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Project

• ESBMC is a verification engine capable of verifying C programs by 

relying on BMC, k-Induction and SMT.

• It is a joint project with the Federal University of Amazonas (Brazil), 

University of Southampton (UK), University of Manchester (UK), and 

University of Stellenbosch (South Africa).
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ESBMC architecture

Combines BMC, k-induction, abstract interpretation, CP/SMT solving 

towards correctness proof and bug hunting

www.esbmc.org
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Interval Analysis



Interval Analysis

• The interval analysis consists of computing all 

values the variables might assume at each 

statement.

• The analysis can be used to infer properties 

regarding the program states and flow.
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Interval Analysis in BMC

• Interval analysis can help BMC by removing unreachable instructions:
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Interval Analysis in k-induction

• k-induction algorithm hijacks loop conditions to nondeterministic 

values, thus computing intervals become essential
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Contracting Intervals

• The restrictions can be computed by using contractors 

(Forward/Backward)
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We can apply contractor algorithms to contract ”a” in terms of 
“b”:

Forward: 𝑦 = 𝑎 − 𝑏 → 𝑦 = 𝑎 − 𝑏 ∩ (−𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦, 0]
Backwards: 

𝑎 = 𝑎 ∩ 𝑏 + 𝑦
𝑏 = 𝑏 ∩ 𝑎 − 𝑦

Forward: 𝑦 = [1,11]-[2,9] ∩ −𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦, 0 = = [-8,0]

Backwards:
𝑎 = 1,11 ∩ 2,9 + −8,0 = 1,9
𝑏 = 2,9 ∩ 1,9 − −8,0 = 2,9

ESBMC has support for other contractors by 
relying on ibex: a C++ numerical library based 
on interval arithmetic and constraint 
programming.



Results

✓The instrumentation and 

optimizations helped the 

verification of unique tasks.

The preprocessing takes a 

toll in the hardware 

benchmarks.
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Memory Leaks



Memtrack

• ESBMC employs a refined check for the valid-memtrack property. 

1. At the end of an execution, for each memory object, add an assertion 

that it was deallocated correctly.

2. Add a guard into the assertion that there is no pointer currently 

referring to that memory object.
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Memcleanup

• The new algorithm leverages the existing one tracking the lifetime of 

allocations for the valid-memcleanup property, but it specifically 

excludes still-reachable objects from the check. 
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Memory Object

Obj1

…

ObjN

Mem-cleanup checks if at the end of the execution, every 
memory object was freed. 



Memcleanup

• The new algorithm leverages the existing one tracking the lifetime of 

allocations for the valid-memcleanup property, but it specifically 

excludes still-reachable objects from the check. 
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Results

• The new algorithm to verify valid-

memtrack benchmarks. 

• There is a weakness in the current 

implementation concerning dynamic 

allocations only reachable through 

pointers stored in arrays of statically 

unknown size. 

•  We will address this weakness and 

submit suitable tasks for this property to 

SV-COMP in the future.
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Math Operational Models



math.h

• ESBMC did not have precise OM for float operations. This used to be 

enough.

• The neural network benchmarks relies on 32-bit floats, which leaded to 

incorrect results.

• As a tradeoff between precision and verification speed, ESBMC now 

features a two-pronged design: precise and approximated. 
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math.h

• For the most commonly-used float functions, we borrow the MUSL 

plain-C implementation of numerical algorithms. 
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math.h

• For the corresponding double functions, 

we employ less complex algorithms with 

approximate behavior.

– For example, the exponential was 

approximated by Taylor series.
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Results

• Without operational models of the 

math.h library, ESBMC would assign 

non-deterministic results, which may 

cause incorrect counterexamples to be 

returned. 

• Providing explicit operational models for 

many common functions in math.h 

improved the results
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Data Races



Data Race Instrumentation
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• Assuming that foo and bar are running in different threads, the assertion will check whether 
there is an interleaving where a read will happen before the assignment happens.



Symbolic Execution

• To improve the analysis, the property is 

now hybrid. 

• The incorrect verdicts are mostly due to 

still missing support for detecting data 

races during dereferences of pointers to 

compound types.
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Thanks for watching!



Computing Intervals

• For non-loop sequences:

1. Initialize variable interval to (−∞,∞) ;

2. Use conditionals to restrict the interval;

3. Merge intervals after conditionals;
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Computing Intervals (contractor)

• Restrictions are computed through the use of 

contractors:

• 𝑎 = −𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦, 49

• 𝑎 = [50, 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦]

• Merging is computed with the Hull operation:

[3,3] ⊔ [5,5] = [3,5]
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Computing Intervals

• For non-loop sequences:

1. Initialize variable interval to (−∞,∞) .

2. Use conditionals to restrict the interval.

3. Merge intervals after conditionals.
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Computing Intervals
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math.h

• The IEEE 754 standard mandates bit-precise semantics for a small 

subset of the math.h library only (it includes: addition, multiplication, 

division, sqrt, fma, and other support functions such as remquo).

• In contrast, the behavior of most transcendental functions (e.g., sin, 

cos, exp, log) is platform-specific. Still, the standard recommends 

implementing the correct rounding whenever possible.

08/04/2024 31


	Start
	Slide 1: ESBMC v7.4: Harnessing the Power of Intervals

	Overview
	Slide 2: Project
	Slide 3: ESBMC architecture

	Interval Analysis
	Slide 4: Interval Analysis
	Slide 5: Interval Analysis
	Slide 7: Interval Analysis in BMC
	Slide 8: Interval Analysis in k-induction
	Slide 9: Contracting Intervals
	Slide 10: Results

	Memleak
	Slide 11: Memory Leaks
	Slide 12: Memtrack
	Slide 13: Memcleanup
	Slide 14: Memcleanup
	Slide 16: Results

	Operational Models
	Slide 17: Math Operational Models
	Slide 18: math.h
	Slide 19: math.h
	Slide 20: math.h
	Slide 21: Results

	Data Races
	Slide 22: Data Races
	Slide 24: Data Race Instrumentation
	Slide 25: Symbolic Execution

	End
	Slide 26: Thanks for watching!

	Extra Slides
	Slide 27: Computing Intervals
	Slide 28: Computing Intervals (contractor)
	Slide 29: Computing Intervals
	Slide 30: Computing Intervals
	Slide 31: math.h


