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code + specification CFA

Alphabet

Σ = { p != 0 , n >= 0 ,
n == 0 , p := 0 , n != 0 ,
p == 0 , n-- , n < 0 , }

Some trace
p != 0 n >= 0 p == 0
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Verification Algorithm

• pick trace π from L

• analyze feasibility of π

• generalize from π to set of traces Π

• subtract Π from L

• repeat until language L is empty
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