
VeriFuzz 1.4: Good Seeds For Fuzzing

Ravindra Metta r.metta@tcs.com
Dr. Raveendra Medicherla
Dr. Hrishikesh Karmarkar

24 April 2023

2

Goal : Ef anEfficient Code CoverageVeriFuzz

Fuzzing centric – Modified AFL fuzzer

Co-operative – BMC for initial seeds

Program analysis/Transformation

Classification – Categorization of programs using Decision trees

3

Goal : Effective and Efficient Code Coverage

Efficient (shorter time) BMC CGF
Effective (better coverage) BMC CGF

BMC vs Fuzz : Problem Illustration

4

Goal : Effective and Efficient Code Coverage

`
INPUTS : x and y

INPUT : z

BMC vs Fuzz : Problem Illustration

Efficient (shorter time) BMC CGF
Effective (better coverage) BMC CGF

5

Goal : Effective and Efficient Code Coverage

`

CGF gets stuck

INPUTS : x and y

INPUT : z

BMC vs Fuzz : Problem Illustration

Efficient (shorter time) BMC CGF
Effective (better coverage) BMC CGF

6

Goal : Effective and Efficient Code Coverage

`

CGF gets stuck

BMC gets stuck

INPUTS : x and y

BMC doesn’t scale

INPUT : z

Neither reaches

BMC vs Fuzz : Problem Illustration

Efficient (shorter time) BMC CGF
Effective (better coverage) BMC CGF

7

Goal : Effective and Efficient Code Coverage

`

CGF gets stuck

BMC gets stuck

INPUTS : x and y

BMC doesn’t scale

INPUT : z

Neither reaches

BMC Short Unwind + Fuzz : This Problem Solved

Efficient (shorter time) BMC CGF BMC+CGF
Effective (better coverage) BMC CGF BMC+CGF

8

• AFL-based, with CBMC for complete seeds (test inputs) for sequentialized programs
(Competition Contribution in TACAS’19)

VeriFuzz 1.0Earlier VeriFuzz (1.0) : BMC only for sequentialized programs

9

⚫ Generate incomplete seeds: BMC for short bound of 2

Test 1: {x = 7, y=0x0123ABCD, z=?}

Test 2: {x = 12, y=0x0123ABCD, z=?}

⚫ Complete z randomly

⚫ Say, z = 0

⚫ {x = 7, y=0x0123ABCD, z=0}

⚫ {x = 12, y=0x0123ABCD, z=0}

Contribution-1: Incomplete SeedsSolution Part 1: Generate Incomplete inputs, and extend them

10

• When does BMC fail for short unwindings?

• Complex features

• Once BMC fails, tools give up

⚫ Why does BMC fail?

⚫ Evaluated a variety of benchmarks

⚫ Failures in different translation phases

• Can this be remediated?

⚫ In some cases, “yes”, and in some cases “not yet”.

Contribution-2: BMC RemediesSolution Part 2: Remedial Strategies for BMC

11

• Why: large loops, large loop bodies, recursive calls

• Remedy

• Re-run with shorter unwinding

• CBMC option: --unwind k

• Still stuck? Ignore loops (--unwind 1)

• Still stuck? Loop abstraction (under investigation)
⚫ abstraction (DATE’15), shrink (TACAS’18), or just havoc?

BMC failure: stuck in unwindingRemedial Strategy 1

12

• Why: array size is too big

• copy-3-n-u.c: int a[1000][1500][1800]

• Too many Boolean variables due to bit blasting

• Remedy

• Translate arrays as uninterpreted functions

• CBMC option: --arrays-uf-always

• Use a SMT solver for backend, like Z3

• Support for array theory

BMC failure: large arraysRemedial Strategy 2

13

• Why: access of arrays through pointer offsets

• Specially in low level code, e.g. device drivers

• Ackermann constraints for functional consistency

⚫ Quadratic –- 40000^2 (1.5 billion+ constraints)

• Remedies?

• No working idea yet.

⚫ Abstractions: havoc?

BMC failure: functional consistencyRemedial Strategy 3

14

• Why

• one SAT call per coverage goal

• Some call might take a lot of time

• Remedies

• Timeout trap and output the tests of goals covered so far

• In FuSeBMC (TAP’21): smart time management per goal

• Slicing per path?

BMC failure: SAT solvingRemedial Strategy 4

15

VeriFuzz 1.4

BMC+Fuzz : VeriFuzz 1.2VeriFuzz v1.4
Enhancement 1 Enhancement 2

VeriFuzz

(v 1.0)

PUT

(Program

Under Test)

Property

BMC

Test

Completions

Input Prefixes

Input

seeds

Stuck?

Yes Re-run with remedy

Short Unwind

No

Random

Input

seeds

16

Experimental Evaluation: Test-Comp 2021

Track VeriFuzz 1.1 in 2020 VeriFuzz 1.2 in 2022 VeriFuzz 1.4 in 2023

Cover-Error 636/699 in 63k s 623/776 in 13k sec 964/1173 in 16K s

Cover-Bracnhes 1577/2531 in 2.1M s 2075/3460 in 3.1M s 1650/2933 in 2.6M s

VeriFuzz 1.4 Results

– About 13.6 seconds per error

– Faster than other top tools in Cover-Error 2022

– Detected errors in industrial code

17

• Floating point divergence issues

⚫ cdaudio.c

⚫ Tool bugs

⚫ Lost score in Busy-Box Memsafety

Tool Issues

18

• Research → Concolic Generalization

• Bidirectional cooperation between BMC and Fuzzing

• Tooling – Parameter driven AFL++, LLVM migration

• For academic evaluation : VeriFuzz.Tool@tcs.com

Future

mailto:VeriFuzz.Tool@tcs.com

Copyright © 2021 Tata Consultancy Services Limited

Thank you

