Stan Math Library  2.14.0
reverse mode automatic differentiation
double_exponential_log.hpp
Go to the documentation of this file.
1 #ifndef STAN_MATH_PRIM_SCAL_PROB_DOUBLE_EXPONENTIAL_LOG_HPP
2 #define STAN_MATH_PRIM_SCAL_PROB_DOUBLE_EXPONENTIAL_LOG_HPP
3 
18 #include <boost/random/uniform_01.hpp>
19 #include <boost/random/variate_generator.hpp>
20 #include <cmath>
21 
22 namespace stan {
23  namespace math {
24 
25  // DoubleExponential(y|mu, sigma) [sigma > 0]
26  // FIXME: add documentation
27  template <bool propto,
28  typename T_y, typename T_loc, typename T_scale>
30  double_exponential_log(const T_y& y,
31  const T_loc& mu, const T_scale& sigma) {
32  static const char* function("double_exponential_log");
34  T_partials_return;
35 
37  using std::log;
38  using std::fabs;
39  using std::log;
40 
41  if (!(stan::length(y)
42  && stan::length(mu)
43  && stan::length(sigma)))
44  return 0.0;
45 
46  T_partials_return logp(0.0);
47  check_finite(function, "Random variable", y);
48  check_finite(function, "Location parameter", mu);
49  check_positive_finite(function, "Scale parameter", sigma);
50  check_consistent_sizes(function,
51  "Random variable", y,
52  "Location parameter", mu,
53  "Shape parameter", sigma);
54 
56  return 0.0;
57 
58  VectorView<const T_y> y_vec(y);
59  VectorView<const T_loc> mu_vec(mu);
60  VectorView<const T_scale> sigma_vec(sigma);
61  size_t N = max_size(y, mu, sigma);
63  operands_and_partials(y, mu, sigma);
64 
66  T_partials_return, T_scale> inv_sigma(length(sigma));
68  T_partials_return, T_scale>
69  inv_sigma_squared(length(sigma));
71  T_partials_return, T_scale> log_sigma(length(sigma));
72  for (size_t i = 0; i < length(sigma); i++) {
73  const T_partials_return sigma_dbl = value_of(sigma_vec[i]);
75  inv_sigma[i] = 1.0 / sigma_dbl;
77  log_sigma[i] = log(value_of(sigma_vec[i]));
79  inv_sigma_squared[i] = inv_sigma[i] * inv_sigma[i];
80  }
81 
82  for (size_t n = 0; n < N; n++) {
83  const T_partials_return y_dbl = value_of(y_vec[n]);
84  const T_partials_return mu_dbl = value_of(mu_vec[n]);
85 
86  const T_partials_return y_m_mu = y_dbl - mu_dbl;
87  const T_partials_return fabs_y_m_mu = fabs(y_m_mu);
88 
90  logp += NEG_LOG_TWO;
92  logp -= log_sigma[n];
94  logp -= fabs_y_m_mu * inv_sigma[n];
95 
96  T_partials_return sign_y_m_mu_times_inv_sigma(0);
98  sign_y_m_mu_times_inv_sigma = sign(y_m_mu) * inv_sigma[n];
100  operands_and_partials.d_x1[n] -= sign_y_m_mu_times_inv_sigma;
101  }
103  operands_and_partials.d_x2[n] += sign_y_m_mu_times_inv_sigma;
104  }
106  operands_and_partials.d_x3[n] += -inv_sigma[n] + fabs_y_m_mu
107  * inv_sigma_squared[n];
108  }
109  return operands_and_partials.value(logp);
110  }
111 
112  template <typename T_y, typename T_loc, typename T_scale>
114  double_exponential_log(const T_y& y, const T_loc& mu,
115  const T_scale& sigma) {
116  return double_exponential_log<false>(y, mu, sigma);
117  }
118 
119  }
120 }
121 #endif
VectorView< T_return_type, false, true > d_x2
void check_finite(const char *function, const char *name, const T_y &y)
Check if y is finite.
fvar< T > fabs(const fvar< T > &x)
Definition: fabs.hpp:15
T value_of(const fvar< T > &v)
Return the value of the specified variable.
Definition: value_of.hpp:16
int sign(const T &z)
Definition: sign.hpp:9
fvar< T > log(const fvar< T > &x)
Definition: log.hpp:14
T_return_type value(double value)
Returns a T_return_type with the value specified with the partial derivatves.
size_t length(const std::vector< T > &x)
Definition: length.hpp:10
Template metaprogram to calculate whether a summand needs to be included in a proportional (log) prob...
boost::math::tools::promote_args< typename scalar_type< T1 >::type, typename scalar_type< T2 >::type, typename scalar_type< T3 >::type, typename scalar_type< T4 >::type, typename scalar_type< T5 >::type, typename scalar_type< T6 >::type >::type type
Definition: return_type.hpp:27
Metaprogram to determine if a type has a base scalar type that can be assigned to type double...
void check_positive_finite(const char *function, const char *name, const T_y &y)
Check if y is positive and finite.
This class builds partial derivatives with respect to a set of operands.
VectorView< T_return_type, false, true > d_x3
return_type< T_y, T_loc, T_scale >::type double_exponential_log(const T_y &y, const T_loc &mu, const T_scale &sigma)
size_t max_size(const T1 &x1, const T2 &x2)
Definition: max_size.hpp:9
const double NEG_LOG_TWO
Definition: constants.hpp:178
VectorBuilder allocates type T1 values to be used as intermediate values.
VectorView is a template expression that is constructed with a container or scalar, which it then allows to be used as an array using operator[].
Definition: VectorView.hpp:48
void check_consistent_sizes(const char *function, const char *name1, const T1 &x1, const char *name2, const T2 &x2)
Check if the dimension of x1 is consistent with x2.
boost::math::tools::promote_args< typename partials_type< typename scalar_type< T1 >::type >::type, typename partials_type< typename scalar_type< T2 >::type >::type, typename partials_type< typename scalar_type< T3 >::type >::type, typename partials_type< typename scalar_type< T4 >::type >::type, typename partials_type< typename scalar_type< T5 >::type >::type, typename partials_type< typename scalar_type< T6 >::type >::type >::type type
VectorView< T_return_type, false, true > d_x1

     [ Stan Home Page ] © 2011–2016, Stan Development Team.