
Mopsa at the Software
Verification Competition

Raphaël Monat, Abdelraouf Ouadjaout, Antoine Miné
rmonat.fr

SV-Comp
24 April 2023

rmonat.fr

Mopsa

Overview of Mopsa

Modular Open Platform for Static Analysis 1
gitlab.com/mopsa/mopsa-analyzer

Goals

I explore new designs, ease dev.
I support multiple languages

I support multiple properties
I loosely couple abstractions

Contributors (2018–2023)

I Antoine Miné

I Abdelraouf Ouadjaout

I Raphaël Monat

I David Delmas

I Guillaume Bau

I Milla Valnet

I Matthieu Journault

1Journault, Miné, Monat, and Ouadjaout. “Combinations of reusable abstract domains for a multilingual static
analyzer”. VSTTE 2019 1

gitlab.com/mopsa/mopsa-analyzer

Overview of Mopsa

Modular Open Platform for Static Analysis 1
gitlab.com/mopsa/mopsa-analyzer

Goals

I explore new designs, ease dev.
I support multiple languages

I support multiple properties
I loosely couple abstractions

Contributors (2018–2023)

I Antoine Miné

I Abdelraouf Ouadjaout

I Raphaël Monat

I David Delmas

I Guillaume Bau

I Milla Valnet

I Matthieu Journault

1Journault, Miné, Monat, and Ouadjaout. “Combinations of reusable abstract domains for a multilingual static
analyzer”. VSTTE 2019 1

gitlab.com/mopsa/mopsa-analyzer

Overview of Mopsa

Modular Open Platform for Static Analysis 1
gitlab.com/mopsa/mopsa-analyzer

Goals

I explore new designs, ease dev.

I support multiple languages
I support multiple properties
I loosely couple abstractions

Contributors (2018–2023)

I Antoine Miné

I Abdelraouf Ouadjaout

I Raphaël Monat

I David Delmas

I Guillaume Bau

I Milla Valnet

I Matthieu Journault

1Journault, Miné, Monat, and Ouadjaout. “Combinations of reusable abstract domains for a multilingual static
analyzer”. VSTTE 2019 1

gitlab.com/mopsa/mopsa-analyzer

Overview of Mopsa

Modular Open Platform for Static Analysis 1
gitlab.com/mopsa/mopsa-analyzer

Goals

I explore new designs, ease dev.
I support multiple languages

I support multiple properties
I loosely couple abstractions

Contributors (2018–2023)

I Antoine Miné

I Abdelraouf Ouadjaout

I Raphaël Monat

I David Delmas

I Guillaume Bau

I Milla Valnet

I Matthieu Journault

1Journault, Miné, Monat, and Ouadjaout. “Combinations of reusable abstract domains for a multilingual static
analyzer”. VSTTE 2019 1

gitlab.com/mopsa/mopsa-analyzer

Overview of Mopsa

Modular Open Platform for Static Analysis 1
gitlab.com/mopsa/mopsa-analyzer

Goals

I explore new designs, ease dev.
I support multiple languages

I support multiple properties

I loosely couple abstractions

Contributors (2018–2023)

I Antoine Miné

I Abdelraouf Ouadjaout

I Raphaël Monat

I David Delmas

I Guillaume Bau

I Milla Valnet

I Matthieu Journault

1Journault, Miné, Monat, and Ouadjaout. “Combinations of reusable abstract domains for a multilingual static
analyzer”. VSTTE 2019 1

gitlab.com/mopsa/mopsa-analyzer

Overview of Mopsa

Modular Open Platform for Static Analysis 1
gitlab.com/mopsa/mopsa-analyzer

Goals

I explore new designs, ease dev.
I support multiple languages

I support multiple properties
I loosely couple abstractions

Contributors (2018–2023)

I Antoine Miné

I Abdelraouf Ouadjaout

I Raphaël Monat

I David Delmas

I Guillaume Bau

I Milla Valnet

I Matthieu Journault

1Journault, Miné, Monat, and Ouadjaout. “Combinations of reusable abstract domains for a multilingual static
analyzer”. VSTTE 2019 1

gitlab.com/mopsa/mopsa-analyzer

Overview of Mopsa

Modular Open Platform for Static Analysis 1
gitlab.com/mopsa/mopsa-analyzer

Goals

I explore new designs, ease dev.
I support multiple languages

I support multiple properties
I loosely couple abstractions

Contributors (2018–2023)

I Antoine Miné

I Abdelraouf Ouadjaout

I Raphaël Monat

I David Delmas

I Guillaume Bau

I Milla Valnet

I Matthieu Journault

1Journault, Miné, Monat, and Ouadjaout. “Combinations of reusable abstract domains for a multilingual static
analyzer”. VSTTE 2019 1

gitlab.com/mopsa/mopsa-analyzer

Current public analyses in Mopsa

Based on abstract interpretation
Only proves programs correct

Semantic property
Runtime error detection

' 50,000 lines of OCaml code

Language Benchmark Max. LoC ' Time Selectivity

C2 Coreutils 550 20s 99.8%
Juliet 340,000 2.5h 98.9%

Python3 PyPerformance 1,792 1.3m 99.2%
PathPicker 2,560 3.0m 99.2%

Python+C4 ahocorasick 4,800 1.0m 98.0%
bitarray 5,700 4.6m 94.6%

safe operations
operations

2Ouadjaout and Miné. “A Library Modeling Language for the Static Analysis of C Programs”. SAS 2020
3Monat, Ouadjaout, and Miné. “Static Type Analysis by Abstract Interpretation of Python Programs”. ECOOP 2020
4Monat, Ouadjaout, and Miné. “A Multilanguage Static Analysis of Python Programs with Native C Extensions”. SAS 2021

2

Current public analyses in Mopsa

Based on abstract interpretation
Only proves programs correct

Semantic property
Runtime error detection

' 50,000 lines of OCaml code

Language Benchmark Max. LoC ' Time Selectivity

C2 Coreutils 550 20s 99.8%
Juliet 340,000 2.5h 98.9%

Python3 PyPerformance 1,792 1.3m 99.2%
PathPicker 2,560 3.0m 99.2%

Python+C4 ahocorasick 4,800 1.0m 98.0%
bitarray 5,700 4.6m 94.6%

safe operations
operations

2Ouadjaout and Miné. “A Library Modeling Language for the Static Analysis of C Programs”. SAS 2020
3Monat, Ouadjaout, and Miné. “Static Type Analysis by Abstract Interpretation of Python Programs”. ECOOP 2020
4Monat, Ouadjaout, and Miné. “A Multilanguage Static Analysis of Python Programs with Native C Extensions”. SAS 2021

2

Current public analyses in Mopsa

Based on abstract interpretation
Only proves programs correct

Semantic property
Runtime error detection

' 50,000 lines of OCaml code

Language Benchmark Max. LoC ' Time Selectivity

C2 Coreutils 550 20s 99.8%
Juliet 340,000 2.5h 98.9%

Python3 PyPerformance 1,792 1.3m 99.2%
PathPicker 2,560 3.0m 99.2%

Python+C4 ahocorasick 4,800 1.0m 98.0%
bitarray 5,700 4.6m 94.6%

safe operations
operations

2Ouadjaout and Miné. “A Library Modeling Language for the Static Analysis of C Programs”. SAS 2020

3Monat, Ouadjaout, and Miné. “Static Type Analysis by Abstract Interpretation of Python Programs”. ECOOP 2020
4Monat, Ouadjaout, and Miné. “A Multilanguage Static Analysis of Python Programs with Native C Extensions”. SAS 2021

2

Current public analyses in Mopsa

Based on abstract interpretation
Only proves programs correct

Semantic property
Runtime error detection

' 50,000 lines of OCaml code

Language Benchmark Max. LoC ' Time Selectivity

C2 Coreutils 550 20s 99.8%
Juliet 340,000 2.5h 98.9%

Python3 PyPerformance 1,792 1.3m 99.2%
PathPicker 2,560 3.0m 99.2%

Python+C4 ahocorasick 4,800 1.0m 98.0%
bitarray 5,700 4.6m 94.6%

safe operations
operations

2Ouadjaout and Miné. “A Library Modeling Language for the Static Analysis of C Programs”. SAS 2020
3Monat, Ouadjaout, and Miné. “Static Type Analysis by Abstract Interpretation of Python Programs”. ECOOP 2020

4Monat, Ouadjaout, and Miné. “A Multilanguage Static Analysis of Python Programs with Native C Extensions”. SAS 2021

2

Current public analyses in Mopsa

Based on abstract interpretation
Only proves programs correct

Semantic property
Runtime error detection

' 50,000 lines of OCaml code

Language Benchmark Max. LoC ' Time Selectivity

C2 Coreutils 550 20s 99.8%
Juliet 340,000 2.5h 98.9%

Python3 PyPerformance 1,792 1.3m 99.2%
PathPicker 2,560 3.0m 99.2%

Python+C4 ahocorasick 4,800 1.0m 98.0%
bitarray 5,700 4.6m 94.6%

safe operations
operations

2Ouadjaout and Miné. “A Library Modeling Language for the Static Analysis of C Programs”. SAS 2020
3Monat, Ouadjaout, and Miné. “Static Type Analysis by Abstract Interpretation of Python Programs”. ECOOP 2020
4Monat, Ouadjaout, and Miné. “A Multilanguage Static Analysis of Python Programs with Native C Extensions”. SAS 2021 2

Example configuration in Mopsa

C.program # C.desugar # C.goto #

U.intraproc # U.loops # U.interproc #

C.stubs # C.libraries # C.files #

∧

C.cells C.string_length

◦

×

C.machineNum C.pointers

◦

U.recency

◦

∧

∧

U.intervals U.congruences

U.linearRel

Sequence

∧ Reduced product

× Cartesian product

◦ Composition

3

Mopsa at SV-Comp

Adapting Mopsa to SV-Comp’s Framework

Our approach

1 Analyze the target program with Mopsa

2 Postprocess Mopsa’s result to decide whether the property of interest holds

• Yes? finished!
• No? restart with a more precise analysis configuration

Suboptimal strategy

I Task: decide if a property holds on a program
But Mopsa analyzes full programs and detects all runtime errors
=⇒ We could at least add slicing

I New analyses restart from scratch

4

Adapting Mopsa to SV-Comp’s Framework

Our approach

1 Analyze the target program with Mopsa
2 Postprocess Mopsa’s result to decide whether the property of interest holds

• Yes? finished!
• No? restart with a more precise analysis configuration

Suboptimal strategy

I Task: decide if a property holds on a program
But Mopsa analyzes full programs and detects all runtime errors
=⇒ We could at least add slicing

I New analyses restart from scratch

4

Adapting Mopsa to SV-Comp’s Framework

Our approach

1 Analyze the target program with Mopsa
2 Postprocess Mopsa’s result to decide whether the property of interest holds

• Yes? finished!

• No? restart with a more precise analysis configuration

Suboptimal strategy

I Task: decide if a property holds on a program
But Mopsa analyzes full programs and detects all runtime errors
=⇒ We could at least add slicing

I New analyses restart from scratch

4

Adapting Mopsa to SV-Comp’s Framework

Our approach

1 Analyze the target program with Mopsa
2 Postprocess Mopsa’s result to decide whether the property of interest holds

• Yes? finished!
• No? restart with a more precise analysis configuration

Suboptimal strategy

I Task: decide if a property holds on a program
But Mopsa analyzes full programs and detects all runtime errors
=⇒ We could at least add slicing

I New analyses restart from scratch

4

Adapting Mopsa to SV-Comp’s Framework

Our approach

1 Analyze the target program with Mopsa
2 Postprocess Mopsa’s result to decide whether the property of interest holds

• Yes? finished!
• No? restart with a more precise analysis configuration

Suboptimal strategy

I Task: decide if a property holds on a program

But Mopsa analyzes full programs and detects all runtime errors
=⇒ We could at least add slicing

I New analyses restart from scratch

4

Adapting Mopsa to SV-Comp’s Framework

Our approach

1 Analyze the target program with Mopsa
2 Postprocess Mopsa’s result to decide whether the property of interest holds

• Yes? finished!
• No? restart with a more precise analysis configuration

Suboptimal strategy

I Task: decide if a property holds on a program

But Mopsa analyzes full programs and detects all runtime errors
=⇒ We could at least add slicing

I New analyses restart from scratch

4

Adapting Mopsa to SV-Comp’s Framework

Our approach

1 Analyze the target program with Mopsa
2 Postprocess Mopsa’s result to decide whether the property of interest holds

• Yes? finished!
• No? restart with a more precise analysis configuration

Suboptimal strategy

I Task: decide if a property holds on a program
But Mopsa analyzes full programs and detects all runtime errors

=⇒ We could at least add slicing

I New analyses restart from scratch

4

Adapting Mopsa to SV-Comp’s Framework

Our approach

1 Analyze the target program with Mopsa
2 Postprocess Mopsa’s result to decide whether the property of interest holds

• Yes? finished!
• No? restart with a more precise analysis configuration

Suboptimal strategy

I Task: decide if a property holds on a program
But Mopsa analyzes full programs and detects all runtime errors
=⇒ We could at least add slicing

I New analyses restart from scratch

4

Adapting Mopsa to SV-Comp’s Framework

Our approach

1 Analyze the target program with Mopsa
2 Postprocess Mopsa’s result to decide whether the property of interest holds

• Yes? finished!
• No? restart with a more precise analysis configuration

Suboptimal strategy

I Task: decide if a property holds on a program
But Mopsa analyzes full programs and detects all runtime errors
=⇒ We could at least add slicing

I New analyses restart from scratch

4

Portfolio of analyses used

Increasingly precise analyses

1 Intervals, small structs initialized

2 + string-length domain, medium structs initialized
3 + polyhedra with static packing
4 + congruences & widening tweaks: thresholds, delay

Conf. Check-Circle CLOCK

1 5695 279
2 6433 (+738) 365 (+86)
3 6885 (+452) 1844 (+1479)
4 6909 (+24) 2009 (+165)

21220 tasks in total, 12636 correctness tasks

Mopsa validates 54% of correct tasks (61% for overall winner, UAutomizer).

5

Portfolio of analyses used

Increasingly precise analyses

1 Intervals, small structs initialized
2 + string-length domain, medium structs initialized

3 + polyhedra with static packing
4 + congruences & widening tweaks: thresholds, delay

Conf. Check-Circle CLOCK

1 5695 279
2 6433 (+738) 365 (+86)
3 6885 (+452) 1844 (+1479)
4 6909 (+24) 2009 (+165)

21220 tasks in total, 12636 correctness tasks

Mopsa validates 54% of correct tasks (61% for overall winner, UAutomizer).

5

Portfolio of analyses used

Increasingly precise analyses

1 Intervals, small structs initialized
2 + string-length domain, medium structs initialized
3 + polyhedra with static packing

4 + congruences & widening tweaks: thresholds, delay

Conf. Check-Circle CLOCK

1 5695 279
2 6433 (+738) 365 (+86)
3 6885 (+452) 1844 (+1479)
4 6909 (+24) 2009 (+165)

21220 tasks in total, 12636 correctness tasks

Mopsa validates 54% of correct tasks (61% for overall winner, UAutomizer).

5

Portfolio of analyses used

Increasingly precise analyses

1 Intervals, small structs initialized
2 + string-length domain, medium structs initialized
3 + polyhedra with static packing
4 + congruences & widening tweaks: thresholds, delay

Conf. Check-Circle CLOCK

1 5695 279
2 6433 (+738) 365 (+86)
3 6885 (+452) 1844 (+1479)
4 6909 (+24) 2009 (+165)

21220 tasks in total, 12636 correctness tasks

Mopsa validates 54% of correct tasks (61% for overall winner, UAutomizer).

5

Portfolio of analyses used

Increasingly precise analyses

1 Intervals, small structs initialized
2 + string-length domain, medium structs initialized
3 + polyhedra with static packing
4 + congruences & widening tweaks: thresholds, delay

Conf. Check-Circle CLOCK

1 5695 279
2 6433 (+738) 365 (+86)
3 6885 (+452) 1844 (+1479)
4 6909 (+24) 2009 (+165)

21220 tasks in total, 12636 correctness tasks

Mopsa validates 54% of correct tasks (61% for overall winner, UAutomizer).

5

Portfolio of analyses used

Increasingly precise analyses

1 Intervals, small structs initialized
2 + string-length domain, medium structs initialized
3 + polyhedra with static packing
4 + congruences & widening tweaks: thresholds, delay

Conf. Check-Circle CLOCK

1 5695 279
2 6433 (+738) 365 (+86)
3 6885 (+452) 1844 (+1479)
4 6909 (+24) 2009 (+165)

21220 tasks in total, 12636 correctness tasks

Mopsa validates 54% of correct tasks (61% for overall winner, UAutomizer).
5

Mopsa’s Results

For our first participation, we competed in
I ReachSafety,

I MemorySafety,
I NoOverflows

ranking 6/19,
I SoftwareSystems bronze medal!

Results in the SoftwareSystems category
Verifier Bubaak CPAchecker Goblint Mopsa Symbiotic Ultimate

Proved correct 291 1,651 1,256 1,610 942 1,423
Proved incorrect 143 59 0 0 84 2
CPU Time (s) 2,000,000 730,000 800,000 580,000 400,000 1,400,000
Rank 2 6 10 3 1 7

6

Mopsa’s Results

For our first participation, we competed in
I ReachSafety,
I MemorySafety,

I NoOverflows

ranking 6/19,
I SoftwareSystems bronze medal!

Results in the SoftwareSystems category
Verifier Bubaak CPAchecker Goblint Mopsa Symbiotic Ultimate

Proved correct 291 1,651 1,256 1,610 942 1,423
Proved incorrect 143 59 0 0 84 2
CPU Time (s) 2,000,000 730,000 800,000 580,000 400,000 1,400,000
Rank 2 6 10 3 1 7

6

Mopsa’s Results

For our first participation, we competed in
I ReachSafety,
I MemorySafety,
I NoOverflows

ranking 6/19,

I SoftwareSystems bronze medal!

Results in the SoftwareSystems category
Verifier Bubaak CPAchecker Goblint Mopsa Symbiotic Ultimate

Proved correct 291 1,651 1,256 1,610 942 1,423
Proved incorrect 143 59 0 0 84 2
CPU Time (s) 2,000,000 730,000 800,000 580,000 400,000 1,400,000
Rank 2 6 10 3 1 7

6

Mopsa’s Results

For our first participation, we competed in
I ReachSafety,
I MemorySafety,
I NoOverflows ranking 6/19,

I SoftwareSystems

bronze medal!

Results in the SoftwareSystems category
Verifier Bubaak CPAchecker Goblint Mopsa Symbiotic Ultimate

Proved correct 291 1,651 1,256 1,610 942 1,423
Proved incorrect 143 59 0 0 84 2
CPU Time (s) 2,000,000 730,000 800,000 580,000 400,000 1,400,000
Rank 2 6 10 3 1 7

6

Mopsa’s Results

For our first participation, we competed in
I ReachSafety,
I MemorySafety,
I NoOverflows ranking 6/19,
I SoftwareSystems

bronze medal!

Results in the SoftwareSystems category
Verifier Bubaak CPAchecker Goblint Mopsa Symbiotic Ultimate

Proved correct 291 1,651 1,256 1,610 942 1,423
Proved incorrect 143 59 0 0 84 2
CPU Time (s) 2,000,000 730,000 800,000 580,000 400,000 1,400,000
Rank 2 6 10 3 1 7

6

Mopsa’s Results

For our first participation, we competed in
I ReachSafety,
I MemorySafety,
I NoOverflows ranking 6/19,
I SoftwareSystems bronze medal!

Results in the SoftwareSystems category
Verifier Bubaak CPAchecker Goblint Mopsa Symbiotic Ultimate

Proved correct 291 1,651 1,256 1,610 942 1,423
Proved incorrect 143 59 0 0 84 2
CPU Time (s) 2,000,000 730,000 800,000 580,000 400,000 1,400,000
Rank 2 6 10 3 1 7

6

Mopsa’s Results

For our first participation, we competed in
I ReachSafety,
I MemorySafety,
I NoOverflows ranking 6/19,
I SoftwareSystems bronze medal!

Results in the SoftwareSystems category
Verifier Bubaak CPAchecker Goblint Mopsa Symbiotic Ultimate

Proved correct 291 1,651 1,256 1,610 942 1,423
Proved incorrect 143 59 0 0 84 2
CPU Time (s) 2,000,000 730,000 800,000 580,000 400,000 1,400,000
Rank 2 6 10 3 1 7

6

Strengths and Weaknesses

I Scalability. Answers in 98.5% of the cases.

I Soundness. Fixed 164 task definitions.
I Good precision for an abstract interpreter.

I Uncomplete.
I Lack of precision on small, intricate programs.
I Trivial witness generation:

• 96.4% are validated.
• Difficulties with interprecodural encoding5?

5Saan. Witness Generation for Data-flow Analysis. 2020

7

Strengths and Weaknesses

I Scalability. Answers in 98.5% of the cases.
I Soundness. Fixed 164 task definitions.

I Good precision for an abstract interpreter.

I Uncomplete.
I Lack of precision on small, intricate programs.
I Trivial witness generation:

• 96.4% are validated.
• Difficulties with interprecodural encoding5?

5Saan. Witness Generation for Data-flow Analysis. 2020

7

Strengths and Weaknesses

I Scalability. Answers in 98.5% of the cases.
I Soundness. Fixed 164 task definitions.
I Good precision for an abstract interpreter.

I Uncomplete.
I Lack of precision on small, intricate programs.
I Trivial witness generation:

• 96.4% are validated.
• Difficulties with interprecodural encoding5?

5Saan. Witness Generation for Data-flow Analysis. 2020

7

Strengths and Weaknesses

I Scalability. Answers in 98.5% of the cases.
I Soundness. Fixed 164 task definitions.
I Good precision for an abstract interpreter.

I Uncomplete.

I Lack of precision on small, intricate programs.
I Trivial witness generation:

• 96.4% are validated.
• Difficulties with interprecodural encoding5?

5Saan. Witness Generation for Data-flow Analysis. 2020

7

Strengths and Weaknesses

I Scalability. Answers in 98.5% of the cases.
I Soundness. Fixed 164 task definitions.
I Good precision for an abstract interpreter.

I Uncomplete.
I Lack of precision on small, intricate programs.

I Trivial witness generation:

• 96.4% are validated.
• Difficulties with interprecodural encoding5?

5Saan. Witness Generation for Data-flow Analysis. 2020

7

Strengths and Weaknesses

I Scalability. Answers in 98.5% of the cases.
I Soundness. Fixed 164 task definitions.
I Good precision for an abstract interpreter.

I Uncomplete.
I Lack of precision on small, intricate programs.
I Trivial witness generation:

• 96.4% are validated.
• Difficulties with interprecodural encoding5?

5Saan. Witness Generation for Data-flow Analysis. 2020

7

Strengths and Weaknesses

I Scalability. Answers in 98.5% of the cases.
I Soundness. Fixed 164 task definitions.
I Good precision for an abstract interpreter.

I Uncomplete.
I Lack of precision on small, intricate programs.
I Trivial witness generation:

• 96.4% are validated.

• Difficulties with interprecodural encoding5?

5Saan. Witness Generation for Data-flow Analysis. 2020

7

Strengths and Weaknesses

I Scalability. Answers in 98.5% of the cases.
I Soundness. Fixed 164 task definitions.
I Good precision for an abstract interpreter.

I Uncomplete.
I Lack of precision on small, intricate programs.
I Trivial witness generation:

• 96.4% are validated.
• Difficulties with interprecodural encoding5?

5Saan. Witness Generation for Data-flow Analysis. 2020
7

Benefits of participation

I Fun! (up-to exhaustion)

I Good time for software improvements

• 20 issues fixed
• We already have a 2024 feature wishlist

I Interaction and comparison with other tools from a broad community
I Better understanding of the benchmarks

• Becoming a de facto standard
• Always ongoing benchmark curation

I Brings new research questions

8

Benefits of participation

I Fun! (up-to exhaustion)
I Good time for software improvements

• 20 issues fixed
• We already have a 2024 feature wishlist

I Interaction and comparison with other tools from a broad community
I Better understanding of the benchmarks

• Becoming a de facto standard
• Always ongoing benchmark curation

I Brings new research questions

8

Benefits of participation

I Fun! (up-to exhaustion)
I Good time for software improvements

• 20 issues fixed

• We already have a 2024 feature wishlist

I Interaction and comparison with other tools from a broad community
I Better understanding of the benchmarks

• Becoming a de facto standard
• Always ongoing benchmark curation

I Brings new research questions

8

Benefits of participation

I Fun! (up-to exhaustion)
I Good time for software improvements

• 20 issues fixed
• We already have a 2024 feature wishlist

I Interaction and comparison with other tools from a broad community
I Better understanding of the benchmarks

• Becoming a de facto standard
• Always ongoing benchmark curation

I Brings new research questions

8

Benefits of participation

I Fun! (up-to exhaustion)
I Good time for software improvements

• 20 issues fixed
• We already have a 2024 feature wishlist

I Interaction and comparison with other tools from a broad community

I Better understanding of the benchmarks

• Becoming a de facto standard
• Always ongoing benchmark curation

I Brings new research questions

8

Benefits of participation

I Fun! (up-to exhaustion)
I Good time for software improvements

• 20 issues fixed
• We already have a 2024 feature wishlist

I Interaction and comparison with other tools from a broad community
I Better understanding of the benchmarks

• Becoming a de facto standard
• Always ongoing benchmark curation

I Brings new research questions

8

Benefits of participation

I Fun! (up-to exhaustion)
I Good time for software improvements

• 20 issues fixed
• We already have a 2024 feature wishlist

I Interaction and comparison with other tools from a broad community
I Better understanding of the benchmarks

• Becoming a de facto standard

• Always ongoing benchmark curation

I Brings new research questions

8

Benefits of participation

I Fun! (up-to exhaustion)
I Good time for software improvements

• 20 issues fixed
• We already have a 2024 feature wishlist

I Interaction and comparison with other tools from a broad community
I Better understanding of the benchmarks

• Becoming a de facto standard
• Always ongoing benchmark curation

I Brings new research questions

8

Benefits of participation

I Fun! (up-to exhaustion)
I Good time for software improvements

• 20 issues fixed
• We already have a 2024 feature wishlist

I Interaction and comparison with other tools from a broad community
I Better understanding of the benchmarks

• Becoming a de facto standard
• Always ongoing benchmark curation

I Brings new research questions

8

Conclusion

Conclusion

Mopsa as a stable academic static analyzer,

able to analyze C and Python programs,
competing with cutting-edge verifiers.

Looking forward to the next editions!

Some SV-Comp related research questions

I Best configuration to analyze a given program under resource constraints
I Targeting falsification tasks: synergy with symbolic execution, or backward
analysis

9

Conclusion

Mopsa as a stable academic static analyzer,
able to analyze C and Python programs,

competing with cutting-edge verifiers.

Looking forward to the next editions!

Some SV-Comp related research questions

I Best configuration to analyze a given program under resource constraints
I Targeting falsification tasks: synergy with symbolic execution, or backward
analysis

9

Conclusion

Mopsa as a stable academic static analyzer,
able to analyze C and Python programs,
competing with cutting-edge verifiers.

Looking forward to the next editions!

Some SV-Comp related research questions

I Best configuration to analyze a given program under resource constraints
I Targeting falsification tasks: synergy with symbolic execution, or backward
analysis

9

Conclusion

Mopsa as a stable academic static analyzer,
able to analyze C and Python programs,
competing with cutting-edge verifiers.

Looking forward to the next editions!

Some SV-Comp related research questions

I Best configuration to analyze a given program under resource constraints
I Targeting falsification tasks: synergy with symbolic execution, or backward
analysis

9

Conclusion

Mopsa as a stable academic static analyzer,
able to analyze C and Python programs,
competing with cutting-edge verifiers.

Looking forward to the next editions!

Some SV-Comp related research questions

I Best configuration to analyze a given program under resource constraints

I Targeting falsification tasks: synergy with symbolic execution, or backward
analysis

9

Conclusion

Mopsa as a stable academic static analyzer,
able to analyze C and Python programs,
competing with cutting-edge verifiers.

Looking forward to the next editions!

Some SV-Comp related research questions

I Best configuration to analyze a given program under resource constraints
I Targeting falsification tasks: synergy with symbolic execution, or backward
analysis

9

Mopsa at the Software
Verification Competition

Questions

Raphaël Monat, Abdelraouf Ouadjaout, Antoine Miné
rmonat.fr

SV-Comp
24 April 2023

rmonat.fr

	Mopsa
	

	Mopsa at SV-Comp
	

	Conclusion
	

