
1 Overview of Trust-region Methods

For nice �gures, see [1].
We just deal here with a small subset of trust-region methods, speci�cally

approximating the cost function as quadratic using Newton's method, and using
the Dogleg method and later to include Steihaug's method.

The overall goal of a nonlinear optimization method is to iteratively �nd a
local minimum of a nonlinear function

x̂ = argmin
x

f (x)

where f (x) → R is a scalar function. In GTSAM, the variables x could be
manifold or Lie group elements, so in this document we only work with incre-

ments δx ∈ Rn in the tangent space. In this document we speci�cally deal with
trust-region methods, which at every iteration attempt to �nd a good increment
∥δx∥ ≤ ∆ within the �trust radius� ∆.

Further, most nonlinear optimization methods, including trust region meth-
ods, deal with an approximate problem at every iteration. Although there are
other choices (such as quasi-Newton), the Newton's method approximation is,
given an estimate x(k) of the variables x,

f
(
x(k) ⊕ δx

)
≈M (k) (δx) = f (k) + g(k)Tδx+

1

2
δxTG(k)δx, (1)

where f (k) = f
(
x(k)

)
is the function at x(k), g(x) = ∂f

∂x

∣∣∣
x(k)

is its gradient, and

G(k) = ∂2f
∂x2

∣∣∣
x(k)

is its Hessian (or an approximation of the Hessian).

Trust-region methods adaptively adjust the trust radius ∆ so that within it,
M is a good approximation of f , and then never step beyond the trust radius
in each iteration. When the true minimum is within the trust region, they
converge quadratically like Newton's method. At each iteration k, they solve
the trust-region subproblem to �nd a proposed update δx inside the trust radius
∆, which decreases the approximate function M (k) as much as possible. The
proposed update is only accepted if the true function f decreases as well. If
the decrease of M matches the decrease of f well, the size of the trust region is
increased, while if the match is not close the trust region size is decreased.

Minimizing Eq. 1 is itself a nonlinear optimization problem, so there are
various methods for approximating it, including Dogleg and Steihaug's method.

2 Adapting the Trust Region Size

As mentioned in the previous section, we increase the trust region size if the
decrease in the model function M matches the decrease in the true cost function
S very closely, and decrease it if they do not match closely. The closeness of
this match is measured with the gain ratio,

ρ =
f (x)− f (x⊕ δxd)

M (0)−M (δxd)
,
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where δxd is the proposed dogleg step to be introduced next. The decrease in
the model function is always non-negative, and as the decrease in f approaches
it, ρ approaches 1. If the true cost function increases, ρ will be negative, and if
the true cost function decreases even more than predicted by M , then ρ will be
greater than 1. A typical update rule, as per Lec. 7-1.2 of [1] is:

∆k+1 ←


∆k/4 ρ < 0.25

min (2∆k,∆max) , ρ > 0.75

∆k 0.75 > ρ > 0.25

where ∆k ≜ ∥δxd∥. Note that the rule is designed to ensure that ∆knever
exceeds the maximum trust region size ∆max.

3 Dogleg

Dogleg minimizes an approximation of Eq. 1 by considering three possibilities

using two points - the minimizer δx
(k)
u of M (k) along the negative gradient

direction −g(k), and the overall Newton's method minimizer δx
(k)
n of M (k).

When the Hessian G(k) is positive, the magnitude of δx
(k)
u is always less than

that of δx
(k)
n , meaning that the Newton's method step is �more adventurous�.

How much we step towards the Newton's method point depends on the trust
region size:

1. If the trust region is smaller than δx
(k)
u , we step in the negative gradient

direction but only by the trust radius.

2. If the trust region boundary is between δx
(k)
u and δx

(k)
n , we step to the

linearly-interpolated point between these two points that intersects the
trust region boundary.

3. If the trust region boundary is larger than δx
(k)
n , we step to δx

(k)
n .

To �nd the intersection of the line between δx
(k)
u and δx

(k)
n with the trust region

boundary, we solve a quadratic roots problem,

∆ = ∥(1− τ) δxu + τδxn∥

∆2 = (1− τ)
2
δxT

uδxu + 2τ (1− τ) δxT
uδxn + τ2δxT

nδxn

0 = δxT
uδxu − 2τδxT

uδxu + τ2δxT
uδxu + 2τδxT

uδxn − 2τ2δxT
uδxn + τ2δxT

nδxn −∆2

0 =
(
δxT

uδxu − 2δxT
uδxn + δxT

nδxn

)
τ2 +

(
2δxT

uδxn − 2δxT
uδxu

)
τ −∆2 + δxT

uδxu

τ =
−
(
2δxT

uδxn − 2δxT
uδxu

)
±
√
(2δxT

uδxn − 2δxT
uδxu)

2 − 4 (δxT
uδxu − 2δxT

uδxn + δxT
nδxn) (δxT

uδxu −∆2)

2 (δxT
uδxu − δxT

uδxn + δxT
nδxn)

From this we take whichever possibility for τ such that 0 < τ < 1.
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To �nd the steepest-descent minimizer δx
(k)
u , we perform line search in the

gradient direction on the approximate function M ,

δx(k)
u =

−g(k)Tg(k)

g(k)TG(k)g(k)
g(k) (2)

Thus, mathematically, we can write the dogleg update δx
(k)
d as

δx
(k)
d =


− ∆∥∥∥δx(k)

u

∥∥∥δx(k)
u , ∆ <

∥∥∥δx(k)
u

∥∥∥(
1− τ (k)

)
δx

(k)
u + τ (k)δx

(k)
n ,

∥∥∥δx(k)
u

∥∥∥ < ∆ <
∥∥∥δx(k)

n

∥∥∥
δx

(k)
n ,

∥∥∥δx(k)
n

∥∥∥ < ∆

4 Working with M as a Bayes' Net

When we have already eliminated a factor graph into a Bayes' Net, we have the
same quadratic error function M (k) (δx), but it is in a di�erent form:

M (k) (δx) =
1

2
∥Rx− d∥2 ,

where R is an upper-triangular matrix (stored as a set of sparse block Gaussian
conditionals in GTSAM), and d is the r.h.s. vector. The gradient and Hessian
of M are then

g(k) = RT (Rx− d)

G(k) = RTR

In GTSAM, because the Bayes' Net is not dense, we evaluate Eq. 2 in an
e�cient way. Rewriting the denominator (leaving out the (k) superscript) as

gTGg =
∑
i

(Rig)
T
(Rig) ,

where i indexes over the conditionals in the Bayes' Net (corresponding to blocks
of rows of R) exploits the sparse structure of the Bayes' Net, because it is easy
to only include the variables involved in each ith conditional when multiplying
them by the corresponding elements of g.

References

[1] Raphael Hauser. Lecture notes on unconstrained optimization. link, 2006.

3

http://www.numerical.rl.ac.uk/nimg/oupartc/lectures/raphael/

	Overview of Trust-region Methods
	Adapting the Trust Region Size
	Dogleg
	Working with M as a Bayes' Net

