Stan Math Library
2.14.0
reverse mode automatic differentiation
stan
math
prim
mat
fun
log_determinant_ldlt.hpp
Go to the documentation of this file.
1
#ifndef STAN_MATH_PRIM_MAT_FUN_LOG_DETERMINANT_LDLT_HPP
2
#define STAN_MATH_PRIM_MAT_FUN_LOG_DETERMINANT_LDLT_HPP
3
4
#include <
stan/math/prim/mat/fun/LDLT_factor.hpp
>
5
6
namespace
stan
{
7
namespace
math {
8
9
// Returns log(abs(det(A))) given a LDLT_factor of A
10
template
<
int
R,
int
C,
typename
T>
11
inline
T
12
log_determinant_ldlt
(
LDLT_factor<T, R, C>
&A) {
13
return
A.
log_abs_det
();
14
}
15
16
}
17
}
18
#endif
stan
Definition:
log_sum_exp.hpp:8
stan::math::LDLT_factor< T, R, C >::log_abs_det
T log_abs_det() const
Definition:
LDLT_factor.hpp:84
LDLT_factor.hpp
stan::math::LDLT_factor< T, R, C >
LDLT_factor is a thin wrapper on Eigen::LDLT to allow for reusing factorizations and efficient autodi...
Definition:
LDLT_factor.hpp:56
stan::math::log_determinant_ldlt
T log_determinant_ldlt(LDLT_factor< T, R, C > &A)
Definition:
log_determinant_ldlt.hpp:12
[
Stan Home Page
]
© 2011–2016, Stan Development Team.