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Dynamic cooperative verification

• Multiple tools cooperate on verification of a program

• Tools can be dynamically invoked or destroyed based on the state of
verification

• E.g., when a new reachable location or state is discovered, or
• a tool has no progress.

• Tools share their findings continuously in real-time
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Design of Bubaak

• Every verifier (but also compilers and other programs) is a task

• When a task finishes, it either yields a result or it rewrites itself into a new
task(s).

• Tasks emit events that other tasks can listen to
• a task started, finished
• lines on stdout or stderr
• invariants, reached states – requires instrumentation of the tools
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Bubaak at SV-COMP’24

Verify(P, prp): •
VerifyTermin(P)

TryLEE(P)

prp = termination

prp ̸= termination

VerifyTermin(P): • ∨
BubaaK-LEE(P)

SlowBeast-TIIP(P)

TryLEE(P): • BubaaK-LEE
CoopBselfSE(P)

SlowBeast-SE(P)

> 300 s

detected symbolic floats

CoopBselfSE(P): • ∨
SlowBeast-SE(P)

SlowBeast-BSELF (P)
reachable states
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