
Derivatives and Differentials

Frank Dellaert

October 31, 2021

Part I

Theory
1 Optimization
We will be concerned with minimizing a non-linear least squares objective of the form

x∗ = argmin
x
‖h(x)− z‖2

Σ (1.1)

where x ∈M is a point on an n-dimensional manifold (which could be Rn, an n-dimensional
Lie group G, or a general manifold M), z ∈ Rm is an observed measurement, h : M → Rm is

a measurement function that predicts z from x, and ‖e‖2
Σ

∆
= eT Σ−1e is the squared Mahalanobis

distance with covariance Σ.
To minimize (1.1) we need a notion of how the non-linear measurement function h(x) behaves

in the neighborhood of a linearization point a. Loosely speaking, we would like to define an m×n
Jacobian matrix Ha such that

h(a⊕ξ)≈ h(a)+Haξ (1.2)

with ξ ∈ Rn, and the operation ⊕ “increments” a ∈M . Below we more formally develop this
notion, first for functions from Rn→ Rm, then for Lie groups, and finally for manifolds.

Once equipped with the approximation (1.2), we can minimize the objective function (1.1) with
respect to δx instead:

ξ
∗ = argmin

ξ

‖h(a)+Haξ − z‖2
Σ (1.3)

This can be done by setting the derivative of (1.3) to zero, yielding the normal equations,

HT
a Haξ = HT

a (z−h(a))

which can be solved using Cholesky factorization. Of course, we might have to iterate this multiple
times, and use a trust-region method to bound ξ when the approximation (1.2) is not good.

1

2 Multivariate Differentiation

2.1 Derivatives
For a vector space Rn, the notion of an increment is just done by vector addition

a⊕ξ
∆
= a+ξ

and for the approximation 1.2 we will use a Taylor expansion using multivariate differentiation.
However, loosely following [2], we use a perhaps unfamiliar way to define derivatives:

Definition 1. We define a function f : Rn→ Rm to be differentiable at a if there exists a matrix
f ′(a) ∈ Rm×n such that

lim
δx→0

| f (a)+ f ′(a)ξ − f (a+ξ)|
|ξ |

= 0

where |e| ∆
=
√

eT e is the usual norm. If f is differentiable, then the matrix f ′(a) is called the
Jacobian matrix of f at a, and the linear map D fa : ξ 7→ f ′(a)ξ is called the derivative of f at a.

When no confusion is likely, we use the notation Fa
∆
= f ′(a) to stress that f ′(a) is a matrix.

The benefit of using this definition is that it generalizes the notion of a scalar derivative f ′(a) :
R→ R to multivariate functions from Rn → Rm. In particular, the derivative D fa maps vector
increments ξ on a to increments f ′(a)ξ on f (a), such that this linear map locally approximates f :

f (a+ξ)≈ f (a)+ f ′(a)ξ

Example 1. The function π : (x,y,z) 7→ (x/z,y/z) projects a 3D point (x,y,z) to the image plane,
and has the Jacobian matrix

π
′(x,y,z) =

1
z

[
1 0 −x/z
0 1 −y/z

]

2.2 Properties of Derivatives
This notion of a multivariate derivative obeys the usual rules:

Theorem 1. (Chain rule) If f : Rn→Rp is differentiable at a and g : Rp→Rm is differentiable at
f (a), then the Jacobian matrix Ha of h = g◦ f at a is the m×n matrix product

Ha = G f (a)Fa

where G f (a) is the m× p Jacobian matrix of g evaluated at f (a), and Fa is the p× n Jacobian
matrix of f evaluated at a.

Proof. See [2]

Example 2. If we follow the projection π by a calibration step γ : (x,y) 7→ (u0+ f x,u0+ f y), with

γ
′(x,y) =

[
f 0
0 f

]
then the combined function γ ◦π has the Jacobian matrix

(γ ◦π)′(x,y) =
f
z

[
1 0 −x/z
0 1 −y/z

]
2

Theorem 2. (Inverse) If f : Rn → Rn is differentiable and has a differentiable inverse g ∆
= f−1,

then its Jacobian matrix Ga at a is just the inverse of that of f , evaluated at g(a):

Ga =
[
Fg(a)

]−1

Proof. See [2]

Example 3. The function f : (x,y) 7→ (x2,xy) has the Jacobian matrix

F(x,y) =
[

2x 0
y x

]
and, for x≥ 0, its inverse is the function g : (x,y) 7→ (x1/2,x−1/2y) with the Jacobian matrix

G(x,y) =
1
2

[
x−1/2 0
−x−3/2y 2x−1/2

]
It is easily verified that

g′(a,b) f ′(a1/2,a−1/2b) =
1
2

[
a−1/2 0
−a−3/2b 2a−1/2

][
2a1/2 0

a−1/2b a1/2

]
=

[
1 0
0 1

]
Problem 1. Verify the above for (a,b) = (4,6). Sketch the situation graphically to get insight.

2.3 Computing Multivariate Derivatives
Computing derivatives is made easy by defining the concept of a partial derivative:

Definition 2. For f : Rn→ R, the partial derivative of f at a,

D j f (a) ∆
= lim

h→0

f
(
a1, . . . ,a j +h, . . . ,an)− f

(
a1, . . . ,an)

h

which is the ordinary derivative of the scalar function g(x) ∆
= f

(
a1, . . . ,x, . . . ,an).

Using this definition, one can show that the Jacobian matrix Fa of a differentiable multivariate
function f : Rn→Rm consists simply of the m×n partial derivatives D j f i(a), evaluated at a ∈Rn:

Fa =

 D1 f 1(a) · · · Dn f 1(a)
...

D1 f m(a) . . . Dn f m(a)


Problem 2. Verify the derivatives in Examples 1 to 3.

3

3 Multivariate Functions on Lie Groups

3.1 Lie Groups
Lie groups are not as easy to treat as the vector space Rn but nevertheless have a lot of structure.
To generalize the concept of the total derivative above we just need to replace a⊕ξ in (1.3) with a
suitable operation in the Lie group G. In particular, the notion of an exponential map allows us to
define a mapping from local coordinates ξ back to a neighborhood in G around a,

a⊕ξ
∆
= aexp

(
ξ̂

)
(3.1)

with ξ ∈Rn for an n-dimensional Lie group. Above, ξ̂ ∈ g is the Lie algebra element corresponding
to the vector ξ , and exp ξ̂ the exponential map. Note that if G is equal to Rn then composing with
the exponential map aeξ̂ is just vector addition a+ξ .

Example 4. For the Lie group SO(3) of 3D rotations the vector ξ is denoted as ωt and represents
an angular displacement. The Lie algebra element ξ̂ is a skew symmetric matrix denoted as [ωt]× ∈
so(3), and is given by

[ωt]× =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 t

Finally, the increment a⊕ξ = aeξ̂ corresponds to an incremental rotation R⊕ωt = Re[ωt]× .

3.2 Local Coordinates vs. Tangent Vectors
In differential geometry, tangent vectors v ∈ TaG at a are elements of the Lie algebra g, and are
defined as

v ∆
=

∂γ(t)
∂ t

∣∣∣∣
t=0

where γ is some curve that passes through a at t = 0, i.e. γ(0) = a. In particular, for any fixed local
coordinate ξ the map (3.1) can be used to define a geodesic curve on the group manifold defined
by γ : t 7→ aet̂ξ , and the corresponding tangent vector is given by

∂aet̂ξ

∂ t

∣∣∣∣
t=0

= aξ̂ (3.2)

This defines the mapping between local coordinates ξ ∈Rn and actual tangent vectors aξ̂ ∈ g: the
vector ξ defines a direction of travel on the manifold, but does so in the local coordinate frame a.

Example 5. Assume a rigid body’s attitude is described by Rn
b(t), where the indices denote the nav-

igation frame N and body frame B, respectively. An extrinsically calibrated gyroscope measures
the angular velocity ωb, in the body frame, and the corresponding tangent vector is

Ṙn
b(t) = Rn

b(t)ω̂b

4

3.3 Derivatives
We can generalize Definition 1 to map local coordinates ξ to increments f ′(a)ξ on f (a), such that
the linear map D fa approximates the function f from G to Rm in a neighborhood around a:

f (aeξ̂)≈ f (a)+ f ′(a)ξ

Definition 3. We define a function f : G→Rm to be differentiable at a∈G if there exists a matrix
f ′(a) ∈ Rm×n such that

lim
ξ→0

∣∣∣ f (a)+ f ′(a)ξ − f (aeξ̂)
∣∣∣

|ξ |
= 0

If f is differentiable, then the matrix f ′(a) is called the Jacobian matrix of f at a, and the linear
map D fa : ξ 7→ f ′(a)ξ is called the derivative of f at a.

3.4 Derivative of an Action
The (usual) action of a matrix group G is matrix-vector multiplication on Rn, i.e., f : G×Rn→Rn

with
f (T, p) = T p

Since this is a function defined on the product G×Rn the derivative is a linear transformation
D f : Rm+n→ Rn with

D f(T,p) (ξ ,δ p) = D1 f(T,p) (ξ)+D2 f(T,p) (δ p)

where m is the dimensionality of the manifold G.

Theorem 3. The Jacobian matrix of the group action f (T, p) = T p at (T, p) is given by

F(T,p) =
[

T H(p) T
]
= T

[
H(p) In

]
with H : Rm→ Rn×m a linear mapping that depends on p, and In the n×n identity matrix.

Proof. First, the derivative D2 f with respect to p is easy, as its matrix is simply T:

f (T, p+δ p) = T (p+δ p) = T p+T δ p = f (T, p)+D2 f (δ p)

For the derivative D1 f with respect to a change in the first argument T , we want to find the linear
map D1 f such that

T p+D1 f (ξ)≈ f (Teξ̂ , p) = Teξ̂ p

Since the matrix exponential is given by the series eA = I+A+ A2

2! +
A3

3! + . . . we have, to first order

Teξ̂ p≈ T (I + ξ̂)p = T p+T ξ̂ p

and D1 f (ξ) = T ξ̂ p. Hence, to complete the proof, we need to show that

ξ̂ p = H(p)ξ (3.3)

5

with H(p) an n×m matrix that depends on p. Expressing the map ξ → ξ̂ in terms of the Lie
algebra generators Gi, using tensors and Einstein summation, we have ξ̂ i

j = Gi
jkξ k allowing us to

calculate ξ̂ p as (
ξ̂ p
)i

= ξ̂
i
j p

j = Gi
jkξ

k p j =
(

Gi
jk p j
)

ξ
k = H i

k(p)ξ k

Example 6. For 3D rotations R ∈ SO(3), we have ω̂ = [ω]× and

Gk=1 :

 0 0 0
0 0 −1
0 1 0

Gk=2 :

 0 0 1
0 0 0
−1 0 0

 Gk=3 :

 0 −1 0
1 0 0
0 0 0


The matrices

(
Gi

k

)
j are obtained by assembling the jth columns of the generators above, yielding

H(p) equal to: 0 0 0
0 0 1
0 −1 0

 p1+

 0 0 −1
0 0 0
1 0 0

 p2+

 0 1 0
−1 0 0
0 0 0

 p3 =

 0 p3 −p2

−p3 0 p1

p2 −p1 0

= [−p]×

Hence, the Jacobian matrix of f (R, p) = Rp is given by

F(R,p) = R
(
[−p]× I3

)
3.5 Derivative of an Inverse Action
Applying the action by the inverse of T ∈ G yields a function g : G×Rn→ Rn defined by

g(T, p) = T−1 p

Theorem 4. The Jacobian matrix of the inverse group action g(T, p) = T−1 p is given by

G(T,p) =
[
−H(T−1 p) T−1]

where H : Rn→ Rn×n is the same mapping as before.

Proof. Again, the derivative D2g with respect to in p is easy, the matrix of which is simply T−1:

g(T, p+δ p) = T−1(p+δ p) = T−1 p+T−1
δ p = g(T, p)+D2g(δ p)

Conversely, a change in T yields

g(Teξ̂ , p) =
(

Teξ̂

)−1
p = e−ξ̂ T−1 p

Similar to before, if we expand the matrix exponential we get

e−A = I−A+
A2

2!
− A3

3!
+ . . .

so
e−ξ̂ T−1 p≈ (I− ξ̂)T−1 p = g(T, p)− ξ̂

(
T−1 p

)
Example 7. For 3D rotations R∈ SO(3) we have R−1 =RT , H(p)=−[p]×, and hence the Jacobian
matrix of g(R, p) = RT p is given by

G(R,p) =
(
[RT p]× RT)
6

4 Instantaneous Velocity
For matrix Lie groups, if we have a matrix T n

b (t) that depends on a parameter t, i.e., T n
b (t) follows

a curve on the manifold, then it would be of interest to find the velocity of a point qn(t) = T n
b (t)pb

acted upon by T n
b (t). We can express the velocity of q(t) in both the n-frame and b-frame:

q̇n = Ṫ n
b pb = Ṫ n

b (T n
b)
−1 pn and q̇b = (T n

b)
−1 q̇n = (T n

b)
−1 Ṫ n

b pb

Both the matrices ξ̂ n
nb

∆
= Ṫ n

b

(
T n

b

)−1 and ξ̂ b
nb

∆
=
(
T n

b

)−1 Ṫ n
b are skew-symmetric Lie algebra elements

that describe the instantaneous velocity [1, page 51 for rotations, page 419 for SE(3)]. We will
revisit this for both rotations and rigid 3D transformations.

5 Differentials: Smooth Mapping between Lie Groups

5.1 Motivation and Definition
The above shows how to compute the derivative of a function f : G→ Rm. However, what if the
argument to f is itself the result of a mapping between Lie groups? In other words, f = g◦ϕ , with
g : G→Rm and where ϕ : H→G is a smooth mapping from the n-dimensional Lie group H to the
p-dimensional Lie group G. In this case, one would expect that we can arrive at D fa by composing
linear maps, as follows:

f ′(a) = (g◦ϕ)′(a) = Gϕ(a)ϕ
′(a)

where ϕ ′(a) is an n× p matrix that is the best linear approximation to the map ϕ : H → G. The
corresponding linear map Dϕa is called the differential or pushforward of the mapping ϕ at a.

Because a rigorous definition will lead us too far astray, here we only informally define the
pushforward of ϕ at a as the linear map Dϕa : Rn→ Rp such that Dϕa (ξ)

∆
= ϕ ′(a)ξ and

ϕ

(
aeξ̂

)
≈ ϕ (a)exp

(
ϕ̂ ′(a)ξ

)
(5.1)

with equality for ξ → 0. We call ϕ ′(a) the Jacobian matrix of the map ϕ at a. Below we show
that even with this informal definition we can deduce the pushforward in a number of useful cases.

5.2 Left Multiplication with a Constant
Theorem 5. Suppose G is an n-dimensional Lie group, and ϕ : G→ G is defined as ϕ(g) = hg,
with h ∈ G a constant. Then Dϕa is the identity mapping and

ϕ
′(a) = In

Proof. Defining y = Dϕax as in (5.1), we have

ϕ(a)eŷ = ϕ(aex̂)

haeŷ = haex̂

y = x

7

5.3 Pushforward of the Inverse Mapping

A well known property of Lie groups is the the fact that applying an incremental change ξ̂ in a
different frame g can be applied in a single step by applying the change Adgξ̂ in the original frame,

geξ̂ g−1 = exp
(

Adgξ̂

)
(5.2)

where Adg : g→ g is the adjoint representation. This comes in handy in the following:

Theorem 6. Suppose that ϕ : G→ G is defined as the mapping from an element g to its inverse
g−1, i.e., ϕ(g) = g−1, then the pushforward Dϕa satisfies

(Dϕax)ˆ=−Adax̂ (5.3)

In other words, and this is intuitive in hindsight, approximating the inverse is accomplished by
negation of ξ̂ , along with an adjoint to make sure it is applied in the right frame. Note, however,
that (5.3) does not immediately yield a useful expression for the Jacobian matrix ϕ ′(a), but in
many important cases this will turn out to be easy.

Proof. Defining y = Dϕax as in (5.1), we have

ϕ(a)eŷ = ϕ(aex̂)

a−1eŷ =
(
aex̂)−1

eŷ = −aex̂a−1

ŷ = −Adax̂

Example 8. For 3D rotations R ∈ SO(3) we have

Adg(ω̂) = Rω̂RT = [Rω]×

and hence the pushforward for the inverse mapping ϕ(R) = RT has the matrix ϕ ′(R) =−R.

5.4 Right Multiplication with a Constant
Theorem 7. Suppose ϕ : G→G is defined as ϕ(g) = gh, with h∈G a constant. Then Dϕa satisfies

(Dϕax)ˆ= Adh−1 x̂

Proof. Defining y = Dϕax as in (5.1), we have

ϕ(a)eŷ = ϕ(aex̂)

ahe = aex̂h

eŷ = h−1ex̂h = exp(Adh−1 x̂)
ŷ = Adh−1 x̂

8

Example 9. In the case of 3D rotations, right multiplication with a constant rotation R is done
through the mapping ϕ(A) = AR, and satisfies

[DϕAx]× = AdRT [x]×

For 3D rotations R ∈ SO(3) we have

AdRT (ω̂) = RT
ω̂R = [RT

ω]×

and hence the Jacobian matrix of ϕ at A is ϕ ′(A) = RT .

5.5 Pushforward of Compose
Theorem 8. If we define the mapping ϕ : G×G→G as the product of two group elements g,h∈G,
i.e., ϕ(g,h) = gh, then the pushforward will satisfy

Dϕ(a,b)(x,y) = D1ϕ(a,b)x+D2ϕ(a,b)y

with (
D1ϕ(a,b)x

)
ˆ= Adb−1 x̂ and D2ϕ(a,b)y = y

Proof. Looking at the first argument, the proof is very similar to right multiplication with a con-
stant b. Indeed, defining y = Dϕax as in (5.1), we have

ϕ(a,b)eŷ = ϕ(aex̂,b)

abeŷ = aex̂b

eŷ = b−1ex̂b = exp(Adb−1 x̂)
ŷ = Adb−1 x̂ (5.4)

In other words, to apply an incremental change x̂ to a we first need to undo b, then apply x̂, and
then apply b again. Using (5.2) this can be done in one step by simply applying Adb−1 x̂.

The second argument is quite a bit easier and simply yields the identity mapping:

ϕ(a,b)eŷ = ϕ(a,bex̂)

abeŷ = abex̂

y = x (5.5)

Example 10. For 3D rotations A,B ∈ SO(3) we have ϕ(A,B) = AB, and AdBT [ω]× = [BT ω]×,
hence the Jacobian matrix ϕ ′(A,B) of composing two rotations is given by

ϕ
′(A,B) =

[
BT I3

]

9

5.6 Pushforward of Between
Finally, let us find the pushforward of between, defined as ϕ(g,h) = g−1h. For the first argument
we reason as:

ϕ(g,h)eŷ = ϕ(gex̂,h)

g−1heŷ =
(
gex̂)−1

h =−ex̂g−1h

eŷ =−
(
h−1g

)
ex̂ (h−1g

)−1
=−expAd(h−1g)x̂

ŷ =−Ad(h−1g)x̂ =−Adϕ(h,g)x̂ (5.6)

The second argument yields the identity mapping.

Example 11. For 3D rotations A,B∈ SO(3) we have ϕ(A,B)=AT B, and AdBT A[−ω]×= [−BT Aω]×,
hence the Jacobian matrix ϕ ′(A,B) of between is given by

ϕ
′(A,B) =

[(
−BT A

)
I3
]

5.7 Numerical PushForward
Let’s examine

f (g)eŷ = f
(
gex̂)

and multiply with f (g)−1 on both sides:

eŷ = f (g)−1 f
(
gex̂)

We then take the log (which in our case returns y, not ŷ):

y(x) = log
[

f (g)−1 f
(
gex̂)]

Let us look at x = 0, and perturb in direction i, ei = [0,0,1,0,0]. Then take derivative,

∂y(d)
∂d

∆
= lim

d→0

y(d)− y(0)
d

= lim
d→0

1
d

log
[

f (g)−1 f
(

ged̂ei
)]

which is the basis for a numerical derivative scheme.

5.8 Derivative of the Exponential Map
Theorem 9. The derivative of the function f : Rn→ G that applies the wedge operator followed
by the exponential map, i.e., f (ξ) = exp ξ̂ , is the identity map for ξ = 0.

Proof. For ξ = 0, we have

f (ξ)eŷ = f (ξ + x)
f (0)eŷ = f (0+ x)

eŷ = ex̂

10

Corollary 1. The derivative of the inverse f−1 is the identity as well, i.e., for T = e, the identity
element in G.

For ξ 6= 0, things are not simple. As with pushforwards above, we will be looking for an n×n
Jacobian f ′(ξ) such that

f (ξ +δ)≈ f (ξ)exp
(

f̂ ′(ξ)δ
)

(5.7)

Differential geometry tells us that for any Lie algebra element ξ̂ ∈ g there exists a linear map
d exp

ξ̂
: T

ξ̂
g→ Texp(ξ̂)G, which is given by1

d exp
ξ̂

x̂ = exp(ξ̂)
1− exp(−ad

ξ̂
)

ad
ξ̂

x̂ (5.8)

with x̂∈ T
ξ̂
g and ad

ξ̂
itself a linear map taking x̂ to [ξ̂ , x̂], the Lie bracket. The actual formula above

is not really as important as the fact that the linear map exists, although it is expressed directly in
terms of tangent vectors to g and G. Equation (5.8) is a tangent vector, and comparing with (3.2)
we see that it maps to local coordinates y as follows:

ŷ =
1− exp(−ad

ξ̂
)

ad
ξ̂

x̂

which can be used to construct the Jacobian f ′(ξ).

Example 12. For SO(3), the operator ad
ξ̂

is simply a matrix multiplication when representing

so(3) using 3-vectors, i.e., ad
ξ̂

x = ξ̂ x, and the 3×3 Jacobian corresponding to d exp is

f ′(ξ) =
I3×3− exp(−ξ̂)

ξ̂
=

∞

∑
k=0

(−1)k

(k+1)!
ξ̂

k

which, similar to the exponential map, has a simple closed form expression for SO(3).

1See http://deltaepsilons.wordpress.com/2009/11/06/ or https://en.wikipedia.org/wiki/
Derivative_of_the_exponential_map.

11

http://deltaepsilons.wordpress.com/2009/11/06/
https://en.wikipedia.org/wiki/Derivative_of_the_exponential_map
https://en.wikipedia.org/wiki/Derivative_of_the_exponential_map

6 General Manifolds

6.1 Retractions
General manifolds that are not Lie groups do not have an exponential map, but can still be handled
by defining a retraction R : M ×Rn→M , such that

a⊕ξ
∆
= Ra (ξ)

A retraction [?] is required to be tangent to geodesics on the manifold M at a. We can define
many retractions for a manifold M , even for those with more structure. For the vector space Rn the
retraction is just vector addition, and for Lie groups the obvious retraction is simply the exponential
map, i.e., Ra(ξ) = a · exp ξ̂ . However, one can choose other, possibly computationally attractive
retractions, as long as around a they agree with the geodesic induced by the exponential map, i.e.,

lim
ξ→0

∣∣∣a · exp ξ̂ −Ra (ξ)
∣∣∣

|ξ |
= 0

Example 13. For SE(3), instead of using the true exponential map it is computationally more
efficient to define the retraction, which uses a first order approximation of the translation update

RT

([
ω

v

])
=

[
R t
0 1

][
e[ω]× v

0 1

]
=

[
Re[ω]× t +Rv

0 1

]

6.2 Derivatives
Equipped with a retraction, then, we can generalize the notion of a derivative for functions f from
general a manifold M to Rm:

Definition 4. We define a function f : M → Rm to be differentiable at a ∈M if there exists a
matrix f ′(a) such that

lim
ξ→0

| f (a)+ f ′(a)ξ − f (Ra(ξ))|
|ξ |

= 0

with ξ ∈ Rn for an n-dimensional manifold, and Ra : Rn →M a retraction R at a. If f is
differentiable, then f ′(a) is called the Jacobian matrix of f at a, and the linear transformation
D fa : ξ 7→ f ′(a)ξ is called the derivative of f at a.

For manifolds that are also Lie groups, the derivative of any function f : G→Rm will agree no
matter what retraction R is used.

12

Part II

Practice
Below we apply the results derived in the theory part to the geometric objects we use in GTSAM.
Above we preferred the modern notation D1 f for the partial derivative. Below (because this was
written earlier) we use the more classical notation

∂ f (x,y)
∂x

In addition, for Lie groups we will abuse the notation and take

∂ϕ(g)
∂ξ

∣∣∣∣
a

to be the Jacobian matrix ϕ ′(a) of the mapping ϕ at a ∈ G, associated with the pushforward Dϕa.

7 SLAM Example
Let us examine a visual SLAM example. We have 2D measurements zi j, where each measurement
is predicted by

zi j = h(Ti, p j) = π(T−1
i p j)

where Ti is the 3D pose of the ith camera, p j is the location of the jth point, and π : (x,y,z) 7→
(x/z,y/z) is the camera projection function from Example 1.

8 BetweenFactor
BetweenFactor is a factor in GTSAM that is used ubiquitously to process measurements indicating
the relative pose between two unknown poses T1 and T2. Let us assume the measured relative pose
is Z, then the code that calculates the error in BetweenFactor first calculates the predicted relative
pose T12, and then evaluates the error between the measured and predicted relative pose:

T12 = between(T1, T2);
return localCoordinates(Z, T12);

where we recall that the function between is given in group theoretic notation as

ϕ(g,h) = g−1h

The function localCoordinates itself also calls between, and converts to canonical coordinates:

localCoordinates(Z,T12) = Logmap(between(Z, T12));

13

Hence, given two elements T1 and T2, BetweenFactor evaluates g : G×G→ Rn,

g(T1,T2;Z) = f−1 (ϕ(Z,ϕ(T1,T2)) = f−1 (Z−1 (T−1
1 T2

))
where f−1 is the inverse of the map f : ξ 7→ exp ξ̂ . If we assume that the measurement has only
small error, then Z ≈ T−1

1 T2, and hence we have Z−1T−1
1 T2 ≈ e, and we can invoke Theorem 9,

which says that the derivative of the exponential map f : ξ 7→ exp ξ̂ is identity at ξ = 0, as well as
its inverse.

Finally, because the derivative of between is identity in its second argument, the derivative
of the BetweenFactor error is identical to the derivative of pushforward of ϕ(T1,T2), derived in
Section 5.6.

9 Point3
A cross product a×b can be written as a matrix multiplication

a×b = [a]×b

where [a]× is a skew-symmetric matrix defined as

[x,y,z]× =

 0 −z y
z 0 −x
−y x 0


We also have

aT [b]× =−([b]×a)T =−(a×b)T

The derivative of a cross product
∂ (a×b)

∂a
= [−b]× (9.1)

∂ (a×b)
∂b

= [a]× (9.2)

14

10 2D Rotations

10.1 Rot2 in GTSAM
A rotation is stored as (cosθ ,sinθ). An incremental rotation is applied using the trigonometric
sum rule:

cosθ
′ = cosθ cosδ − sinθ sinδ

sinθ
′ = sinθ cosδ + cosθ sinδ

where δ is an incremental rotation angle.

10.2 Derivatives of Actions
In the case of SO(2) the vector space is R2, and the group action f (R, p) corresponds to rotating
the 2D point p

f (R, p) = Rp

According to Theorem 3, the Jacobian matrix of f is given by

f ′(R, p) =
[

RH(p) R
]

with H : R2→ R2×2 a linear mapping that depends on p. In the case of SO(2), we can find H(p)
by equating (as in Equation 3.3):

[w]+p =

[
0 −ω

ω 0

][
x
y

]
=

[
−y
x

]
ω = H(p)ω

Note that

H(p) =
[
−y
x

]
=

[
0 −1
1 0

][
x
y

]
= Rπ/2 p

and since 2D rotations commute, we also have, with q = Rp:

f ′(R, p) =
[

R
(
Rπ/2 p

)
R
]
=
[

Rπ/2q R
]

10.3 Pushforwards of Mappings
Since AdR[ω]+ = [ω]+, we have the derivative of inverse,

∂RT

∂ω
=−AdR =−1

compose,
∂ (R1R2)

∂ω1
= AdRT

2
= 1 and

∂ (R1R2)

∂ω2
= 1

and between:
∂
(
RT

1 R2
)

∂ω1
=−AdRT

2 R1
=−1 and

∂
(
RT

1 R2
)

∂ω2
= 1

15

11 2D Rigid Transformations

11.1 The derivatives of Actions
The action of SE(2) on 2D points is done by embedding the points in R3 by using homogeneous
coordinates

f (T, p) = q̂ =

[
q
1

]
=

[
R t
0 1

][
p
1

]
= T p̂

To find the derivative, we write the quantity ξ̂ p̂ as the product of the 3×3 matrix H(p) with ξ :

ξ̂ p̂ =

[
[ω]+ v

0 0

][
p
1

]
=

[
[ω]+p+ v

0

]
=

[
I2 Rπ/2 p
0 0

][
v
ω

]
= H(p)ξ (11.1)

Hence, by Theorem 3 we have

∂ (T p̂)
∂ξ

= T H(p) =
[

R t
0 1

][
I2 Rπ/2 p
0 0

]
=

[
R RRπ/2 p
0 0

]
=

[
R Rπ/2q
0 0

]
(11.2)

Note that, looking only at the top rows of (11.1) and (11.2), we can recognize the quantity [ω]+p+
v = v+ω

(
Rπ/2 p

)
as the velocity of p in R2, and

[
R Rπ/2q

]
is the derivative of the action on

R2.
The derivative of the inverse action g(T, p)= T−1 p̂ is given by Theorem 4 specialized to SE(2):

∂
(
T−1 p̂

)
∂ξ

=−H(T−1 p) =
[
−I2 −Rπ/2

(
T−1 p

)
0 0

]

11.2 Pushforwards of Mappings
We can just define all derivatives in terms of the adjoint map, which in the case of SE(2), in twist
coordinates, is the linear mapping

AdT ξ =

[
R −Rπ/2t
0 1

][
v
ω

]
and we have

∂T
−1

∂ξ
= −AdT

∂ (T1T2)

∂ξ1
= Ad

T−1
2

and
∂ (T1T2)

∂ξ2
= I3

∂
(
T−1

1 T2
)

∂ξ1
= −Ad

T−1
2 T1

=−Adbetween(T2,T1) and
∂
(
T−1

1 T2
)

∂ξ2
= I3

16

12 3D Rotations

12.1 Derivatives of Actions
In the case of SO(3) the vector space is R3, and the group action f (R, p) corresponds to rotating a
point

q = f (R, p) = Rp

To calculate H(p) for use in Theorem (3) we make use of

[ω]×p = ω× p =−p×ω = [−p]×ω

so H(p) ∆
= [−p]×. Hence, the final derivative of an action in its first argument is

∂ (Rp)
∂ω

= RH(p) =−R[p]× (12.1)

Likewise, according to Theorem 4, the derivative of the inverse action is given by

∂
(
RT p

)
∂ω

=−H(RT p) = [RT p]×

12.2 Instantaneous Velocity
For 3D rotations Rn

b from a body frame b to a navigation frame n we have the spatial angular
velocity ωn

nb measured in the navigation frame,

[ωn
nb]×

∆
= Ṙn

b (R
n
b)

T = Ṙn
bRb

n

and the body angular velocity ωb
nb measured in the body frame:

[ωb
nb]×

∆
= (Rn

b)
T Ṙn

b = Rb
nṘn

b

These quantities can be used to derive the velocity of a point p, and we choose between spatial or
body angular velocity depending on the frame in which we choose to represent p:

vn = [ωn
nb]×pn = ω

n
nb× pn

vb = [ωb
nb]×pb = ω

b
nb× pb

We can transform these skew-symmetric matrices from navigation to body frame by conjugating,

[ωb
nb]× = Rb

n[ω
n
nb]×Rn

b

but because the adjoint representation satisfies

AdR[ω]×
∆
= R[ω]×RT = [Rω]×

we can even more easily transform between spatial and body angular velocities as 3-vectors:

ω
b
nb = Rb

nω
n
nb

17

12.3 Pushforwards of Mappings
For SO(3) we have AdR[ω]× = [Rω]× and, in terms of angular velocities: AdRω = Rω . Hence, the
Jacobian matrix of the inverse mapping is (see Equation 5.3)

∂RT

∂ω
=−AdR =−R

for compose we have (Equations 5.4 and 5.5):

∂ (R1R2)

∂ω1
= RT

2 and
∂ (R1R2)

∂ω2
= I3

and between (Equation 5.6):

∂
(
RT

1 R2
)

∂ω1
=−RT

2 R1 =−between(R2,R1) and
∂ (R1R2)

∂ω2
= I3

12.4 Retractions
Absil [?, page 58] discusses two possible retractions for SO(3) based on the QR decomposition
or the polar decomposition of the matrix R[ω]×, but they are expensive. Another retraction is
based on the Cayley transform C : so(3)→ SO(3), a mapping from the skew-symmetric matrices
to rotation matrices:

Q = C (Ω) = (I−Ω)(I +Ω)−1

Interestingly, the inverse Cayley transform C−1 : SO(3)→ so(3) has the same form:

Ω = C−1(Q) = (I−Q)(I +Q)−1

The retraction needs a factor −1
2 however, to make it locally align with a geodesic:

R′ = RR(ω) = RC (−1
2
[ω]×)

Note that given ω = (x,y,z) this has the closed-form expression below

1
4+ x2 + y2 + z2

 4+ x2− y2− z2 2xy−4z 2xz+4y
2xy+4z 4− x2 + y2− z2 2yz−4x
2xz−4y 2yz+4x 4− x2− y2 + z2



=
1

4+ x2 + y2 + z2

4(I +[ω]×)+

 x2− y2− z2 2xy 2xz
2xy −x2 + y2− z2 2yz
2xz 2yz −x2− y2 + z2


so it can be seen to be a second-order correction on (I +[ω]×). The corresponding approximation
to the logarithmic map is:

[ω]× = R−1
R (R′) =−2C−1 (RT R′

)

18

13 3D Rigid Transformations

13.1 The derivatives of Actions
The action of SE(3) on 3D points is done by embedding the points in R4 by using homogeneous
coordinates

q̂ =

[
q
1

]
= f (T, p) =

[
R t
0 1

][
p
1

]
= T p̂

The quantity ξ̂ p̂ corresponds to a velocity in R4 (in the local T frame), and equating it to H(p)ξ
as in Equation 3.3 yields the 4×6 matrix H(p)2:

ξ̂ p̂ =

[
[ω]× v

0 0

][
p
1

]
=

[
ω× p+ v

0

]
=

[
[−p]× I3

0 0

][
ω

v

]
= H(p)ξ

Note how velocities are analogous to points at infinity in projective geometry: they correspond
to free vectors indicating a direction and magnitude of change. According to Theorem 3, the
derivative of the group action is then

∂ (T p̂)
∂ξ

= T H(p) =
[

R t
0 1

][
[−p]× I3

0 0

]
=

[
R[−p]× R

0 0

]
∂ (T p̂)

∂ p̂
=

[
R t
0 1

]
in homogenous coordinates. In R3 this becomes R

[
−[p]× I3

]
.

The derivative of the inverse action T−1 p is given by Theorem 4:

∂
(
T−1 p̂

)
∂ξ

=−H
(
T−1 p̂

)
=
[
[T−1 p̂]× −I3

]
∂
(
T−1 p̂

)
∂ p̂

=

[
RT −RT t
0 1

]
Example 14. Let us examine a visual SLAM example. We have 2D measurements zi j, where each
measurement is predicted by

zi j = h(Ti, p j) = π(T−1
i p j) = π(q)

where Ti is the 3D pose of the ith camera, p j is the location of the jth point, q = (x′,y′,z′) = T−1 p
is the point in camera coordinates, and π : (x,y,z) 7→ (x/z,y/z) is the camera projection function
from Example 1. By the chain rule, we then have

∂h(T, p)
∂ξ

=
∂π(q)

∂q
∂ (T−1 p)

∂ξ
=

1
z′

[
1 0 −x′/z′

0 1 −y′/z′

][
[q]× −I3

]
=
[

π ′(q)[q]× −π ′(q)
]

∂h(T, p)
∂ p

= π
′(q)RT

2H(p) can also be obtained by taking the jth column of each of the 6 generators to multiply with components of p̂

19

13.2 Derivative of Adjoint

Consider f : SE(3)×R6 → R6 is defined as f (T,ξb) = AdT ξ̂b. The derivative is notated (see
Section 3.4):

D f(T,ξb)(ξ ,δξb) = D1 f(T,ξb)(ξ)+D2 f(T,ξb)(δξb)

First, computing D2 f(T,ξb)(ξb) is easy, as its matrix is simply AdT :

f (T,ξb +δξb) = AdT (̂ξb +δξb) = AdT (ξ̂b)+AdT (δ ξ̂b)

D2 f(T,ξb)(ξb) = AdT

We will derive D1 f(T,ξb)(ξ) using two approaches. In the first, we’ll define g(T,ξ) , T exp ξ̂ .
From Section 3.4,

D2g(T,ξ)(ξ) = T ξ̂

D2g−1
(T,ξ)(ξ) =−ξ̂ T−1

Now we can use the definition of the Adjoint representation Adgξ̂ = gξ̂ g−1 (aka conjugation by g)
then apply product rule and simplify:

D1 f(T,ξb)(ξ) = D1

(
AdT exp(ξ̂)ξ̂b

)
(ξ) = D1

(
gξ̂bg−1

)
(ξ)

=
(
D2g(T,ξ)(ξ)

)
ξ̂bg−1(T,0)+g(T,0)ξ̂b

(
D2g−1

(T,ξ)(ξ)
)

= T ξ̂ ξ̂bT−1−T ξ̂bξ̂ T−1

= T
(

ξ̂ ξ̂b− ξ̂bξ̂

)
T−1

= AdT (ad
ξ̂

ξ̂b)

=−AdT (ad
ξ̂b

ξ̂)

D1F(T,ξb) =−(AdT)(ad
ξ̂b
)

Where ad
ξ̂

: g→ g is the adjoint map of the lie algebra.
The second, perhaps more intuitive way of deriving D1 f(T,ξb)(ξb), would be to use the fact that

the derivative at the origin D1AdI ξ̂b = ad
ξ̂b

by definition of the adjoint adξ . Then applying the
property AdAB = AdAAdB,

D1AdT ξ̂b(ξ) = D1AdT∗I ξ̂b(ξ) = AdT

(
D1AdI ξ̂b(ξ)

)
= AdT

(
ad

ξ̂
(ξ̂b)

)
=−AdT

(
ad

ξ̂b
(ξ̂)
)

20

13.3 Derivative of AdjointTranspose
The transpose of the Adjoint, AdT

T : g∗→ g∗, is useful as a way to change the reference frame of
vectors in the dual space (note the ∗ denoting that we are now in the dual space). To be more
concrete, whereas AdT ξ̂b converts the twist ξb from the T frame, AdT

T ξ̂ ∗b converts the wrench ξ ∗b
from the T frame. It’s difficult to apply a similar derivation as in Section 13.2 for the derivative
of AdT

T ξ̂ ∗b because AdT
T cannot be naturally defined as a conjugation, so we resort to crunching

through the algebra. The details are omitted but the result is a form that vaguely resembles (but
does not exactly match) ad(AdT

T ξ̂ ∗b):

[
ωT
vT

]∗
, AdT

T ξ̂
∗
b

D1AdT
T ξ̂
∗
b (ξ) =

[
ω̂T v̂T
v̂T 0

]

13.4 Instantaneous Velocity
For rigid 3D transformations T n

b from a body frame b to a navigation frame n we have the instan-
taneous spatial twist ξ n

nb measured in the navigation frame,

ξ̂
n
nb

∆
= Ṫ n

b (T n
b)
−1

and the instantaneous body twist ξ b
nb measured in the body frame:

ξ̂
b
nb

∆
= (T n

b)
T Ṫ n

b

13.5 Pushforwards of Mappings
As we can express the Adjoint representation in terms of twist coordinates, we have[

ω ′

v′

]
=

[
R 0

[t]×R R

][
ω

v

]
Hence, as with SO(3), we are now in a position to simply posit the derivative of inverse,

∂T−1

∂ξ
=−AdT =−

[
R 0

[t]×R R

]
compose in its first argument,

∂ (T1T2)

∂ξ1
= AdT−1

2

in its second argument,
∂ (T1T2)

∂ξ2
= I6

21

between in its first argument,

∂

(
T
−1

1 T2

)
∂ξ1

=−Ad
T−1

2 T1
=

[
−RT

2 R1 0
RT

2 [t2− t1]×R1 −RT
2 R1

]
and in its second argument,

∂

(
T
−1

1 T2

)
∂ξ2

= I6

13.6 Retractions
For SE(3), instead of using the true exponential map it is computationally more efficient to design
other retractions. A first-order approximation to the exponential map does not quite cut it, as it
yields a 4×4 matrix which is not in SE(3):

T exp ξ̂ ≈ T (I + ξ̂)

= T
(

I4 +

[
[ω]× v

0 0

])
=

[
R t
0 1

][
I3 +[ω]× v

0 1

]
=

[
R(I3 +[ω]×) t +Rv

0 1

]
However, we can make it into a retraction by using any retraction defined for SO(3), including, as
below, using the exponential map Re[ω]×:

RT

([
ω

v

])
=

[
R t
0 1

][
e[ω]× v

0 1

]
=

[
Re[ω]× t +Rv

0 1

]
Similarly, for a second order approximation we have

T exp ξ̂ ≈ T (I + ξ̂ +
ξ̂ 2

2
)

= T
(

I4 +

[
[ω]× v

0 0

]
+

1
2

[
[ω]× v

0 0

][
[ω]× v

0 0

])
=

[
R t
0 1

]([
I3 +[ω]×+

1
2 [ω]2× v+ 1

2 [ω]×v
0 1

])
=

[
R
(
I3 +[ω]×+

1
2 [ω]2×

)
t +R [v+(ω× v)/2]

0 1

]
inspiring the retraction

RT

([
ω

v

])
=

[
R t
0 1

][
e[ω]× v+(ω× v)/2

0 1

]
=

[
Re[ω]× t +R [v+(ω× v)/2]

0 1

]

22

14 The Sphere S2

14.1 Definitions
The sphere S2 is the set of all unit vectors in R3, i.e., all directions in three-space:

S2 = {p ∈ R3|‖p‖= 1}

The tangent space TpS2 at a pointp consists of three-vectors ξ̂ such that ξ̂ is tangent to S2 at p, i.e.,

TpS2 ∆
=
{

ξ̂ ∈ R3|pT
ξ̂ = 0

}
While not a Lie group, we can define an exponential map, which is given in Ma et. al [?], as well
as in this CVPR tutorial by Anuj Srivastava: http://stat.fsu.edu/∼anuj/CVPR_Tutorial/Part2.pdf.

expp ξ̂ = cos
(∥∥∥ξ̂

∥∥∥) p+ sin
(∥∥∥ξ̂

∥∥∥) ξ̂∥∥∥ξ̂

∥∥∥
The latter also gives the inverse, i.e., get the tangent vector z to go from p to q:

z = logp q =
θ

sinθ
(q− pcosθ) p

with θ = cos−1 (pT q
)
.

14.2 Local Coordinates
We can find a basis Bp for the tangent space TpS2, with Bp = [b1|b2] a 3×2 matrix, by either

1. Decompose p = QR, with Q orthonormal and R of the form [100]T , and hence p = Q1. The
basis Bp = [Q2|Q3], i.e., the last two columns of Q.

2. Form b1 = p×a, with a (consistently) chosen to be non-parallel to p, and b2 = p×b1.

Now we can write ξ̂ = Bpξ with ξ ∈ R2 the 2D coordinate in the tangent plane basis Bp.

14.3 Retraction
The exponential map uses cos and sin, and is more than we need for optimization. Suppose we
have a point p ∈ S2 and a 3-vector ξ̂ ∈ TpS2, Absil [?] tells us we can simply add ξ̂ to p and
renormalize to get a new point q on the sphere. This is what he calls a retraction Rp(ξ̂),

q = Rp(ξ̂) =
p+ ξ̂

‖p+ z‖
=

p+ ξ̂

α

with α the norm of p+ ξ̂ .
We can also define a retraction from local coordinates ξ ∈ R2:

q = Rp(ξ) =
p+Bpξ∥∥p+Bpξ

∥∥
23

Inverse Retraction

If ξ̂ = Bpξ with ξ ∈ R2 the 2D coordinate in the tangent plane basis Bp, we have

ξ =
BT

p q
pT q

Proof. We seek
αq = p+Bpξ

If we multiply both sides with BT
p (project on the basis Bp) we obtain

αBT
p q = BT

p p+BT
p Bpξ

and because BT
p p = 0 and BT

p Bp = I we trivially obtain ξ as the scaled projection BT
p q:

ξ = αBT
p q

To recover the scale factor α we multiply with pT on both sides, and we get

α pT q = pT p+ pT Bpξ

Since pT p = 1 and pT Bpξ = 0, we then obtain α = 1/(pT q), which completes the proof.

14.4 Rotation acting on a 3D Direction
Rotating a point p ∈ S2 on the sphere obviously yields another point q = Rp ∈ S2, as rotation
preserves the norm. The derivative of f (R, p) with respect to R can be found by equating

Rp+BRpξ = R(I +[ω]×)p = Rp+R[ω]×p

BRpξ =−R[p]×ω

ξ =−BT
RpR[p]×ω

whereas with respect to p we have

Rp+BRpξq = R(p+Bpξp)

ξq = BT
RpRBpξp

In other words, the Jacobian matrix is given by

f ′(R, p) =
[
−BT

RpR[p]× BT
RpRBp

]

24

14.5 Error between 3D Directions
We would like to define a distance metric e(p,q) between two directions p,q ∈ S2. An obvious
choice is

θ = cos−1 (pT q
)

which is exactly the distance along the shortest path (geodesic) on the sphere, i.e., this is the
distance metric associated with the exponential. The advantage is that it is defined everywhere, but
it involves cos−1. The derivative with respect to a change in q, via ξ , is then

∂θ(p,q)
∂ξ

=
∂ cos−1 (pT q

)
∂ξ

=
pT Bq√

1− (pT q)2

which is also undefined for p = q.
A simpler metric is derived from the retraction but only holds when q≈ p. It simply projects q

onto the local coordinate basis Bp defined by p, and takes the norm:

θ(p,q) =
∥∥BT

p q
∥∥

The derivative with respect to a change in q, via ξ , is then

∂θ(p,q)
∂ξq

=
∂

∂ξq

√(
BT

p q
)2

=
1√(

BT
p q
)2

(
BT

p q
)

BT
p Bq =

BT
p q

θ(q; p)
BT

p Bq

Note that this again is undefined for θ = 0.
For use in a probabilistic factor, a signed, vector-valued error will not have the discontinuity:

θ(p,q) = BT
p q

Note this is the inverse retraction up to a scale. The derivative with respect to a change in q, via ξ ,
is found by

∂θ(p,q)
∂ξq

= BT
p

∂q
∂ξq

= BT
p Bq

Application

We can use the above to find the unknown rotation between a camera and an IMU. If we measure
the rotation between two frames as c1Zc2, and the predicted rotation from the IMU is i1Ri2, then
we can predict

c1Zc2 = iRcT · i1Ri2 · iRc

and the axis of the incremental rotations will relate as

p = iRc · z
with p the angular velocity axis in the IMU frame, and z the measured axis of rotation between the
two cameras. Note this only makes sense if the rotation is non-zero. So, given an initial estimate R
for the unknown rotation iRc between IMU and camera, the derivative of the error is (using 12.1)

∂θ(Rz; p)
∂ω

= BT
p (Rz)BT

p BRz
∂ (Rz)

∂ω
= BT

p (Rz)BT
p R[z]×

Here the 2×3 matrix BT
Rz[z]× translates changes in R to changes in Rz, and the 1×2 matrix BT

p (Rz)
describes the downstream effect on the error metric.

25

15 The Essential Matrix Manifold
We parameterize essential matrices as a pair (R, t), where R ∈ SO(3) and t ∈ S2, the unit sphere.
The epipolar matrix is then given by

E = [t]×R

and the epipolar error given two corresponding points a and b is

e(R, t;a,b) = aT Eb

We are of course interested in the derivative with respect to orientation (using 12.1)

∂ (aT [t]×Rb)
∂ω

= aT [t]×
∂ (Rb)

∂ω
=−aT [t]×R[b]× =−aT E[b]×

and with respect to change in the direction t

∂e(aT [t]×Rb)
∂ξ

= aT ∂ (Bξ ×Rb)
∂v

=−aT [Rb]×B

where we made use of the fact that the retraction can be written as t +Bξ , with B a local basis, and
we made use of (9.1):

∂ (a×b)
∂a

= [−b]×

16 2D Line Segments (Ocaml)
The error between an infinite line (a,b,c) and a 2D line segment ((x1,y1),(x2,y2)) is defined in
Line3.ml.

17 Line3vd (Ocaml)
One representation of a line is through 2 vectors (v,d), where v is the direction and the vector d
points from the orgin to the closest point on the line.

In this representation, transforming a 3D line from a world coordinate frame to a camera at
(Rc

w, t
w) is done by

vc = Rc
wvw

dc = Rc
w (d

w +(twvw)vw− tw)

18 Line3
For 3D lines, we use a parameterization due to C.J. Taylor, using a rotation matrix R and 2 scalars
a and b. The line direction v is simply the Z-axis of the rotated frame, i.e., v = R3, while the vector
d is given by d = aR1 +bR2.

Now, we will not use the incremental rotation scheme we used for rotations: because the matrix
R translates from the line coordinate frame to the world frame, we need to apply the incremental
rotation on the right-side:

R′ = R(I +Ω)

26

18.1 Projecting Line3
Projecting a line to 2D can be done easily, as both v and d are also the 2D homogenous coordinates
of two points on the projected line, and hence we have

l = v×d
= R3× (aR1 +bR2)

= a(R3×R1)+b(R3×R2)

= aR2−bR1

This can be written as a rotation of a point,

l = R

 −b
a
0


but because the incremental rotation is now done on the right, we need to figure out the derivatives
again:

∂ (R(I +Ω)x)
∂ω

=
∂ (RΩx)

∂ω
= R

∂ (Ωx)
∂ω

= R[−x]× (18.1)

and hence the derivative of the projection l with respect to the rotation matrix Rof the 3D line is

∂ (l)
∂ω

= R[

 b
−a
0

]× =
[

aR3 bR3 −(aR1 +bR2)
]

(18.2)

or the a,b scalars:
∂ (l)
∂a

= R2

∂ (l)
∂b

=−R1

18.2 Action of SE(3) on the line
Transforming a 3D line (R,(a,b)) from a world coordinate frame to a camera frame T w

c = (Rw
c , t

w)
is done by

R′ = Rc
wR

a′ = a−RT
1 tw

b′ = b−RT
2 tw

where R1 and R2 are the columns of R , as before.
To find the derivatives, the transformation of a line lw = (R,a,b) from world coordinates to

a camera coordinate frame T w
c , specified in world coordinates, can be written as a function f :

SE(3)×L→ L, as given above, i.e.,

f (T w
c , lw) =

(
(Rw

c)
T R,a−RT

1 tw,b−RT
2 tw
)
.

27

Let us find the Jacobian J1 of f with respect to the first argument T w
c , which should obey

f (T w
c eξ̂ , lw)≈ f (T w

c , lw)+ J1ξ

Note that

T w
c eξ̂ ≈

[
Rw

c (I3 +[ω]×) tw +Rw
c v

0 1

]
Let’s write this out separately for each of R,a,b:

(Rw
c (I3 +[ω]×))

T R≈ (Rw
c)

T R(I +[JRωω]×)

a−RT
1 (t

w +Rw
c v)≈ a−RT

1 tw + Javv

b−RT
2 (t

w +Rw
c v)≈ b−RT

2 tw + Jbvv

Simplifying, we get:

−[ω]×R′ ≈ R′ [JRωω]×

−RT
1 Rw

c ≈ Jav

−RT
2 Rw

c ≈ Jbv

which gives the expressions for Jav and Jbv. The top line can be further simplified:

−[ω]×R′ ≈ R′ [JRωω]×

−R′T [ω]×R′ ≈ [JRωω]×

−[R′T ω]× ≈ [JRωω]×

−R′T ≈ JRω

For the second argument R we now simply have:

AB(I +Ω
′) = AB(I +Ω)

Ω
′ = Ω

ω
′ = ω

The scalar derivatives can be found by realizing that a′

b′

...

=

 a
b
0

−RT tw

where we don’t care about the third row. Hence

∂ ((R(I +Ω2))
T tw)

∂ω
=−∂ (Ω2RT tw)

∂ω
=−[RT tw]× =

 0 RT
3 tw −RT

2 tw

−RT
3 tw 0 RT

1 tw

... ... 0



28

19 Aligning 3D Scans
Below is the explanation underlying Pose3.align, i.e. aligning two point clouds using SVD. In-
spired but modified from CVOnline...

Our model is
pc = R(pw− t)

i.e., R is from camera to world, and t is the camera location in world coordinates. The objective
function is

1
2 ∑(pc−R(pw− t))2 =

1
2 ∑(pc−Rpw +Rt)2 =

1
2 ∑

(
pc−Rpw− t ′

)2 (19.1)

where t ′ =−Rt is the location of the origin in the camera frame. Taking the derivative with respect
to t ′ and setting to zero we have

∑
(

pc−Rpw− t ′
)
= 0

or
t ′ =

1
n ∑(pc−Rpw) = p̄c−Rp̄w (19.2)

here p̄c and p̄w are the point cloud centroids. Substituting back into (19.1), we get

1
2 ∑(pc−R(pw− t))2 =

1
2 ∑((pc− p̄c)−R(pw− p̄w))2 =

1
2 ∑(p̂c−Rp̂w)2

Now, to minimize the above it suffices to maximize (see CVOnline)

trace
(
RTC

)
where C = ∑ p̂c (p̂w)T is the correlation matrix. Intuitively, the cloud of points is rotated to align
with the principal axes. This can be achieved by SVD decomposition on C

C =USV T

and setting
R =UV T

Clearly, from (19.2) we then also recover the optimal t as

t = p̄w−RT p̄c

Appendix

Differentiation Rules
Spivak [2] also notes some multivariate derivative rules defined component-wise, but they are not
that useful in practice:

29

• Since f : Rn→ Rm is defined in terms of m component functions f i, then f is differentiable
at a iff each f i is, and the Jacobian matrix Fa is the m×n matrix whose ith row is

(
f i)′ (a):

Fa
∆
= f ′(a) =


(

f 1)′ (a)
...

(f m)′ (a)


• Scalar differentiation rules: if f ,g : Rn→ R are differentiable at a, then

(f +g)′(a) = Fa +Ga

(f ·g)′(a) = g(a)Fa + f (a)Ga

(f/g)′(a) =
1

g(a)2 [g(a)Fa− f (a)Ga]

Tangent Spaces and the Tangent Bundle
The following is adapted from Appendix A in [1].

The tangent space TpM of a manifold M at a point p∈M is the vector space of tangent vectors
at p. The tangent bundle T M is the set of all tangent vectors

T M ∆
=
⋃

p∈M

TpM

A vector field X : M→ T M assigns a single tangent vector x ∈ TpM to each point p.
If F : M → N is a smooth map from a manifold M to a manifold N, then we can define the

tangent map of F at p as the linear map F∗p : TpM→ TF(p)N that maps tangent vectors in TpM at
p to tangent vectors in TF(p)N at the image F(p).

Homomorphisms
The following might be relevant [?, page 45]: suppose that Φ : G→ H is a mapping (Lie group
homomorphism). Then there exists a unique linear map φ : g→ h

φ(x̂) ∆
= lim

t→0

d
dt

Φ
(
etx̂)

such that

1. Φ
(
ex̂)= eφ(x̂)

2. φ
(
T x̂T−1)= Φ(T)φ(x̂)Φ(T−1)

3. φ ([x̂, ŷ]) = [φ(x̂),φ(ŷ)]

In other words, the map φ is the derivative of Φ at the identity. As an example, suppose Φ(g)= g−1,
then the corresponding derivative at the identity is

φ(x̂) ∆
= lim

t→0

d
dt

(
etx̂)−1

= lim
t→0

d
dt

e−tx̂ =−x̂ lim
t→0

e−tx̂ =−x̂

In general it suffices to compute φ for a basis of g.

30

References
[1] Richard M Murray, Zexiang Li, S Shankar Sastry, and S Shankara Sastry. A mathematical

introduction to robotic manipulation. CRC press, 1994.

[2] Michael Spivak. Calculus on manifolds, volume 1. WA Benjamin New York, 1965.

31

	I Theory
	Optimization
	Multivariate Differentiation
	Derivatives
	Properties of Derivatives
	Computing Multivariate Derivatives

	Multivariate Functions on Lie Groups
	Lie Groups
	Local Coordinates vs. Tangent Vectors
	Derivatives
	Derivative of an Action
	Derivative of an Inverse Action

	Instantaneous Velocity
	Differentials: Smooth Mapping between Lie Groups
	Motivation and Definition
	Left Multiplication with a Constant
	Pushforward of the Inverse Mapping
	Right Multiplication with a Constant
	Pushforward of Compose
	Pushforward of Between
	Numerical PushForward
	Derivative of the Exponential Map

	General Manifolds
	Retractions
	Derivatives

	II Practice
	SLAM Example
	BetweenFactor
	Point3
	2D Rotations
	Rot2 in GTSAM
	Derivatives of Actions
	Pushforwards of Mappings

	2D Rigid Transformations
	The derivatives of Actions
	Pushforwards of Mappings

	3D Rotations
	Derivatives of Actions
	Instantaneous Velocity
	Pushforwards of Mappings
	Retractions

	3D Rigid Transformations
	The derivatives of Actions
	Derivative of Adjoint
	Derivative of AdjointTranspose
	Instantaneous Velocity
	Pushforwards of Mappings
	Retractions

	The Sphere S2
	Definitions
	Local Coordinates
	Retraction
	Rotation acting on a 3D Direction
	Error between 3D Directions

	The Essential Matrix Manifold
	2D Line Segments (Ocaml)
	Line3vd (Ocaml)
	Line3
	Projecting Line3
	Action of SE(3) on the line

	Aligning 3D Scans

