Stan Math Library  2.14.0
reverse mode automatic differentiation
uniform_lccdf.hpp
Go to the documentation of this file.
1 #ifndef STAN_MATH_PRIM_SCAL_PROB_UNIFORM_LCCDF_HPP
2 #define STAN_MATH_PRIM_SCAL_PROB_UNIFORM_LCCDF_HPP
3 
15 #include <boost/random/uniform_real_distribution.hpp>
16 #include <boost/random/variate_generator.hpp>
17 #include <cmath>
18 
19 namespace stan {
20  namespace math {
21 
22  template <typename T_y, typename T_low, typename T_high>
24  uniform_lccdf(const T_y& y, const T_low& alpha, const T_high& beta) {
25  static const char* function("uniform_lccdf");
27  T_partials_return;
28 
29  using std::log;
30 
31  if (!(stan::length(y)
32  && stan::length(alpha)
33  && stan::length(beta)))
34  return 0.0;
35 
36  T_partials_return ccdf_log(0.0);
37  check_not_nan(function, "Random variable", y);
38  check_finite(function, "Lower bound parameter", alpha);
39  check_finite(function, "Upper bound parameter", beta);
40  check_greater(function, "Upper bound parameter", beta, alpha);
41  check_consistent_sizes(function,
42  "Random variable", y,
43  "Lower bound parameter", alpha,
44  "Upper bound parameter", beta);
45 
46  VectorView<const T_y> y_vec(y);
47  VectorView<const T_low> alpha_vec(alpha);
48  VectorView<const T_high> beta_vec(beta);
49  size_t N = max_size(y, alpha, beta);
50 
51  for (size_t n = 0; n < N; n++) {
52  const T_partials_return y_dbl = value_of(y_vec[n]);
53  if (y_dbl < value_of(alpha_vec[n])
54  || y_dbl > value_of(beta_vec[n]))
55  return 0.0;
56  if (y_dbl == value_of(beta_vec[n]))
57  return LOG_ZERO;
58  }
59 
61  operands_and_partials(y, alpha, beta);
62  for (size_t n = 0; n < N; n++) {
63  const T_partials_return y_dbl = value_of(y_vec[n]);
64  const T_partials_return alpha_dbl = value_of(alpha_vec[n]);
65  const T_partials_return beta_dbl = value_of(beta_vec[n]);
66  const T_partials_return b_min_a = beta_dbl - alpha_dbl;
67  const T_partials_return ccdf_log_ = 1.0 - (y_dbl - alpha_dbl) / b_min_a;
68 
69  ccdf_log += log(ccdf_log_);
70 
72  operands_and_partials.d_x1[n] -= 1.0 / b_min_a / ccdf_log_;
74  operands_and_partials.d_x2[n] -= (y_dbl - beta_dbl) / b_min_a
75  / b_min_a / ccdf_log_;
77  operands_and_partials.d_x3[n] += (y_dbl - alpha_dbl) / b_min_a
78  / b_min_a / ccdf_log_;
79  }
80  return operands_and_partials.value(ccdf_log);
81  }
82 
83  }
84 }
85 #endif
VectorView< T_return_type, false, true > d_x2
return_type< T_y, T_low, T_high >::type uniform_lccdf(const T_y &y, const T_low &alpha, const T_high &beta)
void check_finite(const char *function, const char *name, const T_y &y)
Check if y is finite.
T value_of(const fvar< T > &v)
Return the value of the specified variable.
Definition: value_of.hpp:16
fvar< T > log(const fvar< T > &x)
Definition: log.hpp:14
T_return_type value(double value)
Returns a T_return_type with the value specified with the partial derivatves.
size_t length(const std::vector< T > &x)
Definition: length.hpp:10
const double LOG_ZERO
Definition: constants.hpp:172
boost::math::tools::promote_args< typename scalar_type< T1 >::type, typename scalar_type< T2 >::type, typename scalar_type< T3 >::type, typename scalar_type< T4 >::type, typename scalar_type< T5 >::type, typename scalar_type< T6 >::type >::type type
Definition: return_type.hpp:27
Metaprogram to determine if a type has a base scalar type that can be assigned to type double...
void check_not_nan(const char *function, const char *name, const T_y &y)
Check if y is not NaN.
This class builds partial derivatives with respect to a set of operands.
VectorView< T_return_type, false, true > d_x3
size_t max_size(const T1 &x1, const T2 &x2)
Definition: max_size.hpp:9
void check_greater(const char *function, const char *name, const T_y &y, const T_low &low)
Check if y is strictly greater than low.
VectorView is a template expression that is constructed with a container or scalar, which it then allows to be used as an array using operator[].
Definition: VectorView.hpp:48
void check_consistent_sizes(const char *function, const char *name1, const T1 &x1, const char *name2, const T2 &x2)
Check if the dimension of x1 is consistent with x2.
boost::math::tools::promote_args< typename partials_type< typename scalar_type< T1 >::type >::type, typename partials_type< typename scalar_type< T2 >::type >::type, typename partials_type< typename scalar_type< T3 >::type >::type, typename partials_type< typename scalar_type< T4 >::type >::type, typename partials_type< typename scalar_type< T5 >::type >::type, typename partials_type< typename scalar_type< T6 >::type >::type >::type type
VectorView< T_return_type, false, true > d_x1

     [ Stan Home Page ] © 2011–2016, Stan Development Team.