
Ultimate GemCutter: Commutativity in Concurrent Program Verification
Dominik Klumpp, Daniel Dietsch, Matthias Heizmann, Frank Schüssele, Azadeh Farzan, Andreas Podelski

ultimate-pa.org github.com/ultimate-pa/ultimate

Commutativity Simplifies Proofs of Concurrent Programs
Concurrent Program

{ x = y = i = j = 0 }

while (i < n) {
x += A[i];
i++;

}
∥

while (j < n) {
y += A[j];
j++;

}

{ x = y }

All Interleavings

i<
n

x+
=A

[i
]

i+
+ j<n

y+=A[j]
j++

j>=n

j>=n

j>=n

i<
n

x+
=A

[i
]

i+
+

i>=n

i>=n

i>=n

j<n
y+=A[j]

j+
+

j>=ni>=n

complex invariant: x =
i∑

k=0
A[k] ∧ y =

j∑
k=0

A[k] ∧ i ≤ n ∧ j ≤ n

A Sound Reduction

i<
n

i+
+

j++

j<n
y+=A[j]

j>=n

i<
n

x+
=A

[i
]

i+
+

i>=n

j<n
y+=A[j]

j+
+

j>=ni>=n

simple invariant: x = y ∧ i = j

small control flow graph

Commutativity
Many pairs of statements commute:

i.e., order of execution does not matter
Example: x+=A[i] y+=A[j] ∼ y+=A[j] x+=A[i]

Extension: proof-sensitive commutativity
Example: *x = 0 *y = 1 ∼ *y = 1 *x = 0

if we have proven that x ̸= y
swapping adjacent commuting statements
⇝ equivalent traces

Reduction
representative subset of program traces: at least one
representative per equivalence class

Soundness:
one trace correct ⇒ all equivalent traces correct

correctness of reduction ⇒ correctness of program

Verification Principle
GemCutter generalizes from spurious counterexamples τ
to larger sets of correct traces:
trace abstraction

generalizes across
loop iterations to a
set of traces L

commutativity allows
for generalization
across interleavings to
the set cl(L) of all
equivalent traces interleavings

ite
ra

tio
ns

cl(L)

L=(a1a2)∗b

equivalence class [τ ]
τ =a1a2b a1ba2 ba1a2

(a1a2)2b

(a1a2)3b

If cl(L) contains all program traces, the program is correct.
Equivalently: If L contains all traces of a reduction, then
the program is correct.

Performance
Evaluation shows significant advantages over a
state-of-the-art verifier (Ultimate Automizer):

200 400 600 800 1,000 1,200

10

100

4

900
CPU time (s)

Automizer (all interleavings) GemCutter (commutativity-based)

200 400 600 800 1,000 1,200
200
250

500

1,000

2,000

4,000

8,000
Memory (MB)

Competitions:
▶ SV-COMP’24: 2nd place in ConcurrencySafety
▶ SV-COMP’23: 3rd place in ConcurrencySafety
▶ SV-COMP’22: 3rd place in ConcurrencySafety,

1st place in NoDataRace (demo)

Commutativity & Verification
choice of representatives affects proof simplicity
▶ challenge: select suitable representatives
choice of proof affects possible commutativity
▶ challenge: find useful abstract commutativity
partial order reduction algorithms speed up verification
▶ challenge: adapt classical POR algorithms
commutativity reasoning is widely applicable
▶ challenge: extend to more programs & properties

[SV-COMP’22] Ultimate GemCutter and the Axes of Generalization,
Klumpp, Dietsch, Heizmann, Schüssele, Ebbinghaus, Farzan and Podelski, 2022

[PLDI’22] Sound Sequentialization for Concurrent Program Verification,
Farzan, Klumpp and Podelski, 2022

[POPL’23] Stratified Commutativity in Verification Algorithms for Concurrent
Programs, Farzan, Klumpp and Podelski, 2023

[POPL’24] Commutativity Simplifies Proofs of Parameterized Programs,
Farzan, Klumpp and Podelski, 2024

Can commutativity-based ver-
ification compete in practice?Our algorithmic verification tool Ultimate

GemCutter
▶ tightly integrates commutativity-based

reduction with trace abstraction
refinement

▶ constructs a reduction on-demand as
needed for verification

▶ is built on top of the Ultimate program
analysis platform

GemCutter generalizes from spurious
counterexamples τ to larger sets of correct
traces:trace abstraction

generalizes across
iterations of a loop
to a set of traces L

commutativity
allows for orthogonal
generalization across
interleavings to the
union of equivalence
classes for all traces
in L, i.e., the closure
cl(L).

If cl(L) contains all
traces of the program,
the program is correct.

interleavings

ite
ra

tio
ns

cl(L)

L=(a1a2)∗b

equivalence class [τ ]
τ =a1a2b a1ba2 ba1a2

(a1a2)2b

(a1a2)3b

Evaluation shows significant advantages
over a state-of-the-art verifier based on naïve
sequentialization (Ultimate Automizer):

200 400 600 800 1,000 1,200

10

100

4

900
CPU time (s)

Automizer (naïve sequentialization) GemCutter (commutativity-based)200 400 600 800 1,000 1,200

316

1,000

3,160

200

8,000
Memory (MB)

11th International Competition on
Software Verification (SV-COMP’22):
▶ 3rd place in category ConcurrencySafety
▶ 1st place in category NoDataRace

[SV-COMP’22] Dominik Klumpp et al. Ultimate
GemCutter and the axes of generalization
(competition contribution).
In TACAS (2), volume 13244 of Lecture Notes in
Computer Science, pages 479–483. Springer,
2022

How does the choice of repre-
sentatives impact verification?On the right: a different

reduction of the example
(different representatives
chosen for equivalence
classes)▶ even smaller control flow

graph
⇝ more efficient
proof checking

▶ but very complicated
invariant needed
⇝ algorithmic
verification cannot find
a proof

Conclusions:
▶ Choice of representatives

affects proof simplicity
and size of reduction

▶ tradeoff: smallest
reduction does not
always have simplest
proof

i<
n

x+
=A

[i
]

i+
+

i>=n

j<n
y+=A[j]

j+
+

j>=n

invariant: x =
n∑

k=0
A[k] ∧ y =

j∑
k=0

A[k] ∧ j ≤ n

Preference orders characterize possible
choices of representatives:
▶ (total) order over program traces
▶ representative = most preferred (i.e.,

minimal) trace in equivalence class
▶ allows comparing different representative

selections independent of commutativity
Positional lexicographic preference
orders:
▶ lexicographic order, but underlying order

on statements depends on program
location

▶ effective construction of reductions
using partial order reduction
algorithms:
sleep sets and weakly persistent
membranes

▶ best-case linear-size representation of
reductions

Evaluation of 5 prefer-
ence orders shows:
▶ Best preference order

depends on program
▶ Portfolio of preference

orders successfully
analyzes more
programs than any
fixed preference order

On the right: incorrect and
correct programs with the
best preference order

seq

lockstep

rand(1)

rand(2)

rand(3)

121

76

60

66

62

277

113

153

168

137

[PLDI’22] Azadeh Farzan, Dominik Klumpp, and
Andreas Podelski. Sound sequentialization for
concurrent program verification.
In PLDI, pages 506–521. ACM, 2022

How can commutativity be de-
fined?Intuition: statements st1 and st2 commute =̂

their execution order “does not matter”
Concrete Commutativity: st1 and st2
commute if st1st2 behaves exactly as st2st1:

Jst1st2K︸ ︷︷ ︸
semantics: binary relation over program states

= Jst2st1K

▶ order “does not matter” for any program
and wrt. any (safety) property

▶ often unnecessarily strict: for a given
program and a given property,
more commutativity is possible

Idea: Let st1 and st2 commute if st1st2
behaves similarly enough to st2st1
⇝ abstract away irrelevant details, preserve
relevant details

relevance is determined by a (partial)
proof constructed by the verification
⇝ a notion of commutativity is safe wrt. a
proof Π if no trace proven by Π

is equivalent to an incorrect trace.
Abstract Commutativity: Given a
statement abstraction α : Stmt → Stmt,
statements st1 and st2 commute under α if
α(st1) and α(st2) commute concretely.
▶ If α preserves a proof Π, commutativity

under α is safe wrt. Π
preservation: {φ} st {ψ} used by Π ⇒ {φ}α(st) {ψ} valid

▶ Evaluation shows: even very coarse
abstraction highly beneficial for
light-weight properties (e.g. memory
safety)

Stratified Commutativity: fully benefit
from concrete and abstract commutativity
▶ neither commutativity

subsumes the other
▶ combination of

commutativity notions is
non-trivial

τ1 ∼α τ2 ∼ τ3

(1) abstract (2) concrete

proven correct⇒
▶ new proof rule, generalized

to n commutativity notions
▶ new partial order reduction

algorithms to compute
reductions up to n
commutativity notions

Π
clα(Π)

clconcr(clα(Π))

Stratified proof (for
concrete and

abstract
commutativity)

[POPL’23] Azadeh Farzan, Dominik Klumpp, and
Andreas Podelski. Stratified commutativity in
verification algorithms for concurrent programs.
In POPL, pages 1426–1453. ACM, 2023


