
The new IMU Factor

Frank Dellaert

September 6, 2019

1



Navigation States

Let us assume a setup where frames with image and/or laser measurements are processed at
some fairly low rate, e.g., 10 Hz.

We define the state of the vehicle at those times as attitude, position, and velocity. These

three quantities are jointly referred to as a NavState Xn
b

∆
= {Rnb , Pnb , V n

b }, where the super-
script n denotes the navigation frame, and b the body frame. For simplicity, we drop these
indices below where clear from context.

Vector Fields and Differential Equations

We need a way to describe the evolution of a NavState over time. The NavState lives in a
9-dimensional manifold M , defined by the orthonormality constraints on R. For a NavState
X evolving over time we can write down a differential equation

Ẋ(t) = F (t,X) (1)

where F is a time-varying vector field on M , defined as a mapping from R×M to tangent
vectors at X. A tangent vector at X is defined as the derivative of a trajectory at X, and
for the NavState manifold this will be a triplet[

Ṙ(t,X), Ṗ (t,X), V̇ (t,X)
]
∈ so(3)× R3 × R3

where we use square brackets to indicate a tangent vector. The space of all tangent vectors
at X is denoted by TXM , and hence F (t,X) ∈ TXM . For example, if the state evolves along
a constant velocity trajectory

X(t) = {R0, P0 + V0t, V0}

then the differential equation describing the trajectory is

Ẋ(t) = [03x3, V0, 03x1] , X(0) = {R0, P0, V0}

Valid vector fields on a NavState manifold are special, in that the attitude and velocity
derivatives can be arbitrary functions of X and t, but the derivative of position is constrained
to be equal to the current velocity V (t):

Ẋ(t) =
[
Ṙ(X, t), V (t), V̇ (X, t)

]
(2)

Suppose we are given the body angular velocity ωb(t) and non-gravity acceleration ab(t)
in the body frame. We know (from Murray84book) that the derivative of R can be written
as

Ṙ(X, t) = R(t)[ωb(t)]×

where [θ]× ∈ so(3) is the skew-symmetric matrix corresponding to θ, and hence the resulting
exact vector field is

Ẋ(t) =
[
Ṙ(X, t), V (t), V̇ (X, t)

]
=
[
R(t)[ωb(t)]×, V (t), g +R(t)ab(t)

]
(3)

2



Local Coordinates

Optimization on manifolds relies crucially on the concept of local coordinates. For example,
when optimizing over the rotations SO(3) starting from an initial estimate R0, we define a
local map ΦR0 from θ ∈ R3 to a neighborhood of SO(3) centered around R0,

ΦR0(θ) = R0 exp ([θ]×)

where exp is the matrix exponential, given by

exp ([θ]×) =

∞∑
k=0

1

k!
[θ]k× (4)

which for SO(3) can be efficiently computed in closed form.
The local coordinates θ are isomorphic to tangent vectors at R0. To see this, define θ = ωt

and note that
dΦR0 (ωt)

dt

∣∣∣∣
t=0

=
dR0 exp ([ωt]×)

dt

∣∣∣∣
t=0

= R0[ωt]×

Hence, the 3-vector ω defines a direction of travel on the SO(3) manifold, but does so in the
local coordinate frame define by R0.

A similar story holds in SE(3): we define local coordinates ξ = [ωt, vt] ∈ R6 and a mapping

ΦT0(ξ) = T0 exp ξ̂

where ξ̂ ∈ se(3) is defined as

ξ̂ =

[
[ω]× v

0 0

]
t

and the 6-vectors ξ are mapped to tangent vectors T0ξ̂ at T0.

Derivative of The Local Coordinate Mapping

For the local coordinate mapping ΦR0 (θ) in SO(3) we can define a 3× 3 Jacobian H(θ) that
models the effect of an incremental change δ to the local coordinates:

ΦR0 (θ + δ) ≈ ΦR0 (θ) exp ([H(θ)δ]×) = ΦΦR0
(θ) (H(θ)δ) (5)

This Jacobian depends only on θ and, for the case of SO(3), is given by a formula similar to
the matrix exponential map,

H(θ) =

∞∑
k=0

(−1)k

(k + 1)!
[θ]k×

which can also be computed in closed form. In particular, H(0) = I3×3 at the base R0.

3



Numerical Integration in Local Coordinates

Inspired by the paper “Lie Group Methods” by Iserles et al. [1], when we have a differential
equation on SO(3),

Ṙ(t) = F (R, t), R(0) = R0 (6)

we can transfer it to a differential equation in the 3-dimensional local coordinate space. To
do so, we model the solution to (6) as

R(t) = ΦR0(θ(t))

To find an expression for θ̇(t), create a trajectory γ(δ) that passes through R(t) for δ = 0,
and moves θ(t) along the direction θ̇(t):

γ(δ) = R(t+ δ) = ΦR0

(
θ(t) + θ̇(t)δ

)
≈ ΦR(t)

(
H(θ)θ̇(t)δ

)
Taking the derivative for δ = 0 we obtain

Ṙ(t) =
dγ(δ)

dδ

∣∣∣∣
δ=0

=
dΦR(t)

(
H(θ)θ̇(t)δ

)
dδ

∣∣∣∣
δ=0

= R(t)[H(θ)θ̇(t)]×

Comparing this to (6) we obtain a differential equation for θ(t):

θ̇(t) = H(θ)−1
{
R(t)TF (R, t)

}
,̌ θ(0) = 03×1

In other words, the vector field F (R, t) is rotated to the local frame, the inverse hat operator
is applied to get a 3-vector, which is then corrected by H(θ)−1 away from θ = 0.

Retractions

Note that the use of the exponential map in local coordinate mappings is not obligatory, even
in the context of Lie groups. Often it is computationally expedient to use mappings that are
easier to compute, but yet induce the same tangent vector at T0. Mappings that satisfy this
constraint are collectively known as retractions. For example, for SE(3) one could use the
retraction RT0 : R6 → SE(3)

RT0 (ξ) = T0 {exp ([ωt]×) , vt} = {ΦR0 (ωt) , P0 +R0vt}

This trajectory describes a linear path in position while the frame rotates, as opposed to the
helical path traced out by the exponential map. The tangent vector at T0 can be computed
as

dRT0 (ξ)

dt

∣∣∣∣
t=0

= [R0[ω]×, R0v]

which is identical to the one induced by ΦT0(ξ) = T0 exp ξ̂.
The NavState manifold is not a Lie group like SE(3), but we can easily define a retraction

that behaves similarly to the one for SE(3), while treating velocities the same way as positions:

RX0(ζ) = {ΦR0 (ωt) , P0 +R0vt, V0 +R0at}

4



Here ζ = [ωt, vt, at] is a 9-vector, with respectively angular, position, and velocity components.
The tangent vector at X0 is

dRX0(ζ)

dt

∣∣∣∣
t=0

= [R0[ω]×, R0v,R0a]

and the isomorphism between R9 and TX0M is ζ → [R0[ωt]×, R0vt, R0at].

Integration in Local Coordinates

We now proceed exactly as before to describe the evolution of the NavState in local coor-
dinates. Let us model the solution of the differential equation (1) as a trajectory ζ(t) =
[θ(t), p(t), v(t)], with ζ(0) = 0, in the local coordinate frame anchored at X0. Note that this
trajectory evolves away from X0, and we use the symbols θ, p, and v to indicate that these
are integrated rather than differential quantities. With that, we have

X(t) = RX0(ζ(t)) = {ΦR0 (θ(t)) , P0 +R0p(t), V0 +R0v(t)} (7)

We can create a trajectory γ(δ) that passes through X(t) for δ = 0

γ(δ) = X(t+ δ) =
{

ΦR0

(
θ(t) + θ̇(t)δ

)
, P0 +R0 {p(t) + ṗ(t)δ} , V0 +R0 {v(t) + v̇(t)δ}

}
and taking the derivative for δ = 0 we obtain

Ẋ(t) =
dγ(δ)

dδ

∣∣∣∣
δ=0

=
[
R(t)[H(θ)θ̇(t)]×, R0 ṗ(t), R0 v̇(t)

]
Comparing that with the vector field (3), we have exact integration iff[

R(t)[H(θ)θ̇(t)]×, R0 ṗ(t), R0 v̇(t)
]

=
[
R(t)[ωb(t)]×, V (t), g +R(t)ab(t)

]
Or, as another way to state this, if we solve the differential equations for θ(t), p(t), and v(t)
such that

θ̇(t) = H(θ)−1 ωb(t)

ṗ(t) = RT0 V0 + v(t)

v̇(t) = RT0 g +R0
b(t)a

b(t)

where R0
b(t) = RT0 R(t) is the rotation of the body frame with respect to R0, and we have used

V (t) = V0 +R0v(t).

Application: The New IMU Factor

In the IMU factor, we need to predict the NavState Xj from the current NavState Xi and
the IMU measurements in-between. The above scheme suffers from a problem, which is that
Xi needs to be known in order to compensate properly for the initial velocity and rotated
gravity vector. Hence, the idea of Lupton was to split up v(t) into a gravity-induced part and
an accelerometer part

v(t) = vg(t) + va(t)

5



evolving as

v̇g(t) = RTi g

v̇a(t) = Rib(t)a
b(t)

The solution for the first equation is simply vg(t) = RTi gt. Similarly, we split the position p(t)
up in three parts

p(t) = pi(t) + pg(t) + pv(t)

evolving as

ṗi(t) = RTi Vi

ṗg(t) = vg(t) = RTi gt

ṗv(t) = va(t)

Here the solutions for the two first equations are simply

pi(t) = RTi Vit

pg(t) = RTi
gt2

2

The recipe for the IMU factor is then, in summary. Solve the ordinary differential equations

θ̇(t) = H(θ(t))−1 ωb(t)

ṗv(t) = va(t)

v̇a(t) = Rib(t)a
b(t)

starting from zero, up to time tij , where Rib(t) = exp[θ(t)]× at all times. Form the local
coordinate vector as

ζ(tij) = [θ(tij), p(tij), v(tij)] =

[
θ(tij), R

T
i Vitij +RTi

gt2ij
2

+ pv(tij), R
T
i gtij + va(tij)

]

Predict the NavState Xj at time tj from

Xj = RXi(ζ(tij)) =

{
ΦR0 (θ(tij)) , Pi + Vitij +

gt2ij
2

+Ri pv(tij), Vi + gtij +Ri va(tij)

}

Note that the predicted NavStateXj depends onXi, but the integrated quantities θ(t),pv(t),
and va(t) do not.

A Simple Euler Scheme

To solve the differential equation we can use a simple Euler scheme:

θk+1 = θk + θ̇(tk)∆t = θk +H(θk)
−1 ωbk∆t (8)

pk+1 = pk + ṗv(tk)∆t = pk + vk∆t (9)

vk+1 = vk + v̇a(tk)∆t = vk + exp ([θk]×) abk∆t (10)

6



where θk
∆
= θ(tk), pk

∆
= pv(tk), and vk

∆
= va(tk). However, the position propagation can be

done more accurately, by using exact integration of the zero-order hold acceleration abk:

θk+1 = θk +H(θk)
−1 ωbk∆t (11)

pk+1 = pk + vk∆t +Rka
b
k

∆2
t

2
(12)

vk+1 = vk +Rka
b
k∆t (13)

where we defined the rotation matrix Rk = exp ([θk]×).

Noise Propagation

Even when we assume uncorrelated noise on ωb and ab, the noise on the final computed
quantities will have a non-trivial covariance structure, because the intermediate quantities θk
and vk appear in multiple places. To model the noise propagation, let us define ζk = [θk, pk, vk]
and rewrite Eqns. (11-13) as the non-linear function f

ζk+1 = f
(
ζk, a

b
k, ω

b
k

)
Then the noise on ζk+1 propagates as

Σk+1 = AkΣkA
T
k +BkΣ

ad
η Bk + CkΣ

gd
η Ck (14)

where Ak is the 9×9 partial derivative of f wrpt ζ, and Bk and Ck the respective 9×3 partial
derivatives with respect to the measured quantities ab and ωb.

We start with the noise propagation on θ, which is independent of the other quantities.
Taking the derivative, we have

∂θk+1

∂θk
= I3x3 +

∂H(θk)
−1ωbk

∂θk
∆t

It can be shown that for small θk we have

∂H(θk)
−1ωbk

∂θk
≈ −1

2
[ωbk]× and hence

∂θk+1

∂θk
= I3x3 −

∆t

2
[ωbk]×

For the derivatives of pk+1 and vk+1 we need the derivative

∂Rka
b
k

∂θk
= Rk[−abk]×

∂Rk
∂θk

= Rk[−abk]×H(θk)

where we used
∂ (Ra)

∂R
≈ R[−a]×

and the fact that the dependence of the rotation Rk on θk is the already computed H(θk).
Putting all this together, we finally obtain

Ak ≈

 I3×3 − ∆t
2 [ωbk]×

Rk[−abk]×H(θk)
∆t
2

2
I3×3 I3×3∆t

Rk[−abk]×H(θk)∆t I3×3


The other partial derivatives are simply

Bk =

 03×3

Rk
∆t
2

2

Rk∆t

 , Ck =

 H(θk)
−1∆t

03×3

03×3


7



References

[1] Arieh Iserles, Hans Z Munthe-Kaas, Syvert P Nørsett, and Antonella Zanna. Lie-group
methods. Acta Numerica 2000, 9:215–365, 2000.

8


