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 Abstraction-based partial order reduction:
- Variables untracked in the abstraction does not cause dependency
- Static POR based on source sets
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New algorithms

« Statement reduction based on current thread context

Thread 1 Thread 2
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* Interprocedural analysis, stack abstraction for recursion
State: (g, S)
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Advantages:

 Reduced abstract state-space
« Can solve infinitely recursive tasks
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* This year's focus:
— Concurrency (reachability): 3.5 times more tasks solved

— Striving for correctness: O incorrect tasks for reachability properties
(only 2 other tools managed this)
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* Next steps:
- frontend development: support for more C language constructs
— analysis of worse-than-expected results



