
1/ 11

Goblint: Abstract Interpretation for Memory
Safety and Termination

Simmo Saan1 Julian Erhard2,3 Michael Schwarz2

Stanimir Bozhilov2 Karoliine Holter1 Sarah Tilscher2,3

Vesal Vojdani1 Helmut Seidl2

1University of Tartu 2TUM 3LMU
m.schwarz@tum.de

TACAS 2024

mailto:m.schwarz@tum.de


2/ 11

Goblint in 4 bullet points

I Static analyzer for C programs
I Based on abstract interpretation — sound!
I Overapproximating — no violations!
I Specializes in multi-threaded programs — best in NoDataRace!



3/ 11

SV-COMP 2024: Branching out

Termination + MemorySafety



3/ 11

SV-COMP 2024: Branching out

Termination + MemorySafety



4/ 11

Termination

I Two sources for non-termination
I Infinite loops

I Syntactically instrument loops with a counter
I Prove counter is bounded
I Leverage existing numerical domains

I Recursion

I Goblint already computes call graph including dynamic calls
I Check this context-sensitive call graph for cycles

Result
A basic termination analysis in a few hundred lines of code.



4/ 11

Termination

I Two sources for non-termination
I Infinite loops

I Syntactically instrument loops with a counter
I Prove counter is bounded
I Leverage existing numerical domains

I Recursion

I Goblint already computes call graph including dynamic calls
I Check this context-sensitive call graph for cycles

Result
A basic termination analysis in a few hundred lines of code.



4/ 11

Termination

I Two sources for non-termination
I Infinite loops

I Syntactically instrument loops with a counter
I Prove counter is bounded
I Leverage existing numerical domains

I Recursion
I Goblint already computes call graph including dynamic calls
I Check this context-sensitive call graph for cycles

Result
A basic termination analysis in a few hundred lines of code.



4/ 11

Termination

I Two sources for non-termination
I Infinite loops

I Syntactically instrument loops with a counter
I Prove counter is bounded
I Leverage existing numerical domains

I Recursion
I Goblint already computes call graph including dynamic calls
I Check this context-sensitive call graph for cycles

Result
A basic termination analysis in a few hundred lines of code.



5/ 11

SV-COMP24: Branching out

Termination + MemorySafety



5/ 11

SV-COMP24: Branching out

Termination + MemorySafety



5/ 11

SV-COMP24: Branching out

Termination + MemorySafety



6/ 11

MemorySafety

I Points-to analysis X

I Identify heap objects by allocation sites & counters1 and
compute uniqueness X

I Use-After-Free

in a multi-threaded setting

I . . .

I . . .

1Nod to Tomáš Daćık who added counters to Goblint during his exchange



6/ 11

MemorySafety

I Points-to analysis X

I Identify heap objects by allocation sites & counters1 and
compute uniqueness X

I Use-After-Free

in a multi-threaded setting

I . . .

I . . .

1Nod to Tomáš Daćık who added counters to Goblint during his exchange



6/ 11

MemorySafety

I Points-to analysis X

I Identify heap objects by allocation sites & counters1 and
compute uniqueness X

I Use-After-Free in a multi-threaded setting

I . . .

I . . .

1Nod to Tomáš Daćık who added counters to Goblint during his exchange



7/ 11

Use-After-Free

Check at each access to h that no calls to free(h)

I have happened before

from any thread

Reason about behavior of multiple threads.

Challenge: How to check this thread-modularly?



7/ 11

Use-After-Free

Check at each access to h that no calls to free(h)

I have happened before from any thread

Reason about behavior of multiple threads.

Challenge: How to check this thread-modularly?



7/ 11

Use-After-Free

Check at each access to h that no calls to free(h)

I have happened before from any thread

Reason about behavior of multiple threads.

Challenge: How to check this thread-modularly?



7/ 11

Use-After-Free

Check at each access to h that no calls to free(h)

I have happened before from any thread

Reason about behavior of multiple threads.

Challenge: How to check this thread-modularly?



8/ 11

MHP information (for races)

I finite abstractions of reaching traces encoding aspects of the
history, e.g., set of joined threads. [S. et al, ESOP ’23]

Approach

I Per abstract heap object:
I Accumulate MHP information of all frees flow-insensitively
I For an access, check that none of the frees can happen before

Example

I t2 accesses h (MHP: >)

I t1 calls free h (MHP: t2 must-joined)

I X



8/ 11

MHP information (for races)

I finite abstractions of reaching traces encoding aspects of the
history, e.g., set of joined threads. [S. et al, ESOP ’23]

Approach

I Per abstract heap object:
I Accumulate MHP information of all frees flow-insensitively
I For an access, check that none of the frees can happen before

Example

I t2 accesses h (MHP: >)

I t1 calls free h (MHP: t2 must-joined)

I X



8/ 11

MHP information (for races)

I finite abstractions of reaching traces encoding aspects of the
history, e.g., set of joined threads. [S. et al, ESOP ’23]

Approach

I Per abstract heap object:
I Accumulate MHP information of all frees flow-insensitively
I For an access, check that none of the frees can happen before

Example

I t2 accesses h (MHP: >)

I t1 calls free h (MHP: t2 must-joined)

I X



8/ 11

MHP information (for races)

I finite abstractions of reaching traces encoding aspects of the
history, e.g., set of joined threads. [S. et al, ESOP ’23]

Approach

I Per abstract heap object:
I Accumulate MHP information of all frees flow-insensitively
I For an access, check that none of the frees can happen before

Example

I t2 accesses h (MHP: >)

I t1 calls free h (MHP: t2 must-joined)

I X



8/ 11

MHP information (for races)

I finite abstractions of reaching traces encoding aspects of the
history, e.g., set of joined threads. [S. et al, ESOP ’23]

Approach

I Per abstract heap object:
I Accumulate MHP information of all frees flow-insensitively
I For an access, check that none of the frees can happen before

Example

I t2 accesses h (MHP: >)

I t1 calls free h (MHP: t2 must-joined)

I X



9/ 11

First Attempt

I Poses many exciting challenges, e.g.,
I more expressive MHP abstractions
I more expressive (relational) heap domains
I . . .



10/ 11

Thank you!

I Support for termination

I Support for memory safety, also for
concurrent programs

I Only sound tool to support all properties

I Second best score in
ConcurrencySafety-MemSafety
(after Deagle)

�/goblint/analyzer

https://github.com/goblint/analyzer


11/ 11

Further reading

Saan, S., Erhard, J., Schwarz, M., Bozhilov, S., Holter, K.,
Tilscher, S., Vojdani, V., Seidl, H.
Goblint: Abstract Interpretation for Memory Safety and
Termination
In: TACAS 2024. pp. 381–386. Springer (2024).
DOI: https://doi.org/10.1007/978-3-031-57256-2_25

https://goblint.in.tum.de

https://github.com/goblint/analyzer

https://doi.org/10.1007/978-3-031-57256-2_25
https://goblint.in.tum.de
https://github.com/goblint/analyzer

