

Working together for a green, competitive and inclusive Europe

Thermalift v. 1.0

Users’ Guide

Maciej Miecznik

February 2025

Thermalift tool is a part of project "Optimal management of low-temperature geothermal

reservoirs – Polish-Icelandic cooperation on reservoir modelling" (acronym GeoModel),

financed under the Fund for Bilateral Relations through the European Economic Area Financial

Mechanism (EEA FM) and the Norwegian Financial Mechanism (NFM) 2014-2021 under the

Environment, Energy and Climate Change Programme.

3

Table of contents

1. Introduction .. 4

2. Theory of thermal lift .. 5

3. Structure of Thermalift package ... 8

3.1. System requirements .. 8

3.2. Folders and files tree ... 8

3.3. The main module thermalift.py ... 8

3.3.1. class Formation .. 9

3.3.2. class Well .. 10

4. Example of using the Thermalift calculator .. 15

Output graphs ... 19

List of references .. 21

4

1. Introduction

In documenting geothermal water resources, it is important to properly determine the

filtration parameters, mainly reservoir transmissivity. Its calculation is based on the results of

pumping tests or short term production. This is the most reliable method to date for

determining the filtration properties of an aquifer. Geothermal waters usually occur at great

depths, where there is high temperature and pressure, therefore, these factors cause a

number of interpretation difficulties. They are related, among others, to the non-isothermal

flow of water in the borehole, variation of flow rate and wellhead temperature during

pumping and the release of gases dissolved in water as a result of the pressure dropping below

the saturation pressure. In this article, the authors address the issue of the influence of

wellhead temperature variations during pumping on the recorded water level or wellhead

pressure. This phenomenon is called thermal lift effect.

It often happens that in the case of deep wells with good filtration parameters of the aquifer,

the shape of the drawdown curve is far from expectations, because the effect of water

expansions masks the true drawdown. The deeper the well and the higher the bottomhole

temperature, the more significant this effect is. In any case, the thermal lift effect always

causes the drawdown to be smaller than it would be observed if there was no volumetric

expansion of water. This in turn can lead to overestimation of resources and unsustainable

exploitation, because the real drawdown is often miscalculated. One way to get rid of this

problem is to measure the water level (or the wellhead pressure) in observation wells.

Another way is to measure the bottomhole pressure. Unfortunately, both of these solutions

are rarely available, especially in low- and medium-temperature sedimentary systems. It is

usually simply too expensive to drill observation wells 2–3 km deep or conduct long-term

bottomhole pressure monitoring. However, it is not only a good practice, but sometimes a

necessity, to separate the thermal lift effect from the raw data when interpreting both short-

and long-term pumping data. This allows to filter out noise, correctly assess the actual

drawdown, and as a result - the correct transmissivity of the aquifer.

The thermal lift effect, to the authors’ knowledge, was first mathematically described in the

literature in the mid-1990s by Kawecki (1994, 1995). Later, application of his approach was

applied to geothermal wells in sedimentary formations in Poland, proving its usefulness in

interpreting hydrodynamic tests and long-term historical data (Bielec & Miecznik 2012,

Miecznik 2017). However, for all these years there was no tool that would automate the

calculations and allow for a graphical comparison of the water level before and after thermal

lift correction. The opportunity to develop and publicly share such a tool appeared with the

start of the GeoModel project (www.geomodel.pl/en), in which Polish and Icelandic specialists

decided to develop a set of Python scripts to support the work of geothermal reservoir

engineers. THERMALIFT is a Python package that allows for the correction of raw pumping

data and graphical representation of results on graphs. The only input data required are

5

temperature and water level or wellhead pressure during pumping and the temperature

profile along the well under natural conditions.

2. Theory of thermal lift

Below formulation is valid for both vertical and deviated wells with conduction as a dominant

heat transfer process in the formation. These are typical conditions for majority of

sedimentary formations. Figure 1 shows the temperature profile in the well in static (natural)

conditions and during pumping. Under static conditions, the temperature profile along the

well is the same as the temperature distribution in the rock formation. During pumping, well

is gradually heated. The temperature at the wellhead is closer to the bottomhole temperature

the longer the production takes or the higher the flow rate of the pumped liquid.

The hydrostatic pressure exerted by the water column is:

𝑝 = 𝑔 ∫ 𝜌𝑤(𝑧)𝑑𝑧
𝐻𝑀𝐷

0

 (1)

where 𝑝 - hydrostatic pressure, 𝑔 - Earth's gravitational acceleration, 𝜌𝑤 - the density of the

water column in the borehole, 𝐻𝑀𝐷 – measured depth of the borehole, 𝑧 - integration variable

(depth).

Since the pressure exerted at the bottom of the well is independent of the temperature of the

liquid inside it, the multiplication of the height of the water column and its density will be the

same for the static and operating well:

𝐻𝑑𝜌𝑤
𝑑 = 𝐻𝑠𝜌𝑤

𝑠 (2)

where 𝐻𝑑 - height of the water column in dynamic conditions, 𝐻𝑠 - height of the water column

in static conditions, 𝜌𝑤
𝑑 - average density of the water column under dynamic conditions, 𝜌𝑤

𝑠 -

average density of the water column under static conditions.

6

Figure 1: Diagram showing the temperature profile in the well under static and dynamic

conditions (adopted from Kawecki 1995)

The average density of water in the well is as follows:

𝜌𝑤 =
1

𝐻𝑀𝐷
∫ 𝜌𝑤𝑑𝑧

𝐻𝑀𝐷

0

 (3)

Although in general the density of water is a non-linear function of temperature, in the

temperature range from 40 to 95°C (typical temperatures of geothermal water in liquid

systems) the approximation by a linear function can be considered sufficiently accurate. By

omitting some transformations of Equation 3 which are provided by Kawecki (1995), one

obtains a relation which says that the average density of the water column is the density of

water for the average (weighted) temperature of the water column:

𝜌𝑤 = 𝜌𝑤(𝑇𝑤) (4)

By inserting equation 4 into equation 2, the following relation is obtained:

𝐻𝑑𝜌𝑤 (𝑇𝑤
𝑑) = 𝐻𝑠𝜌𝑤(𝑇𝑤

𝑠) (5)

where 𝑇𝑤
𝑑 - average water column temperature under dynamic conditions, 𝑇𝑤

𝑠 - average water

column temperature under static conditions.

The pressure measured at the bottom of the well under static conditions is as follows:

𝑝𝑟,0 = 𝜌𝑤(𝑇𝑤
𝑠)𝐻𝑇𝑉𝐷𝑔 + 𝑝𝑤ℎ,0 (6)

7

where 𝑝𝑟,0 - pressure at the bottom of the well under static conditions (no extraction), 𝑝𝑤ℎ,0

- wellhead pressure under static conditions.

The bottomhole pressure during operation can be expressed in the form of equation 7, which

is analogous to equation 6:

𝑝𝑟 = 𝜌𝑤 (𝑇𝑤
𝑑) 𝐻𝑇𝑉𝐷𝑔 + 𝑝𝑤ℎ (7)

where 𝑝𝑟 - bottomhole pressure under dynamic conditions, 𝑝𝑤ℎ - wellhead pressure under

dynamic conditions.

The value of the water drawdown 𝑠(𝑇𝑤
𝑠) in a well is the difference between the static and

dynamic bottomhole pressures:

𝑠(𝑇𝑤
𝑠) =

𝑝𝑟,0 − 𝑝𝑟

𝜌𝑤(𝑇𝑤
𝑠)𝑔

 (8)

By substituting equations 6 and 7 into equation 8, one obtains a formula that allows to

calculate the actual depression excluding the influence of the thermal lift, knowing only the

static and dynamic wellhead pressure and the average water column temperature under static

and dynamic conditions:

𝑠(𝑇𝑤
𝑠) =

𝑝𝑤ℎ,0 − 𝑝𝑤ℎ

𝜌𝑤(𝑇𝑤
𝑠)𝑔

+ [1 −
𝜌𝑤 (𝑇𝑤

𝑑)

𝜌𝑤(𝑇𝑤
𝑠)

] 𝐻𝑇𝑉𝐷 (9)

Subtracting the actual depression value 𝑠(𝑇𝑤
𝑠) from the static wellhead pressure, taking into

account the thermal lift effect during extraction, the so-called reduced wellhead pressure

value 𝑝𝑤ℎ
𝑟𝑒𝑑 is obtained:

𝑝𝑤ℎ
𝑟𝑒𝑑 = 𝑝𝑤ℎ,0 − 𝑠(𝑇𝑤

𝑠) ∙ 𝜌𝑤(𝑇𝑤
𝑠) ∙ 𝑔 = 𝑝𝑤ℎ − [1 −

𝜌𝑤 (𝑇𝑤
𝑑)

𝜌𝑤(𝑇𝑤
𝑠)

] 𝜌𝑤(𝑇𝑤
𝑠)𝐻𝑇𝑉𝐷𝑔

(10)

In case of the non-artesian well, following formulas are applicable. Having a pressure sensor

in the submersible pump, the water level below the ground level ℎ𝑚 is given by equation 11:

ℎ𝑚 = ℎ𝑝𝑢𝑚𝑝 −
𝑝 − 𝑝𝑎𝑡𝑚

𝑔 ∙ 𝜌𝑤
 (11)

where ℎ𝑝𝑢𝑚𝑝 - depth of the pressure sensor, 𝑝 - pressure measured by the pressure sensor,

𝑝𝑎𝑡𝑚 - atmospheric pressure of 101325 Pa, 𝑔 - Earth's gravitational acceleration, 𝜌𝑤 - average

density of the water column above the pressure sensor.

By analogy with equation 10, the reduced water level ℎ𝑟𝑒𝑑 in the production well is:

8

ℎ𝑟𝑒𝑑 = ℎ𝑚 + (1 −
𝜌𝑤(𝑇𝑤

𝑑̅̅̅̅)

𝜌𝑤(𝑇𝑤
𝑠̅̅̅̅)

) ∙ 𝐻𝑇𝑉𝐷
(12)

Hence, the true drawdown 𝑠𝑟𝑒𝑑 in the aquifer is:

𝑠𝑟𝑒𝑑 = ℎ𝑟𝑒𝑑 − ℎ𝑟𝑒𝑑, 𝑚𝑖𝑛 (13)

where ℎ𝑟𝑒𝑑, 𝑚𝑖𝑛 is the water level (b.g.l.) at the closed wellhead.

3. Structure of Thermalift package

3.1. System requirements

Following packages are needed to run Thermalift code:

matplotlib==3.10.1

numpy==2.2.3

pandas==2.2.3

scipy==1.15.1

They can be installed with the following command:

pip install matplotlib==3.10.1 numpy==2.2.3 pandas==2.2.3 scipy==1.15.1

3.2. Folders and files tree

Thermalift package contains 2 subdirectories:

lib: contains all necessary modules, i.e. thermalift.py and brine_density.py

examples: example Python files with input csv or Excel files to show how Thermalift package

works in practice.

3.3. The main module thermalift.py

Module thermalift.py contains classes and functions which allows to create objects, apply

methods (functions) to them, create plots and save files.

The are two classes defined in this module:

class Formation: is used to create Formation class objects for evaluating the temperature

profile in geothermal well in the natural state

class Well: is used to create Well class objects, where different methods are used to

eliminate the thermal lift effect from the pumping data, allowing to calculate the corrected

water level, corrected drawdown or reduced wellhead pressure.

Below is the list of methods that can be applied to object belonging to both classes.

9

3.3.1. class Formation

__init__(formation_temp_file)

__init__ method is used to initialize objects of a class Formation. It is also called a

constructor. __init__ method doesn’t return value.

Parameters:

• formation_temp_file [string]: name of the *.csv file

read_formation_data()

Reads a 2 or 3 columns formation_temp_file which stores natural temperature profile

of the formation vs the true vertical depth (TVD) of the well and/or measured depth (MD).

Seperator is semicolon sign “;”, while the dot sign “.” is decimal point.

Return type:

[DataFrame] object

temp_interpolation(zmin, zmax, dz, method="cubic")

In case of missing temperature recordings, interpolates them between zmin and zmax and

interval dz.

Parameters:

• zmin [float]: lowest depth point for temperature interpolation

• zmax [float]: uppermost point for temperature interpolation

• dz [float]: depth interval used for interpolation

• method [string]: interpolation method used by

pandas.DataFrame.interpolate() method; default “cubic”

Return type:

[DataFrame] object

formation_temperature_plot(formation, formation_new)

Plots a temperature profile of the formation in the natural state, both the raw and

interpolated data.

Parameters:

• formation [DataFrame]: original temperature profile of the formation

10

• formation_new [DateFrame]: interpolated temperature profile of the formation

Return type:

Matplotlib object

3.3.2. class Well

__init__(pumping_input, name="", salinity=0.0)

__init__ method is used to initialize objects of a class Well. __init__ method

doesn’t return value.

Parameters:

• pumping input [DataFrame]: Pandas DataFrame containing pumping data, of

which datetime, pumping rate, water level and water temperature are minimum

required columns

• name [string]: name of the well, optional, default “”

• salinity [float]: total dissolved solids (salinity); can be expressed by either

relative concentration (kg of NaCl/kg H2O) or absolute concentration (g NaCl/dm3

H2O). If salinity < 0.35, then relative concentration is used, otherwise

(salinity ≥ 0.35) absolute concentration is used; default 0.0.

temp_static(formation_temp)

Returns mean temperature of the formation along the well’s track.

Parameters:

• formation_temp [DataFrame]: DataFrame containing temperature of the rock

formation at equal depth intervals

Return type:

[float]

temp_flowing(formation_temp, temp_col, pumping_input, wellhead_temp_col)

Returns mean temperatures of the water column in the flowing well.

Parameters:

• formation_temp [DataFrame]: Pandas DataFrame containing temperature of

the rock formation at equal depth intervals

• temp_col [int]: column number containing formation temperature data

11

• pumping_input [DataFrame]: Pandas DataFrame containing pumping data, of

which datetime, pumping rate, water level and water temperature are minimum

required columns

• wellhead_temp_col [int]: column number containing wellhead temperature

data

Return type:

[Pandas Series]

dens_static(mean_temp_static, salinity)

Returns mean density of water in non-flowing well (mean water temperature of the water

column in natural conditions).

Parameters:

• mean_temp_static [float]: mean temperature of the formation along the

well’s track

• salinity [float]: total dissolved solids (salinity); can be expressed by either

relative concentration (kg of NaCl/kg H2O) or absolute concentration (g NaCl/dm3

H2O). If salinity < 0.35, then relative concentration is used, otherwise

(salinity ≥ 0.35) absolute concentration is used; default 0.0.

Return type:

[Float]

dens_dynamic(mean_temp_flowing, salinity)

Returns mean densities of water in the flowing well.

Parameters:

• mean_temp_flowing [float]: mean temperature of the water column in the

flowing well

• salinity [float]: total dissolved solids (salinity); can be expressed by either

relative concentration (kg of NaCl/kg H2O) or absolute concentration (g NaCl/dm3

H2O). If salinity < 0.35, then relative concentration is used, otherwise

(salinity ≥ 0.35) absolute concentration is used; default 0.0.

Return type:

[Pandas Series] object

water_level(pressure_level, flow_dens, probe_depth, atmo_pressure)

12

Converts pressure sensor readings to depth to the water table.

Parameters:

• pressure_level [Pandas Series]: pressure sensor readings

• flow_dens [Pandas Series]: mean densities of water in the flowing well

• probe_depth [float]:depth to the pressure sensor, expressed usually in meters

b.g.l.

• atmo_pressure [float]:average atmospheric pressure in Pa

Return type:

[Pandas Series] object

measured_drawdown(water_level)

Returns water table drawdown calculated for the raw pumping data.

Parameters:

• water_level [Pandas Series]: calculated depth to the water table before

elimination of the thermal lift effect

Return type:

[Pandas Series] object

true_water_level(water_level, flow_dens, stat_dens, depth_max)

Returns corrected water level that would be measured without thermal lift effect.

Parameters:

• water_level [Pandas Series]: calculated depth to the water table before

elimination of the thermal lift effect

• flow_dens [Pandas Series]: mean densities of water in the flowing well

• stat_dens [float]: mean density of water in non-flowing well

• depth_max [float]: true vertical depth of the well

Return type:

[Pandas Series] object

true_drawdown(true_water_level):

Returns corrected water table drawdown, after elimination of the thermal lift effect

caused by water thermal expansion.

13

Parameters:

• true_water_level [Pandas Series]: corrected water level that would be

measured without thermal lift effect

Return type:

[Pandas Series] object

polynomial(x, a, b, c)

Returns instance of 2nd degree polynomial.

Parameters:

• x []: polynomial variable

• a [float]: 2nd degree polynomial coefficient

• b [float]: 1st degree polynomial coefficient

• c [float]: 0th degree polynomial coefficient

Return type:

Model instance

polyfit(x, y, bounds=True)

Returns the polynomial coefficients that best fit the data.

Parameters:

• x [Pandas Series]: independent variable, i.e. flow rate

• y [Pandas Series]: dependent variable, i.e. water drawdown

• bounds [bool]: bool value, either True or False. If True, set bounds on

polynomial coefficients; in case of drawdown = f(flow rate), all polynomial

coefficients must be non-negative; defaults to True

Return type:

1D array of floats

r_square(x, y)

Returns the coefficient of determination R2 of model fit (polynomial) to data.

Parameters:

• x [Pandas Series]: independent variable, i.e. flow rate

• y [Pandas Series]: dependent variable, i.e. water drawdown

14

Return type:

[float]

rmse(x, y)

Returns the root mean square error (RMSE) of model fit (polynomial) to data.

Parameters:

• x [Pandas Series]: independent variable, i.e. flow rate

• y [Pandas Series]: dependent variable, i.e. water drawdown

Return type:

[float]

save_results(filename)

Exports DataFrame to Excel file.

Parameters:

• filename [string]: name of the *.xlsx file

Return type:

*.xlsx disk file

raw_data_plot(time, flowrate, temperature, water_level, title="",

figsize=(16, 10))

Creates Matplotlib subplot object consisting of 3 subplots stacked horizontally and saves it

on a disk as a *.png file.

Parameters:

• time [Pandas Series]: time series of raw pumping data

• flowrate [Pandas Series]: flow rate series of raw pumping data

• temperature [Pandas Series]: temperature series of raw pumping data

• water_level [bool]: converted pressure sensor readings to depth to the water

table

• title [string]: fraction of the *.png filename

• figsize [tuple]: size of the displayed figure, default (16, 10)

Return type:

Matplotlib object, *.png disk file

15

mosaic_plot(time, flowrate, temperature, density, water_level,

corrected_water_level, recorded_drawdown, corrected_drawdown,

bounds=True, show_fit=False, title="", figsize=(25, 12))

Creates Matplotlib mosaic object consisting of 5 subplots stacked horizontally, 1 subplot

stacked vertical and saves it on a disk as a *.png file.

Parameters:

• time [Pandas Series]: time series of raw pumping data

• flowrate [Pandas Series]: flow rate series of raw pumping data

• temperature [Pandas Series]: temperature series of raw pumping data

• density [Pandas Series]: calculated densities of water in the flowing well

• water_level [Pandas Series]: converted pressure sensor readings to depth

to the water table

• corrected_water_level [Pandas Series]: corrected water level that would

be measured without thermal lift effect

• recorded_drawdown [Pandas Series]: water table drawdown calculated for

the raw pumping data

• corrected_drawdown [Pandas Series]: corrected water table drawdown,

after elimination of the thermal lift effect

• bounds [bool]: bool value, either True or False. If True, set bounds on

polynomial coefficients; in case of drawdown = f(flow rate), all polynomial

coefficients must be non-negative; defaults to True

• show_fit [bool]: bool value, whether to show or not polynomial curve fit with

statistics (R2 and RMSE)

• title [string]: fraction of the *.png filename

• figsize [tuple]: size of the displayed figure, default (16, 10)

Return type:

Matplotlib object, *.png disk file

4. Example of using the Thermalift calculator

Below example shows step by step use of the Thermalift calculator. Following steps are

included:

a) Import of files containing raw data;

16

b) Data manipulation: filtering, interpolation, removing duplicated columns, renaming

columns,

c) Converting time series of the imported data to Pandas.Datetime format;

d) Creation of Formation and Well classes objects;

e) Calling different methods that can be applied to Formation and Well classes objects

in order to calculate the corrected water table level or corrected water table

drawdown;

f) Plotting graphs and saving them to disk.

import sys

import pandas as pd

import thermalift

adding lib folder to the system path

sys.path.insert(0, "..\..\lib")

%% Import static temperature profile of the formation

Stargard GT-7 well

rock_formation_temperature_file = "formation_temperature.csv"

rock_formation = thermalift.Formation(rock_formation_temperature_file)

rock_formation.data = rock_formation.read_formation_data()

rock_formation.profile = rock_formation.temp_interpolation(0, 3000, 30)

rock_formation.formation_temperature_plot(

 rock_formation.data, rock_formation.profile

)

%% Import pumping data, remove duplicated columns, filter incorrect data

test_well_zenith = pd.read_csv("zenith_measerements.csv", sep=";",

decimal=",")

Removes duplicate columns with measurement date and time

test_well_zenith = test_well_zenith.drop(

 columns=[

 "ST3_SC_GT6_1_TempWej - Czas",

 "ST3_SC_GT7_1_CisnWej - Czas",

 "ST3_SC_GT7_1_TempWej - Czas",

 "ST1_FIT_GT6_1_Wart - Czas",

 "ST2_FIT_GT7_1_Wart - Czas",

]

)

Changing column names to shorter ones

test_well_zenith.rename(

 columns={

 "ST3_SC_GT6_1_CisnWej - Czas": "time",

 "ST3_SC_GT6_1_CisnWej": "gt6_pressure",

 "ST3_SC_GT6_1_TempWej": "gt6_temperature",

 "ST3_SC_GT7_1_CisnWej": "gt7_pressure",

 "ST3_SC_GT7_1_TempWej": "gt7_temperature",

 "ST1_FIT_GT6_1_Wart": "gt6_flow",

 "ST2_FIT_GT7_1_Wart": "gt7_flow",

 },

 inplace=True,

17

)

Converting a time column (type: string) to type 'datetime64[ns]

test_well_zenith["time"] = pd.to_datetime(

 test_well_zenith["time"], errors="raise", dayfirst=True

)

Data filtering: only measurement points before the Zenith probe failure

test_well_zenith = test_well_zenith[

 test_well_zenith["time"] <= "2022-10-05 12:00:00"

]

Remove incorrect measurement from 2022-02-05 14:00:00

test_well_zenith = test_well_zenith.drop(test_well_zenith.index[9608])

%% Create Well class object and perform calculations

test_well = thermalift.Well(test_well_zenith)

Add properties to the object

test_well.salinity = 126

Calculate mean static temperature in the wellbore

test_well.mean_stat_temp = test_well.temp_static(rock_formation.profile)

Calculate mean dynamic temperature in the flowing well

test_well.mean_flowing_temp = test_well.temp_flowing(

 rock_formation.profile, 1, test_well_zenith, 4

)

Calculate mean water column density in a non-flowing well

test_well.mean_stat_dens = test_well.dens_static(

 test_well.mean_stat_temp, test_well.salinity

)

Calculate mean water column density in flowing well

test_well.mean_flowing_dens = test_well.dens_dynamic(

 test_well.mean_flowing_temp, test_well.salinity

)

Calculate water level in flowing well

test_well.water_level = test_well.water_level(

 test_well.pumping_input.iloc[:, 3],

 test_well.mean_flowing_dens,

 probe_depth=272.28,

 atmo_pressure=101325,

)

Calculate measured drawdown

test_well.recorded_drawdown = test_well.measured_drawdown(

 test_well.water_level

)

Calculate true water level, after eliminating thermal lift

test_well.true_water_level = test_well.true_water_level(

 test_well.water_level,

 test_well.mean_flowing_dens,

 test_well.mean_stat_dens,

 depth_max=2700.0,

)

18

Calculate true drawdown, after eliminating thermal lift

test_well.true_drawdown =

test_well.true_drawdown(test_well.true_water_level)

Save results to file

test_well.save_results(filename="results.xlsx")

%% FIGURES

test_well.raw_data_plot(

 test_well.pumping_input.iloc[:, 0],

 test_well.pumping_input.iloc[:, 5],

 test_well.pumping_input.iloc[:, 4],

 test_well.pumping_input.iloc[:, 3],

 title="Test well raw data",

)

test_well.mosaic_plot(

 test_well.pumping_input.iloc[:, 0],

 test_well.pumping_input.iloc[:, 6],

 test_well.mean_flowing_temp,

 test_well.mean_flowing_dens,

 test_well.water_level,

 test_well.true_water_level,

 test_well.recorded_drawdown,

 test_well.true_drawdown,

 bounds=True,

 show_fit=True,

 title="Test well raw and corrected pumping data",

 figsize=(25, 12),

)

19

Output graphs

Figure 2: Plot of the rock formation temperature along the well’s trajectory. Missing data were

interpolated to accurately estimate the mean temperature of the rock formation.

Figure 3: Plot of time series of the flow rate, depth to water table and measured wellhead

temperature over a period of 21 months

20

Figure 4: A 21-month time series graph comparing raw pumping data with the thermal lift-adjusted data

21

List of references

Bielec, B. & Miecznik, M., Efekt termiczny w obliczeniach przewodności hydraulicznej w

otworach ujmujących wodę termalną, Technika Poszukiwań Geologicznych, Geotermia,

Zrównoważony Rozwój, 51, 2, (2012), 45-54.

Kawecki, M.W., Temperature effect in discharge tests on deep water wells, Proceedings

Second Gulf Water Conference, Bahrain, v.2 , 179-190 (1994).

Kawecki, M. W., Correction for Temperature Effect in the Recovery of a Pumped Well, Ground

Water, 33, 6, (1995), 917-926.

Miecznik, M., Model zrównoważonej eksploatacji zbiornika wód geotermalnych w centralnej

części Podhala do produkcji energii cieplnej i elektrycznej, Book nr 202, IGSMiE PAN, Krakow,

Poland (2017).

Sun, H., Feistel, R., Koch, M. and Markoe, A., New equations for density, entropy, heat

capacity, and potential temperature of a saline thermal fluid, Deep-Sea Research, I 55 (2008),

1304–1310.

