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1. Introduction 

In documenting geothermal water resources, it is important to properly determine the 

filtration parameters, mainly reservoir transmissivity. Its calculation is based on the results of 

pumping tests or short term production. This is the most reliable method to date for 

determining the filtration properties of an aquifer. Geothermal waters usually occur at great 

depths, where there is high temperature and pressure, therefore, these factors cause a 

number of interpretation difficulties. They are related, among others, to the non-isothermal 

flow of water in the borehole, variation of flow rate and wellhead temperature during 

pumping and the release of gases dissolved in water as a result of the pressure dropping below 

the saturation pressure. In this article, the authors address the issue of the influence of 

wellhead temperature variations during pumping on the recorded water level or wellhead 

pressure. This phenomenon is called thermal lift effect. 

It often happens that in the case of deep wells with good filtration parameters of the aquifer, 

the shape of the drawdown curve is far from expectations, because the effect of water 

expansions masks the true drawdown. The deeper the well and the higher the bottomhole 

temperature, the more significant this effect is. In any case, the thermal lift effect always 

causes the drawdown to be smaller than it would be observed if there was no volumetric 

expansion of water. This in turn can lead to overestimation of resources and unsustainable 

exploitation, because the real drawdown is often miscalculated. One way to get rid of this 

problem is to measure the water level (or the wellhead pressure) in observation wells. 

Another way is to measure the bottomhole pressure. Unfortunately, both of these solutions 

are rarely available, especially in low- and medium-temperature sedimentary systems. It is 

usually simply too expensive to drill observation wells 2–3 km deep or conduct long-term 

bottomhole pressure monitoring. However, it is not only a good practice, but sometimes a 

necessity, to separate the thermal lift effect from the raw data when interpreting both short- 

and long-term pumping data. This allows to filter out noise, correctly assess the actual 

drawdown, and as a result - the correct transmissivity of the aquifer. 

The thermal lift effect, to the authors’ knowledge, was first mathematically described in the 

literature in the mid-1990s by Kawecki (1994, 1995). Later, application of his approach was 

applied to geothermal wells in sedimentary formations in Poland, proving its usefulness in 

interpreting hydrodynamic tests and long-term historical data (Bielec & Miecznik 2012, 

Miecznik 2017). However, for all these years there was no tool that would automate the 

calculations and allow for a graphical comparison of the water level before and after thermal 

lift correction. The opportunity to develop and publicly share such a tool appeared with the 

start of the GeoModel project (www.geomodel.pl/en), in which Polish and Icelandic specialists 

decided to develop a set of Python scripts to support the work of geothermal reservoir 

engineers. THERMALIFT is a Python package that allows for the correction of raw pumping 

data and graphical representation of results on graphs. The only input data required are 
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temperature and water level or wellhead pressure during pumping and the temperature 

profile along the well under natural conditions. 

2. Theory of thermal lift 

Below formulation is valid for both vertical and deviated wells with conduction as a dominant 

heat transfer process in the formation. These are typical conditions for majority of 

sedimentary formations. Figure 1 shows the temperature profile in the well in static (natural) 

conditions and during pumping. Under static conditions, the temperature profile along the 

well is the same as the temperature distribution in the rock formation. During pumping, well 

is gradually heated. The temperature at the wellhead is closer to the bottomhole temperature 

the longer the production takes or the higher the flow rate of the pumped liquid. 

The hydrostatic pressure exerted by the water column is: 

𝑝 = 𝑔 ∫ 𝜌𝑤(𝑧)𝑑𝑧
𝐻𝑀𝐷

0

 (1) 

where 𝑝 - hydrostatic pressure, 𝑔 - Earth's gravitational acceleration, 𝜌𝑤 - the density of the 

water column in the borehole, 𝐻𝑀𝐷 – measured depth of the borehole, 𝑧 - integration variable 

(depth). 

Since the pressure exerted at the bottom of the well is independent of the temperature of the 

liquid inside it, the multiplication of the height of the water column and its density will be the 

same for the static and operating well: 

𝐻𝑑𝜌𝑤
𝑑 = 𝐻𝑠𝜌𝑤

𝑠  (2) 

where 𝐻𝑑 - height of the water column in dynamic conditions, 𝐻𝑠 - height of the water column 

in static conditions, 𝜌𝑤
𝑑  - average density of the water column under dynamic conditions, 𝜌𝑤

𝑠  -  

average density of the water column under static conditions. 
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Figure 1: Diagram showing the temperature profile in the well under static and dynamic 

conditions (adopted from Kawecki 1995) 

 

The average density of water in the well is as follows: 

𝜌𝑤 =
1

𝐻𝑀𝐷
∫ 𝜌𝑤𝑑𝑧

𝐻𝑀𝐷

0

 (3) 

Although in general the density of water is a non-linear function of temperature, in the 

temperature range from 40 to 95°C (typical temperatures of geothermal water in liquid 

systems) the approximation by a linear function can be considered sufficiently accurate. By 

omitting some transformations of Equation 3 which are provided by Kawecki (1995), one 

obtains a relation which says that the average density of the water column is the density of 

water for the average (weighted) temperature of the water column: 

𝜌𝑤 = 𝜌𝑤(𝑇𝑤) (4) 

By inserting equation 4 into equation 2, the following relation is obtained: 

𝐻𝑑𝜌𝑤 (𝑇𝑤
𝑑) = 𝐻𝑠𝜌𝑤(𝑇𝑤

𝑠 ) (5) 

where 𝑇𝑤
𝑑 - average water column temperature under dynamic conditions, 𝑇𝑤

𝑠  - average water 

column temperature under static conditions. 

The pressure measured at the bottom of the well under static conditions is as follows: 

𝑝𝑟,0 = 𝜌𝑤(𝑇𝑤
𝑠 )𝐻𝑇𝑉𝐷𝑔 + 𝑝𝑤ℎ,0 (6) 
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where 𝑝𝑟,0 - pressure at the bottom of the well under static conditions (no extraction), 𝑝𝑤ℎ,0 

- wellhead pressure under static conditions. 

The bottomhole pressure during operation can be expressed in the form of equation 7, which 

is analogous to equation 6: 

𝑝𝑟 = 𝜌𝑤 (𝑇𝑤
𝑑) 𝐻𝑇𝑉𝐷𝑔 + 𝑝𝑤ℎ (7) 

where 𝑝𝑟 - bottomhole pressure under dynamic conditions, 𝑝𝑤ℎ - wellhead pressure under 

dynamic conditions. 

The value of the water drawdown 𝑠(𝑇𝑤
𝑠 ) in a well is the difference between the static and 

dynamic bottomhole pressures: 

𝑠(𝑇𝑤
𝑠 ) =

𝑝𝑟,0 − 𝑝𝑟

𝜌𝑤(𝑇𝑤
𝑠 )𝑔

 (8) 

By substituting equations 6 and 7 into equation 8, one obtains a formula that allows to 

calculate the actual depression excluding the influence of the thermal lift, knowing only the 

static and dynamic wellhead pressure and the average water column temperature under static 

and dynamic conditions: 

𝑠(𝑇𝑤
𝑠 ) =

𝑝𝑤ℎ,0 − 𝑝𝑤ℎ

𝜌𝑤(𝑇𝑤
𝑠 )𝑔

+ [1 −
𝜌𝑤 (𝑇𝑤

𝑑)

𝜌𝑤(𝑇𝑤
𝑠 )

] 𝐻𝑇𝑉𝐷 (9) 

Subtracting the actual depression value 𝑠(𝑇𝑤
𝑠 ) from the static wellhead pressure, taking into 

account the thermal lift effect during extraction, the so-called reduced wellhead pressure 

value 𝑝𝑤ℎ
𝑟𝑒𝑑 is obtained:  

𝑝𝑤ℎ
𝑟𝑒𝑑 = 𝑝𝑤ℎ,0 − 𝑠(𝑇𝑤

𝑠 ) ∙ 𝜌𝑤(𝑇𝑤
𝑠 ) ∙ 𝑔 = 𝑝𝑤ℎ − [1 −

𝜌𝑤 (𝑇𝑤
𝑑)

𝜌𝑤(𝑇𝑤
𝑠 )

] 𝜌𝑤(𝑇𝑤
𝑠 )𝐻𝑇𝑉𝐷𝑔 

(10) 

In case of the non-artesian well, following formulas are applicable. Having a pressure sensor 

in the submersible pump, the water level below the ground level ℎ𝑚 is given by equation 11: 

ℎ𝑚 =  ℎ𝑝𝑢𝑚𝑝 −  
𝑝 − 𝑝𝑎𝑡𝑚

𝑔 ∙ 𝜌𝑤
 (11) 

where ℎ𝑝𝑢𝑚𝑝 -  depth of the pressure sensor, 𝑝 - pressure measured by the pressure sensor, 

𝑝𝑎𝑡𝑚 - atmospheric pressure of 101325 Pa, 𝑔 - Earth's gravitational acceleration, 𝜌𝑤 - average 

density of the water column above the pressure sensor. 

By analogy with equation 10, the reduced water level ℎ𝑟𝑒𝑑 in the production well is: 
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ℎ𝑟𝑒𝑑 =  ℎ𝑚 + (1 −
𝜌𝑤(𝑇𝑤

𝑑̅̅̅̅ )

𝜌𝑤(𝑇𝑤
𝑠̅̅̅̅ )

) ∙ 𝐻𝑇𝑉𝐷 
(12) 

Hence, the true drawdown 𝑠𝑟𝑒𝑑 in the aquifer is: 

𝑠𝑟𝑒𝑑 =  ℎ𝑟𝑒𝑑 − ℎ𝑟𝑒𝑑,  𝑚𝑖𝑛  (13) 

where ℎ𝑟𝑒𝑑,  𝑚𝑖𝑛  is the water level (b.g.l.) at the closed wellhead.  

3. Structure of Thermalift package 

3.1. System requirements 

Following packages are needed to run Thermalift code: 

matplotlib==3.10.1 

numpy==2.2.3 

pandas==2.2.3 

scipy==1.15.1 

They can be installed with the following command: 

pip install matplotlib==3.10.1 numpy==2.2.3 pandas==2.2.3 scipy==1.15.1 

3.2. Folders and files tree 

Thermalift package contains 2 subdirectories: 

lib: contains all necessary modules, i.e. thermalift.py and brine_density.py 

examples: example Python files with input csv or Excel files to show how Thermalift package 

works in practice. 

3.3. The main module thermalift.py 

Module thermalift.py contains classes and functions which allows to create objects, apply 

methods (functions) to them, create plots and save files. 

The are two classes defined in this module: 

class Formation: is used to create Formation class objects for evaluating the temperature 

profile in geothermal well in the natural state 

class Well: is used to create Well class objects, where different methods are used to 

eliminate the thermal lift effect from the pumping data, allowing to calculate the corrected 

water level, corrected drawdown or reduced wellhead pressure. 

Below is the list of methods that can be applied to object belonging to both classes. 
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3.3.1. class Formation 

__init__(formation_temp_file) 

__init__ method is used to initialize objects of a class Formation. It is also called a 

constructor. __init__ method doesn’t return value. 

Parameters: 

• formation_temp_file [string]: name of the *.csv file 

 

read_formation_data() 

Reads a 2 or 3 columns formation_temp_file which stores natural temperature profile 

of the formation vs the true vertical depth (TVD) of the well and/or measured depth (MD). 

Seperator is semicolon sign “;”, while the dot sign “.” is decimal point.  

Return type:  

[DataFrame] object 

 

temp_interpolation(zmin, zmax, dz, method="cubic") 

In case of missing temperature recordings, interpolates them between zmin and zmax and 

interval dz. 

Parameters: 

• zmin [float]: lowest depth point for temperature interpolation 

• zmax [float]: uppermost point for temperature interpolation 

• dz [float]: depth interval used for interpolation  

• method [string]: interpolation method used by 

pandas.DataFrame.interpolate() method;  default “cubic” 

Return type: 

[DataFrame] object 

 

formation_temperature_plot(formation, formation_new) 

Plots a temperature profile of the formation in the natural state, both the raw and 

interpolated data. 

Parameters: 

• formation [DataFrame]: original temperature profile of the formation 
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• formation_new [DateFrame]: interpolated temperature profile of the formation 

Return type:  

Matplotlib object 

 

3.3.2. class Well 

__init__(pumping_input, name="", salinity=0.0) 

__init__ method is used to initialize objects of a class Well. __init__ method 

doesn’t return value. 

Parameters: 

• pumping input [DataFrame]: Pandas DataFrame containing pumping data, of 

which datetime, pumping rate, water level and water temperature are minimum 

required columns 

• name [string]: name of the well, optional, default “” 

• salinity [float]: total dissolved solids (salinity); can be expressed by either 

relative concentration (kg of NaCl/kg H2O) or absolute concentration (g NaCl/dm3 

H2O). If salinity < 0.35, then relative concentration is used, otherwise 

(salinity ≥ 0.35) absolute concentration is used; default 0.0. 

 

temp_static(formation_temp) 

Returns mean temperature of the formation along the well’s track. 

Parameters: 

• formation_temp [DataFrame]: DataFrame containing temperature of the rock 

formation at equal depth intervals 

Return type:  

[float]  

 

temp_flowing(formation_temp, temp_col, pumping_input, wellhead_temp_col) 

Returns mean temperatures of the water column in the flowing well. 

Parameters: 

• formation_temp [DataFrame]: Pandas DataFrame containing temperature of 

the rock formation at equal depth intervals 

• temp_col [int]: column number containing formation temperature data 
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• pumping_input [DataFrame]: Pandas DataFrame containing pumping data, of 

which datetime, pumping rate, water level and water temperature are minimum 

required columns 

• wellhead_temp_col [int]: column number containing wellhead temperature 

data 

Return type:  

[Pandas Series] 

 

dens_static(mean_temp_static, salinity) 

Returns mean density of water in non-flowing well (mean water temperature of the water 

column in natural conditions). 

Parameters: 

• mean_temp_static [float]: mean temperature of the formation along the 

well’s track 

• salinity [float]: total dissolved solids (salinity); can be expressed by either 

relative concentration (kg of NaCl/kg H2O) or absolute concentration (g NaCl/dm3 

H2O). If salinity < 0.35, then relative concentration is used, otherwise 

(salinity ≥ 0.35) absolute concentration is used; default 0.0. 

Return type:  

[Float] 

 

dens_dynamic(mean_temp_flowing, salinity) 

Returns mean densities of water in the flowing well.  

Parameters: 

• mean_temp_flowing [float]: mean temperature of the water column in the 

flowing well 

• salinity [float]: total dissolved solids (salinity); can be expressed by either 

relative concentration (kg of NaCl/kg H2O) or absolute concentration (g NaCl/dm3 

H2O). If salinity < 0.35, then relative concentration is used, otherwise 

(salinity ≥ 0.35) absolute concentration is used; default 0.0. 

Return type:  

[Pandas Series] object 

 

water_level(pressure_level, flow_dens, probe_depth, atmo_pressure) 
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Converts pressure sensor readings to depth to the water table. 

Parameters: 

• pressure_level [Pandas Series]: pressure sensor readings 

• flow_dens [Pandas Series]: mean densities of water in the flowing well 

• probe_depth [float]:depth to the pressure sensor, expressed usually in meters 

b.g.l.  

• atmo_pressure [float]:average atmospheric pressure in Pa 

Return type:  

[Pandas Series] object 

 

measured_drawdown(water_level) 

Returns water table drawdown calculated for the raw pumping data. 

Parameters: 

• water_level [Pandas Series]: calculated depth to the water table before 

elimination of the thermal lift effect 

Return type:  

[Pandas Series] object 

 

true_water_level(water_level, flow_dens, stat_dens, depth_max) 

Returns corrected water level that would be measured without thermal lift effect. 

Parameters: 

• water_level [Pandas Series]: calculated depth to the water table before 

elimination of the thermal lift effect 

• flow_dens [Pandas Series]: mean densities of water in the flowing well 

• stat_dens [float]: mean density of water in non-flowing well 

• depth_max [float]: true vertical depth of the well 

Return type:  

[Pandas Series] object 

 

true_drawdown(true_water_level): 

Returns corrected water table drawdown, after elimination of the thermal lift effect 

caused by water thermal expansion. 
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Parameters: 

• true_water_level [Pandas Series]: corrected water level that would be 

measured without thermal lift effect 

Return type:  

[Pandas Series] object 

 

polynomial(x, a, b, c) 

Returns instance of 2nd degree polynomial. 

Parameters: 

• x []: polynomial variable 

• a [float]: 2nd degree polynomial coefficient 

• b [float]: 1st degree polynomial coefficient 

• c [float]: 0th degree polynomial coefficient 

Return type:  

Model instance 

 

polyfit(x, y, bounds=True) 

Returns the polynomial coefficients that best fit the data. 

Parameters: 

• x [Pandas Series]: independent variable, i.e. flow rate 

• y [Pandas Series]: dependent variable, i.e. water drawdown 

• bounds [bool]: bool value, either True or False. If True, set bounds on 

polynomial coefficients; in case of drawdown = f(flow rate), all polynomial 

coefficients must be non-negative; defaults to True 

Return type:  

1D array of floats 

 

r_square(x, y) 

Returns the coefficient of determination R2 of  model fit (polynomial) to data. 

Parameters: 

• x [Pandas Series]: independent variable, i.e. flow rate 

• y [Pandas Series]: dependent variable, i.e. water drawdown 
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Return type:  

[float] 

 

rmse(x, y) 

Returns the root mean square error (RMSE) of model fit (polynomial) to data. 

Parameters: 

• x [Pandas Series]: independent variable, i.e. flow rate 

• y [Pandas Series]: dependent variable, i.e. water drawdown 

Return type:  

[float] 

 

save_results(filename) 

Exports DataFrame to Excel file. 

Parameters: 

• filename [string]: name of the *.xlsx file 

Return type:  

*.xlsx disk file 

 

raw_data_plot(time, flowrate, temperature, water_level, title="",  

figsize=(16, 10)) 

Creates Matplotlib subplot object consisting of 3 subplots stacked horizontally and saves it 

on a disk as a *.png file.  

Parameters: 

• time [Pandas Series]: time series of raw pumping data 

• flowrate [Pandas Series]: flow rate series of raw pumping data 

• temperature [Pandas Series]: temperature series of raw pumping data 

• water_level [bool]: converted pressure sensor readings to depth to the water 

table 

• title [string]: fraction of the *.png filename 

• figsize [tuple]: size of the displayed figure, default (16, 10) 

Return type:  

Matplotlib object, *.png disk file 
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mosaic_plot(time, flowrate, temperature, density, water_level, 

corrected_water_level, recorded_drawdown, corrected_drawdown, 

bounds=True, show_fit=False, title="", figsize=(25, 12)) 

Creates Matplotlib mosaic object consisting of 5 subplots stacked horizontally, 1 subplot 

stacked vertical and saves it on a disk as a *.png file.  

Parameters: 

• time [Pandas Series]: time series of raw pumping data 

• flowrate [Pandas Series]: flow rate series of raw pumping data 

• temperature [Pandas Series]: temperature series of raw pumping data 

• density [Pandas Series]: calculated densities of water in the flowing well 

• water_level [Pandas Series]: converted pressure sensor readings to depth 

to the water table 

• corrected_water_level [Pandas Series]: corrected water level that would 

be measured without thermal lift effect 

• recorded_drawdown [Pandas Series]: water table drawdown calculated for 

the raw pumping data 

• corrected_drawdown [Pandas Series]: corrected water table drawdown, 

after elimination of the thermal lift effect  

• bounds [bool]: bool value, either True or False. If True, set bounds on 

polynomial coefficients; in case of drawdown = f(flow rate), all polynomial 

coefficients must be non-negative; defaults to True 

• show_fit [bool]: bool value, whether to show or not polynomial curve fit with 

statistics (R2 and RMSE) 

• title [string]: fraction of the *.png filename 

• figsize [tuple]: size of the displayed figure, default (16, 10) 

Return type:  

Matplotlib object, *.png disk file 

 

4. Example of using the Thermalift calculator 

Below example shows step by step use of the Thermalift calculator. Following steps are 

included: 

a) Import of files containing raw data; 
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b) Data manipulation: filtering, interpolation, removing duplicated columns, renaming 

columns,  

c) Converting time series of the imported data to Pandas.Datetime format; 

d) Creation of Formation and Well classes objects; 

e) Calling different methods that can be applied to Formation and Well classes objects 

in order to calculate the corrected water table level or corrected water table 

drawdown; 

f) Plotting graphs and saving them to disk. 

 

import sys 

import pandas as pd 

import thermalift 

 

# adding lib folder to the system path 

sys.path.insert(0, "..\..\lib") 

 

 

# %% Import static temperature profile of the formation 

# Stargard GT-7 well 

rock_formation_temperature_file = "formation_temperature.csv" 

rock_formation = thermalift.Formation(rock_formation_temperature_file) 

 

rock_formation.data = rock_formation.read_formation_data() 

rock_formation.profile = rock_formation.temp_interpolation(0, 3000, 30) 

rock_formation.formation_temperature_plot( 

    rock_formation.data, rock_formation.profile 

) 

 

 

# %% Import pumping data, remove duplicated columns, filter incorrect data 

test_well_zenith = pd.read_csv("zenith_measerements.csv", sep=";", 

decimal=",") 

 

# Removes duplicate columns with measurement date and time 

test_well_zenith = test_well_zenith.drop( 

    columns=[ 

        "ST3_SC_GT6_1_TempWej - Czas", 

        "ST3_SC_GT7_1_CisnWej - Czas", 

        "ST3_SC_GT7_1_TempWej - Czas", 

        "ST1_FIT_GT6_1_Wart - Czas", 

        "ST2_FIT_GT7_1_Wart - Czas", 

    ] 

) 

 

# Changing column names to shorter ones 

test_well_zenith.rename( 

    columns={ 

        "ST3_SC_GT6_1_CisnWej - Czas": "time", 

        "ST3_SC_GT6_1_CisnWej": "gt6_pressure", 

        "ST3_SC_GT6_1_TempWej": "gt6_temperature", 

        "ST3_SC_GT7_1_CisnWej": "gt7_pressure", 

        "ST3_SC_GT7_1_TempWej": "gt7_temperature", 

        "ST1_FIT_GT6_1_Wart": "gt6_flow", 

        "ST2_FIT_GT7_1_Wart": "gt7_flow", 

    }, 

    inplace=True, 
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) 

 

# Converting a time column (type: string) to type 'datetime64[ns] 

test_well_zenith["time"] = pd.to_datetime( 

    test_well_zenith["time"], errors="raise", dayfirst=True 

) 

 

# Data filtering: only measurement points before the Zenith probe failure 

test_well_zenith = test_well_zenith[ 

    test_well_zenith["time"] <= "2022-10-05 12:00:00" 

] 

 

# Remove incorrect measurement from 2022-02-05 14:00:00 

test_well_zenith = test_well_zenith.drop(test_well_zenith.index[9608]) 

 

 

# %% Create Well class object and perform calculations 

test_well = thermalift.Well(test_well_zenith) 

 

# Add properties to the object 

test_well.salinity = 126 

 

# Calculate mean static temperature in the wellbore 

test_well.mean_stat_temp = test_well.temp_static(rock_formation.profile) 

 

# Calculate mean dynamic temperature in the flowing well 

test_well.mean_flowing_temp = test_well.temp_flowing( 

    rock_formation.profile, 1, test_well_zenith, 4 

) 

 

# Calculate mean water column density in a non-flowing well 

test_well.mean_stat_dens = test_well.dens_static( 

    test_well.mean_stat_temp, test_well.salinity 

) 

 

# Calculate mean water column density in flowing well 

test_well.mean_flowing_dens = test_well.dens_dynamic( 

    test_well.mean_flowing_temp, test_well.salinity 

) 

 

# Calculate water level in flowing well 

test_well.water_level = test_well.water_level( 

    test_well.pumping_input.iloc[:, 3], 

    test_well.mean_flowing_dens, 

    probe_depth=272.28, 

    atmo_pressure=101325, 

) 

 

# Calculate measured drawdown 

test_well.recorded_drawdown = test_well.measured_drawdown( 

    test_well.water_level 

) 

 

# Calculate true water level, after eliminating thermal lift 

test_well.true_water_level = test_well.true_water_level( 

    test_well.water_level, 

    test_well.mean_flowing_dens, 

    test_well.mean_stat_dens, 

    depth_max=2700.0, 

) 
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# Calculate true drawdown, after eliminating thermal lift 

test_well.true_drawdown = 

test_well.true_drawdown(test_well.true_water_level) 

 

# Save results to file 

test_well.save_results(filename="results.xlsx") 

 

# %% FIGURES 

test_well.raw_data_plot( 

    test_well.pumping_input.iloc[:, 0], 

    test_well.pumping_input.iloc[:, 5], 

    test_well.pumping_input.iloc[:, 4], 

    test_well.pumping_input.iloc[:, 3], 

    title="Test well raw data", 

) 

 

test_well.mosaic_plot( 

    test_well.pumping_input.iloc[:, 0], 

    test_well.pumping_input.iloc[:, 6], 

    test_well.mean_flowing_temp, 

    test_well.mean_flowing_dens, 

    test_well.water_level, 

    test_well.true_water_level, 

    test_well.recorded_drawdown, 

    test_well.true_drawdown, 

    bounds=True, 

    show_fit=True, 

    title="Test well raw and corrected pumping data", 

    figsize=(25, 12), 

) 
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Output graphs 

 

Figure 2: Plot of the rock formation temperature along the well’s trajectory. Missing data were 

interpolated to accurately estimate the mean temperature of the rock formation. 

  

Figure 3: Plot of time series of the flow rate, depth to water table and measured wellhead 

temperature over a period of 21 months 
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Figure 4: A 21-month time series graph comparing raw pumping data with the thermal lift-adjusted data 
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