and the Wikipedia page
for more details, and references therein.

There is a total of 150 marks for this coursework.

Tasks

1 Create project repository structure
The project repository should be called dual_autodiff. It is a Python project

and you should follow the structure according to good practices. Note that we use a
pyproject.toml file for the project configuration, rather than setup.py. [5]

2 Write project configuration
What should the pyproject.toml file contain? Make the file accordingly. [5]

3 Implement dual numbers and operations
The main file of your project should be called dual.py. It contains a Dual class.
The Dual class defines the Dual numbers. For instance:

1 x = Dual(2, 1)
2 print(x.real, x.dual)

©
20

24
U

ni
ve

rs
ity

of
C

am
br

id
ge

DRAFT 4

https://en.wikipedia.org/wiki Dual_number


3

should print 2, 1.
Furthermore, the Dual class defines the mathematical operations. For instance:

1 x = Dual(2, 1)
2 y = Dual(3, 2)
3 print(x + y)

should print Dual(real=5, dual=3). Similarly, for multiplication, subtraction and
division.

The Dual class should also define the sin, cos, tan, log, exp and other essential
functions. For instance:
1 def sin(self):

and x.sin() should return Dual(real=0.9092..., dual=-0.4161...) for x =
Dual(2, 1). [10]

4 Make the code into a package
Your code should be installable with pip install -e . from inside the project

folder. Then, you should be able to import the package with import dual_autodiff
as df from anywhere (using the same environment where you installed the package). [10]

5 Differentiate a function
Consider the function 𝑓 (𝑥) = log(sin(𝑥)) + 𝑥2 cos(𝑥). Compute its derivative at

𝑥 = 1.5 using dual numbers and compare it to the analytical derivative. Compute also the
numerical derivative using an increasingly smaller step size. What do you observe? To
answer this question, you should present one or more plots that illustrate your
observations and their meaning. [15]

6 Implement a test suite
In the tests folder, implement a comprehensive test suite for the Dual class,

including its operations and the functions in autodiff_tools. Ensure that the tests are
meaningful and cover a meaningful range of cases. The test suite should be executable
with pytest, for example:
1 pytest -s tests/*

[15]

7 Write project documentation with Sphinx
Use Sphinx as seen in class. Documentation should be generated from the docs

folder, after running make html in the terminal. The html pages should feature all what
you have implemented with clear explanations and examples. The documentation should
consist of the docstrings and a tutorial notebook dual_autodiff.ipynb. The notebook
should feature meaningful examples and show users how to use the package and what it
can do. [15]

©
20

24
U

ni
ve

rs
ity

of
C

am
br

id
ge

DRAFT 4 (TURN OVER



4

8 Cythonize the package
Cythonize the Python package you have made. To do so, create a different, separate

directory that you call dual_autodiff_x. Note that here, you will need a setup.py file
in addition to the pyproject.toml file. Eventually the package should be installable
with pip install -e . from inside the project folder dual_autodiff_x. [20]

9 Compare the performance of the pure Python version and the Cythonized
version

In the notebook dual_autodiff.ipynb, compare the performance of the pure
Python version and the Cythonized version. Do you observe a performance difference?
If so, why? If not, why not? Your answer must be quantitative and must include at least
one plot to illustrate your observations and conclusions. [20]

10 Create wheels for Linux
Use cibuildwheel (which uses Docker internally) to create specific wheels of

dual_autodiff_x for Linux. You should create two wheels for:
•cp310-manylinux_x86_64
•cp311-manylinux_x86_64

Your wheels should not contain the *.pyx files (i.e., the source code) but only .so and
*.pyd files. You can check this by doing:
1 unzip wheelhouse/<name of wheel>.whl -d

wheel_contents

and check the files inside wheel_contents. [15]

11 Upload the wheels to the your GitLab project repository
Upload the wheels to this GitLab project repository.
After downloading the wheels from your gitlab repository, the package should be

installable from wheels, on a linux machine (like CSD3 or your own laptop using a
Docker image), using the following command:
1 pip install dual_autodiff_x_ <name_of_wheel >.whl

and should run correctly the examples of the tutorial notebook. [20]

END OF PAPER

©
20

24
U

ni
ve

rs
ity

of
C

am
br

id
ge

DRAFT 4


