Raphaél Monat, Abdelraouf Ouadjaout, Antoine Mine

rmonat.fr

Sv-Comp 2 L Université
24 April 2023 &zua/- LL de Lille

rmonat.fr

Mopsa

@ Modular Open Platform for Static Analysis ' [l _*

gitlab.com/mopsa/mopsa-analyzer

TJournault, Miné, Monat, and Ouadjaout. “Combinations of reusable abstract domains for a multilingual static
analyzer”. VSTTE 2019 1

gitlab.com/mopsa/mopsa-analyzer

. Modular Open Platform for Static Analysis ' |l

gitlab.com/mopsa/mopsa-analyzer

TJournault, Miné, Monat, and Ouadjaout. “Combinations of reusable abstract domains for a multilingual static
analyzer”. VSTTE 2019 ’]

gitlab.com/mopsa/mopsa-analyzer

@ Modular Open Platform for Static Analysis ' [l

gitlab.com/mopsa/mopsa-analyzer

TJournault, Miné, Monat, and Ouadjaout. “Combinations of reusable abstract domains for a multilingual static
analyzer”. VSTTE 2019 ’]

gitlab.com/mopsa/mopsa-analyzer

@ Modular Open Platform for Static Analysis ' [l

gitlab.com/mopsa/mopsa-analyzer

TJournault, Miné, Monat, and Ouadjaout. “Combinations of reusable abstract domains for a multilingual static
analyzer”. VSTTE 2019 ’]

gitlab.com/mopsa/mopsa-analyzer

@ Modular Open Platform for Static Analysis ' [l

gitlab.com/mopsa/mopsa-analyzer

TJournault, Miné, Monat, and Ouadjaout. “Combinations of reusable abstract domains for a multilingual static
analyzer”. VSTTE 2019 1

gitlab.com/mopsa/mopsa-analyzer

@ Modular Open Platform for Static Analysis ' [l

gitlab.com/mopsa/mopsa-analyzer

TJournault, Miné, Monat, and Ouadjaout. “Combinations of reusable abstract domains for a multilingual static
analyzer”. VSTTE 2019 1

gitlab.com/mopsa/mopsa-analyzer

e Modular Open Platform for Static Analysis ' |l

gitlab.com/mopsa/mopsa-analyzer

» Antoine Miné » David Delmas » Matthieu Journault
» Abdelraouf Ouadjaout » Guillaume Bau
» Raphaél Monat » Milla Valnet

TJournault, Miné, Monat, and Ouadjaout. “Combinations of reusable abstract domains for a multilingual static
analyzer”. VSTTE 2019 1

gitlab.com/mopsa/mopsa-analyzer

Only proves programs correct Runtime error detection

Only proves programs correct Runtime error detection

Only proves programs correct Runtime error detection

Language Benchmark Max. LoC ~Time Selectivity
c? Coreutils 550 20s 99.8%
Juliet 340,000 2.5h 98.9%

20uadjaout and Miné. “A Library Modeling Language for the Static Analysis of C Programs”. SAS 2020

Only proves programs correct Runtime error detection

safe operations

Language Benchmark Max. LoC ~Time Selectivity i
operations
c? Coreutils 550 20s 99.8%
Juliet 340,000 2.5h 98.9%
Python? PyPerformance 1,792 1.3m 99.2%
PathPicker 2,560 3.0m 99.2%

20uadjaout and Miné. “A Library Modeling Language for the Static Analysis of C Programs”. SAS 2020
3Monat, Ouadjaout, and Miné. “Static Type Analysis by Abstract Interpretation of Python Programs”. ECOOP 2020 2

Only proves programs correct Runtime error detection

safe operations

Language Benchmark Max. LoC ~Time Selectivity i
operations

c? Coreutils 550 20s 99.8%

Juliet 340,000 2.5h 98.9%
Python? PyPerformance 1,792 1.3m 99.2%

PathPicker 2,560 3.0m 99.2%
Python+C* ahocorasick 4,800 1.0m 98.0%

bitarray 5,700 4.6m 94.6%

20uadjaout and Miné. “A Library Modeling Language for the Static Analysis of C Programs”. SAS 2020
3Monat, Ouadjaout, and Miné. “Static Type Analysis by Abstract Interpretation of Python Programs”. ECOOP 2020
“Monat, Ouadjaout, and Miné. “A Multilanguage Static Analysis of Python Programs with Native C Extensions”. SAS 2021 2

T () 6 () T (O

®
Ceells

C.string_length
Sequence
C.machineNum C.pointers
@ Reduced product

@ Cartesian product

@ Composition

@@

/

(Uimerats) (Beongruence)

Mopsa at SV-Comp

[Analyze the target program with Mopsa

[Analyze the target program with Mopsa
12 Postprocess Mopsa'’s result to decide whether the property of interest holds

[Analyze the target program with Mopsa
12 Postprocess Mopsa'’s result to decide whether the property of interest holds
e Yes? finished!

[Analyze the target program with Mopsa
12 Postprocess Mopsa'’s result to decide whether the property of interest holds

e Yes? finished!
e No? restart with a more precise analysis configuration

[Analyze the target program with Mopsa

12 Postprocess Mopsa'’s result to decide whether the property of interest holds

e Yes? finished!
e No? restart with a more precise analysis configuration

[Analyze the target program with Mopsa

12 Postprocess Mopsa'’s result to decide whether the property of interest holds

e Yes? finished!
e No? restart with a more precise analysis configuration

» Task: decide if a property holds on a program

[Analyze the target program with Mopsa

12 Postprocess Mopsa'’s result to decide whether the property of interest holds

e Yes? finished!
e No? restart with a more precise analysis configuration

» Task: decide if a property holds on a program
But Mopsa analyzes full programs and detects all runtime errors

Our approach

[Analyze the target program with Mopsa
[2 Postprocess Mopsa's result to decide whether the property of interest holds

o Yes? finished!
e No? restart with a more precise analysis configuration

Suboptimal strategy

» Task: decide if a property holds on a program
But Mopsa analyzes full programs and detects all runtime errors
—> We could at least add slicing

Our approach

[Analyze the target program with Mopsa
[2 Postprocess Mopsa's result to decide whether the property of interest holds

o Yes? finished!
e No? restart with a more precise analysis configuration

Suboptimal strategy

» Task: decide if a property holds on a program
But Mopsa analyzes full programs and detects all runtime errors
—> We could at least add slicing

» New analyses restart from scratch

[l Intervals, small structs initialized

[l Intervals, small structs initialized

[20 + string-length domain, medium structs initialized

[l Intervals, small structs initialized

[20 + string-length domain, medium structs initialized
I3 + polyhedra with static packing

[l Intervals, small structs initialized

[20 + string-length domain, medium structs initialized
I3 + polyhedra with static packing
4 + congruences & widening tweaks: thresholds, delay

[l Intervals, small structs initialized

[20 + string-length domain, medium structs initialized
I3 + polyhedra with static packing
4 + congruences & widening tweaks: thresholds, delay

Conf. (V) (U
1 5695 279
2 6433 (+738) 365 (+86)
3 6885 (+452) 1844 (+1479)
4 6909 (+24) 2009 (+165)

21220 tasks in total, 12636 correctness tasks

[l Intervals, small structs initialized

[20 + string-length domain, medium structs initialized
I3 + polyhedra with static packing
4 + congruences & widening tweaks: thresholds, delay

Conf. (V) (U
1 5695 279
2 6433 (+738) 365 (+86)
3 6885 (+452) 1844 (+1479)
4 6909 (+24) 2009 (+165)

21220 tasks in total, 12636 correctness tasks

Mopsa validates 54% of correct tasks (61% for overall winner, UAutomizer).

For our first participation, we competed in

» ReachSafety,

For our first participation, we competed in

» ReachSafety,
» MemorySafety,

For our first participation, we competed in

» ReachSafety,
» MemorySafety,
» NoOverflows

For our first participation, we competed in

» ReachSafety,
» MemorySafety,
» NoOverflows ranking 6/19,

For our first participation, we competed in

» ReachSafety,

» MemorySafety,

» NoOverflows ranking 6/19,
» SoftwareSystems

For our first participation, we competed in

» ReachSafety,

» MemorySafety,

» NoOverflows ranking 6/19,

» SoftwareSystems bronze medal!

For our first participation, we competed in

» ReachSafety,

» MemorySafety,

» NoOverflows ranking 6/19,

» SoftwareSystems bronze medal!

Results in the SoftwareSystems category

Verifier Bubaak CPAchecker Goblint Mopsa Symbiotic Ultimate
Proved correct 291 1,651 1,256 1,610 942 1,423
Proved incorrect 143 59 0 0 84 2
CPU Time (s) 2,000,000 730,000 800,000 580,000 400,000 1,400,000
Rank 2 6 10 3 1 7

°Saan. Witness Generation for Data-flow Analysis. 2020

» Fun! (up-to exhaustion)

» Fun! (up-to exhaustion)
» Good time for software improvements

» Fun! (up-to exhaustion)
» Good time for software improvements
e 20 issues fixed

» Fun! (up-to exhaustion)
» Good time for software improvements

e 20 issues fixed
« We already have a 2024 feature wishlist

» Fun! (up-to exhaustion)
» Good time for software improvements

e 20 issues fixed
« We already have a 2024 feature wishlist

» Interaction and comparison with other tools from a broad community

» Fun! (up-to exhaustion)
» Good time for software improvements

e 20 issues fixed
« We already have a 2024 feature wishlist

» Interaction and comparison with other tools from a broad community
» Better understanding of the benchmarks

» Fun! (up-to exhaustion)
» Good time for software improvements
e 20 issues fixed
« We already have a 2024 feature wishlist
» Interaction and comparison with other tools from a broad community
» Better understanding of the benchmarks
» Becoming a de facto standard

» Fun! (up-to exhaustion)
» Good time for software improvements
e 20 issues fixed
« We already have a 2024 feature wishlist
» Interaction and comparison with other tools from a broad community
» Better understanding of the benchmarks

» Becoming a de facto standard
e Always ongoing benchmark curation

» Fun! (up-to exhaustion)
» Good time for software improvements
e 20 issues fixed
« We already have a 2024 feature wishlist
» Interaction and comparison with other tools from a broad community
» Better understanding of the benchmarks

» Becoming a de facto standard
e Always ongoing benchmark curation

» Brings new research questions

Conclusion

Mopsa as a stable academic static analyzer,

Mopsa as a stable academic static analyzer,
able to analyze C and Python programs,

Mopsa as a stable academic static analyzer,
able to analyze C and Python programs,
competing with cutting-edge verifiers.

Mopsa as a stable academic static analyzer,
able to analyze C and Python programs,
competing with cutting-edge verifiers.

Looking forward to the next editions!

Mopsa as a stable academic static analyzer,
able to analyze C and Python programs,
competing with cutting-edge verifiers.

Looking forward to the next editions!

Mopsa as a stable academic static analyzer,
able to analyze C and Python programs,
competing with cutting-edge verifiers.

Looking forward to the next editions!

Raphaél Monat, Abdelraouf Ouadjaout, Antoine Mine

rmonat.fr

Sv-Comp 2 L Université
24 April 2023 &zua/- LL de Lille

rmonat.fr

	Mopsa
	

	Mopsa at SV-Comp
	

	Conclusion
	

