
Xopt: Flexible Black Box Optimization 

of Simulations and Experiments
Ryan Roussel, Christopher Mayes
rroussel@slac.stanford.edu, cmayes@slac.stanford.edu

mailto:rroussel@slac.stanford.edu
mailto:cmayes@slac.stanford.edu


2

What is Xopt?

- Flexible framework for 

optimization of arbitrary problems 

using python

- Independent of problem type 

(simulation or experiment)

- Independent of optimization 

algorithm + easy to incorporate 

custom algorithms

- Easy to use text interface and/or 

advanced customized use for 

professionals
https://github.com/ChristopherMayes/Xopt



3

Xopt structure

Note: this process can also be done asynchronously



4

Xopt usage



5

Xopt input

Via YAML file (validated by pydantic): Via python code:

evaluator = Evaluator(…)

generator = CNSGAGenerator(…)

vocs = MyVOCS(…)

X = Xopt(

evaluator=evaluator, 

generator=generator, 

vocs=vocs

)



6

Evaluator specification

• Python function must accept/return dicts

• Input dict must have at least the keys specified 

in vocs variables/constants (see next slide)

• You can include extra keyword args if 

needed!

• Output dict must have at least the keys 

specified in objectives/constraints (see next 

slide)

• The function can output extra keys to be 

tracked!

• Functions can be defined at the module level 

and passed via string if they are in 

PYTHONPATH, they can also be passed inside 

the same python file (use 

__main__.my_function)

• Evaluators inherit directly from python 

concurrent.futures so you can use this for 

parallel evaluation (see 

/xopt/docs/examples/basic/xopt_parallel)



7

Evaluate function

• Python function must 

accept/return dicts

• Input dict must have at least the 

keys specified in vocs

variables/constants (see next 

slide)

• You can include extra keyword 

args if needed!

• Output dict must have at least

the keys specified in 

objectives/constraints (see next 

slide)

• The function can output extra 

keys to be tracked!



8

VOCS Specification

• Variables: input domain 

limits and names

• Objectives: objective names 

and goals 

(minimize/maximize)

• Constraints: constraint 

names and conditions 

(greater than/less than)

• Constants: constant values



9

Generator specification

• Use built-in generators by name

• Each generator has its own specific options

• Locate the default options in the docs or via 



10

Data storage

• Data is stored by xopt in 

the `data` attribute

• Set dump_file in xopt

options to dump data and 

xopt config to yaml file 

after every evaluation 

step

• Dump file can be used to 

restart xopt



11

Tips and Tricks

• Look at the examples in 

docs/examples !!!!

• Get creative with the 

evaluate function to track 

variables/outputs.

• Ask for invite to #xopt 

channel

• Always looking for help!



12

Example Application: LCLS FEL Power Characterization

• Proximal biasing to reduce exploration step size and constraints to prevent charge 

loss.

• Custom evaluate function captures 80th percentile FEL power over 100 shots.

• Data stored in Pandas DataFrame objects, exported to text file with Xopt configuration

• FEL sensitivity is captured in the GP model lengthscales inside the generator object.

• Entirely executed from an interactive Jupyter notebook.


