
Bubaak

Dynamic Cooperative Verification

Marek Chalupa

April 8, 2024, SV-COMP’24



Dynamic cooperative verification

• Multiple tools cooperate on verification of a program

• Tools can be dynamically invoked or destroyed based on the state of
verification

• E.g., when a new reachable location or state is discovered, or
• a tool has no progress.

• Tools share their findings continuously in real-time

R
untim

e
m

onitoring

1 / 4



Dynamic cooperative verification

• Multiple tools cooperate on verification of a program
• Tools can be dynamically invoked or destroyed based on the state of

verification

• E.g., when a new reachable location or state is discovered, or
• a tool has no progress.

• Tools share their findings continuously in real-time

R
untim

e
m

onitoring

1 / 4



Dynamic cooperative verification

• Multiple tools cooperate on verification of a program
• Tools can be dynamically invoked or destroyed based on the state of

verification
• E.g., when a new reachable location or state is discovered, or
• a tool has no progress.

• Tools share their findings continuously in real-time

R
untim

e
m

onitoring

1 / 4



Dynamic cooperative verification

• Multiple tools cooperate on verification of a program
• Tools can be dynamically invoked or destroyed based on the state of

verification
• E.g., when a new reachable location or state is discovered, or
• a tool has no progress.

• Tools share their findings continuously in real-time

R
untim

e
m

onitoring

1 / 4



Dynamic cooperative verification

• Multiple tools cooperate on verification of a program
• Tools can be dynamically invoked or destroyed based on the state of

verification
• E.g., when a new reachable location or state is discovered, or
• a tool has no progress.

• Tools share their findings continuously in real-time

R
untim

e
m

onitoring

1 / 4



Design of Bubaak

• Every verifier (but also compilers and other programs) is a task

• When a task finishes, it either yields a result or it rewrites itself into a new
task(s).

• Tasks emit events that other tasks can listen to
• a task started, finished
• lines on stdout or stderr
• invariants, reached states – requires instrumentation of the tools

2 / 4



Design of Bubaak

• Every verifier (but also compilers and other programs) is a task

• When a task finishes, it either yields a result or it rewrites itself into a new
task(s).

• Tasks emit events that other tasks can listen to
• a task started, finished
• lines on stdout or stderr
• invariants, reached states – requires instrumentation of the tools

2 / 4



Design of Bubaak

• Every verifier (but also compilers and other programs) is a task

• When a task finishes, it either yields a result or it rewrites itself into a new
task(s).

• Tasks emit events that other tasks can listen to
• a task started, finished
• lines on stdout or stderr
• invariants, reached states – requires instrumentation of the tools

2 / 4



Bubaak at SV-COMP’24

Verify(P, prp): •
VerifyTermin(P)

TryLEE(P)

prp = termination

prp ̸= termination

VerifyTermin(P): • ∨
BubaaK-LEE(P)

SlowBeast-TIIP(P)

TryLEE(P): • BubaaK-LEE
CoopBselfSE(P)

SlowBeast-SE(P)

> 300 s

detected symbolic floats

CoopBselfSE(P): • ∨
SlowBeast-SE(P)

SlowBeast-BSELF (P)
reachable states

3 / 4



Bubaak at SV-COMP’24

1

10

100

1000
M

in
. 
tim

e
 i
n
 s

2LS

Bubaak-SpLit

CBMC

CVT-ParPort

CPAchecker

DIVINE

ESBMC-kind

Goblint

Graves-CPA

Graves-Par

PeSCo-CPA

Symbiotic

UAutomizer

UKojak

UTaipan

-10000 -5000 0 5000 10000 15000 20000 25000

Cumulative score

Bubaak

4 / 4


