
ULTIMATE

automata-based software verification

for

non-reachability, memory safety, termination, overflows, race detection

2024 competition team: Matthias Heizmann, Manuel Bentele,
Daniel Dietsch, Xinyu Jiang, Dominik Klumpp, Frank Schüssele,

Andreas Podelski



program

specification

control-flow
automaton

=
language over

the set of
statements

=

set of traces

XXXtrue

×××false

all traces

infeasible

some trace

feasible



program

specification

control-flow
automaton

=
language over

the set of
statements

=

set of traces

XXXtrue

×××false

all traces

infeasible

some trace

feasible

code + specification CFA

Alphabet

Σ = { p != 0 , n >= 0 ,
n == 0 , p := 0 , n != 0 ,
p == 0 , n-- , n < 0 , }

Some trace
p != 0 n >= 0 p == 0



program

specification

control-flow
automaton

=
language over

the set of
statements

=

set of traces

XXXtrue

×××false

all traces

infeasible

some trace

feasible

Verification Algorithm

• pick trace π from L

• analyze feasibility of π

• generalize from π to set of traces Π

• subtract Π from L

• repeat until language L is empty



interprocedural
analysis

visibly pushdown
automata

termination
analysis

Büchi
automata

concurrent
programs

bounded
Petri nets


