
Syntax Input Output Identities

Lie group operations

c = a.compose(b)
c = a∗b

a in g

b in a

c = b in g

c = ab

b = a.inverse() a in g b = g in a

b = a−1

a.compose(
a.inverse()) == I

c = a.between(b) a in g

b in g

c = b in a

c = a−1b

a.inverse().
compose(b) == c

δ = a.logmap() a in g δ in g

δ̂ = loga

X :: Expmap(δ ) == a

a = X :: Expmap(δ ) δ in g a in g

a = exp δ̂

a.logmap() == δ

Lie group actions

q = a.transform_to(p) a in g

p in g

q = p in a

q = a−1 p

q = a.transform_from(p)

q = a∗p

a in g

p in a

q = p in g

q = ap

Table 1: Coordinate frame transformations performed by GTSAM geometry opera-
tions. Here, a, b, c, and g are Lie group elements (Pose2, Pose3, Rot2, Rot3, Point2,
Point3, etc). δ is a set of Lie algebra coordinates (i.e. linear update, linear delta, tan-
gent space coordinates), and X is a Lie group type (e.g. Pose2). p and q are the objects
of Lie group actions (Point2, Point3, etc).

1 Introduction
This document describes the coordinate frame conventions in which GTSAM inputs
and represents states and uncertainties. When specifying initial conditions, measure-
ments and their uncertainties, and interpreting estimated uncertainties and the results
of geometry operations, the coordinate frame convention comes into play.

GTSAM as consistently as possible represents all states and uncertainties in the
body frame. In cases where several frames are used simultaneously, a good rule of
thumb is that measurements and uncertainties will be represented in the “last” frame of
the series.

2 Frame Conventions in Geometry, Lie Group, and Man-
ifold Operations

At the core of most coordinate frame usage in GTSAM are geometry and Lie group
operations. We explain the geometry and Lie group operations in GTSAM in terms of
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δ = a.localCoordinates(b) a in g

b in g

δ in a a.retract(δ ) == b

I.localCoordinates(
a.between(b)) == δ

b = a.retract(δ ) a in g

δ in a

b in g a.compose(
I.retract(δ )) == b

Table 2: Coordinate frames for manifold tangent space operations. Here, a, b, and g
are manifold elements, δ is a tangent space element, and X is a Lie group type (e.g.
Pose2). For the identities column, we assume the elements are also Lie group elements
with identity I.

the coordinate frame transformations they perform, detailed in Table 1.
The manifold tangent space operations “retract” and “local coordinates” also work

in the body frame for Lie group elements. The tangent space coordinates given to
“retract” should be in the body frame, not the global frame. Similarly, the tangent
space coordinates returned by “local coordinates” will be in the same body frame. This
is detailed in Table 2.

3 Frame and Uncertainty Conventions For Built-in Fac-
tors

All built-in GTSAM factors follow a consistent coordinate frame convention (though
fundamentally how a measurement and its uncertainty are specified depends on the
measurement model described by a factor). In all built-in GTSAM factors, the noise
model, i.e. the measurement uncertainty, should be specified in the coordinate frame
of the measurement itself. This is part of a convention in GTSAM that tangent-space
quantities (like Gaussian noise models and update delta vectors) are always in the co-
ordinate frame of the element owning the tangent space.

3.1 PriorFactor
A PriorFactor is a simple unary prior. It encodes a direct measurement of the value
of a variable x, with the specified mean z and uncertainty, such that z.between(x) is
distributed according to the specified noise model. From this definition and the defi-
nition of between in Table 1, the measurement itself should be specified in the frame
with respect to which x is specified, while the uncertainty is specified in the coordinate
frame of the measurement, or equivalently, in frame x.

3.2 BetweenFactor
A BetweenFactor is a measurement on the relative transformation between two vari-
ables. A BetweenFactor on variables x and y with measurement z implies that z.between(x.between(y))
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Name Residual Variables Measurement
(z)

Measurement
Uncertainty

PriorFactor z.localCoordinates(x) x in g Ideal x in g In z / In x

BetweenFactor z.localCoordinates(
x.between(y))

x in g

y in g

Ideal y in x In z / In y

RangeFactor x.range(y)− z x in g

y in g

Euclidean
distance

In z

BearingFactor z.localCoordinates(
x.bearing(y))

x in g

y in g

Bearing of y

position in
frame x

In z

GenericProjection
Factor

K−1 (P
(
x−1 p

))
− z x in g

p in g

Perspective
projection of p

in x.

In z

GeneralSFM
Factor

K−1 (P
(
x−1 p

))
− z x in g

p in g

Parameters
of K

Perspective
projection of p

in x.

In z

Table 3: Measurement functions and coordinate frames of factors provided with GT-
SAM. To simplify notation, K is a camera calibration function converting pixels to
normalized image coordinates, and P is the pinhole projection function.

is distributed according to the specified noise model. This definition, along with that of
between in Table 1, implies that the measurement is in frame x, i.e. it measures y in x,
and that the uncertainty is in the frame of the measurement, or equivalently, in frame y.

3.3 RangeFactor
A RangeFactor measures the Euclidean distance either between two poses, a pose and
a point, or two points. The range is a scalar, specified to be distributed according to the
specified noise model.

3.4 BearingFactor
A BearingFactor measures the bearing (angle) of the position of a pose or point y
as observed from a pose x. The orientation of x affects the measurement prediction.
Though, if y is a pose, it’s orientation does not matter. The noise model specifies the
distribution of the bearing, in radians.

3.5 GenericProjectionFactor
A GenericProjectionFactor measures the pixel coordinates of a landmark p projected
into a camera x with the calibration function K that converts pixels to normalized im-
age coordinates. The measurement z is specified in real pixel coordinates (thanks to
the “uncalibration” function K−1 used in the residual). In a GenericProjectionFactor,
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the calibration is fixed. On the other hand, GeneralSFMFactor allows the calibration
parameters to be optimized as variables.

3.6 GeneralSFMFactor
A GeneralSFMFactor is the same as a GenericProjectionFactor except that a Gener-
alSFMFactor also allows the parameters of the calibration function K to be optimized
as variables, instead of having them fixed. A GeneralSFMFactor measures the pixel
coordinates of a landmark p projected into a camera x with the calibration function
K that converts pixels to normalized image coordinates. The measurement z is spec-
ified in real pixel coordinates (thanks to the “uncalibration” function K−1 used in the
residual).

4 Noise models of prior factors
The simplest way to describe noise models is by an example. Let’s take a prior factor
on a 3D pose x ∈ SE(3), Pose3 in GTSAM. Let z ∈ SE(3) be the expected pose, i.e.
the zero-error solution for the prior factor. The unwhitened error (the error vector not
accounting for the noise model) is

h(x) = log
(
z−1x

)
,

where ·−1 is the Lie group inverse and log · is the logarithm map on SE(3). The full
factor error, including the noise model, is

e(x) = ‖h(x)‖2
Σ
= h(x)T Σ

−1h(x) .

[ Skipping details of the derivation for now, for lack of time to get a useful answer out
quickly ]

The density induced by a noise model on the prior factor is Gaussian in the tangent
space about the linearization point. Suppose that the pose is linearized at

◦
x ∈ SE(3),

which we assume is near to z. Let δx ∈ R6 be an update vector in local coordinates (a
twist). Then, the factor error in terms of the update vector δx is

e(δx) =
∥∥∥h

(
◦
xexpδx

)∥∥∥2

Σ

We can see why the covariance Σ is in the body frame of x by looking at the linearized
error function,

e(δx)≈
∥∥∥log

(
z−1 ◦xexpδx

)∥∥∥2

Σ

≈
∥∥∥log

(
z−1 ◦x

)
+δx

∥∥∥2

Σ

Here we see that the update expδx from the linear step δx is applied in the body frame
of
◦
x, because of the ordering

◦
xexpδx. Furthermore, z−1 ◦x is a constant term, so we can

also see that the covariance Σ is actually applied to the linear update vector δx.
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This means that to draw random pose samples, we actually draw random samples
of δx with zero mean and covariance Σ, i.e.

δx∼N (0, Σ) .

5 Noise models of between factors
The noise model of a BetweenFactor is a bit more complicated. The unwhitened error
is

h(x1,x2) = log
(
z−1x−1

1 x2
)

,

where z is the expected relative pose between x1 and x2, i.e. the factor has zero error
when x1z = x2. If we consider the density on the second pose x2 induced by holding
the first pose x1 fixed, we can see that the covariance is applied to the linear update in
the body frame of the second pose x2,

e(δx2)≈
∥∥log

(
z−1x−1

1 x2 expδx2
)∥∥2

Σ
.

If we hold the second pose fixed, the covariance is applied as follows (actually, what
frame is it in now??)

e(δx1)≈
∥∥∥log

(
z−1 (x1 expδx1)

−1 x2

)∥∥∥2

Σ

=
∥∥log

(
z−1 exp−δx1x−1

1 x2
)∥∥2

Σ
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