
Mopsa-C at SV-Comp 2024

Raphaël Monat, Marco Milanese, Francesco Parolini,
Jerôme Boillot, Abdelraouf Ouadjaout, Antoine Miné

SV-Comp
8 April 2024

A General Overview of Mopsa

Modular Open Platform for Static Analysis
gitlab.com/mopsa/mopsa-analyzer

Different properties

I Runtime error detection
I Portability (patch, endianness)
I Non-exploitability

Specificities

I Modular abstractions, loose coupling
I Optimized for relational domains
I Ease dev.: interactive engine, hooks

Multiple languages

I C
I Python (+C)
I µOCaml
I Michelson

Contributors (2018–2024)

I G. Bau
I J. Boillot
I D. Delmas
I A. Fromherz

I M. Milanese
I A. Miné
I R. Monat
I A. Ouadjaout

I M. Journault
I F. Parolini
I M. Valnet

1

gitlab.com/mopsa/mopsa-analyzer

A General Overview of Mopsa

Modular Open Platform for Static Analysis
gitlab.com/mopsa/mopsa-analyzer

Different properties

I Runtime error detection
I Portability (patch, endianness)
I Non-exploitability

Specificities

I Modular abstractions, loose coupling
I Optimized for relational domains
I Ease dev.: interactive engine, hooks

Multiple languages

I C
I Python (+C)
I µOCaml
I Michelson

Contributors (2018–2024)

I G. Bau
I J. Boillot
I D. Delmas
I A. Fromherz

I M. Milanese
I A. Miné
I R. Monat
I A. Ouadjaout

I M. Journault
I F. Parolini
I M. Valnet

1

gitlab.com/mopsa/mopsa-analyzer

A General Overview of Mopsa

Modular Open Platform for Static Analysis
gitlab.com/mopsa/mopsa-analyzer

Different properties

I Runtime error detection
I Portability (patch, endianness)
I Non-exploitability

Specificities

I Modular abstractions, loose coupling
I Optimized for relational domains
I Ease dev.: interactive engine, hooks

Multiple languages

I C
I Python (+C)
I µOCaml
I Michelson

Contributors (2018–2024)

I G. Bau
I J. Boillot
I D. Delmas
I A. Fromherz

I M. Milanese
I A. Miné
I R. Monat
I A. Ouadjaout

I M. Journault
I F. Parolini
I M. Valnet

1

gitlab.com/mopsa/mopsa-analyzer

A General Overview of Mopsa

Modular Open Platform for Static Analysis
gitlab.com/mopsa/mopsa-analyzer

Different properties

I Runtime error detection
I Portability (patch, endianness)
I Non-exploitability

Specificities

I Modular abstractions, loose coupling
I Optimized for relational domains
I Ease dev.: interactive engine, hooks

Multiple languages

I C
I Python (+C)
I µOCaml
I Michelson

Contributors (2018–2024)

I G. Bau
I J. Boillot
I D. Delmas
I A. Fromherz

I M. Milanese
I A. Miné
I R. Monat
I A. Ouadjaout

I M. Journault
I F. Parolini
I M. Valnet

1

gitlab.com/mopsa/mopsa-analyzer

A General Overview of Mopsa

Modular Open Platform for Static Analysis
gitlab.com/mopsa/mopsa-analyzer

Different properties

I Runtime error detection
I Portability (patch, endianness)
I Non-exploitability

Specificities

I Modular abstractions, loose coupling
I Optimized for relational domains
I Ease dev.: interactive engine, hooks

Multiple languages

I C
I Python (+C)
I µOCaml
I Michelson

Contributors (2018–2024)

I G. Bau
I J. Boillot
I D. Delmas
I A. Fromherz

I M. Milanese
I A. Miné
I R. Monat
I A. Ouadjaout

I M. Journault
I F. Parolini
I M. Valnet

1

gitlab.com/mopsa/mopsa-analyzer

Adapting Mopsa to SV-Comp’s Framework

Our approach

1 Analyze the target program with Mopsa

2 Postprocess Mopsa’s result to decide whether the property of interest holds

• Yes? finished, program is safe
• No? restart with a more precise analysis configuration

 Mopsa returns unknown or times out when a property is not verified.

Max. Conf. Tasks proved correct Tasks yielding timeout

1 6995 368
2 7775 (+780) 717 (+349)
3 8197 (+422) 2954 (+2237)
4 8257 (+60) 3527 (+573)
5 8400 (+143) 9532 (+6005)

2

Adapting Mopsa to SV-Comp’s Framework

Our approach

1 Analyze the target program with Mopsa
2 Postprocess Mopsa’s result to decide whether the property of interest holds

• Yes? finished, program is safe
• No? restart with a more precise analysis configuration

 Mopsa returns unknown or times out when a property is not verified.

Max. Conf. Tasks proved correct Tasks yielding timeout

1 6995 368
2 7775 (+780) 717 (+349)
3 8197 (+422) 2954 (+2237)
4 8257 (+60) 3527 (+573)
5 8400 (+143) 9532 (+6005)

2

Adapting Mopsa to SV-Comp’s Framework

Our approach

1 Analyze the target program with Mopsa
2 Postprocess Mopsa’s result to decide whether the property of interest holds

• Yes? finished, program is safe

• No? restart with a more precise analysis configuration

 Mopsa returns unknown or times out when a property is not verified.

Max. Conf. Tasks proved correct Tasks yielding timeout

1 6995 368
2 7775 (+780) 717 (+349)
3 8197 (+422) 2954 (+2237)
4 8257 (+60) 3527 (+573)
5 8400 (+143) 9532 (+6005)

2

Adapting Mopsa to SV-Comp’s Framework

Our approach

1 Analyze the target program with Mopsa
2 Postprocess Mopsa’s result to decide whether the property of interest holds

• Yes? finished, program is safe
• No? restart with a more precise analysis configuration

 Mopsa returns unknown or times out when a property is not verified.

Max. Conf. Tasks proved correct Tasks yielding timeout

1 6995 368
2 7775 (+780) 717 (+349)
3 8197 (+422) 2954 (+2237)
4 8257 (+60) 3527 (+573)
5 8400 (+143) 9532 (+6005)

2

Adapting Mopsa to SV-Comp’s Framework

Our approach

1 Analyze the target program with Mopsa
2 Postprocess Mopsa’s result to decide whether the property of interest holds

• Yes? finished, program is safe
• No? restart with a more precise analysis configuration

 Mopsa returns unknown or times out when a property is not verified.

Max. Conf. Tasks proved correct Tasks yielding timeout

1 6995 368
2 7775 (+780) 717 (+349)
3 8197 (+422) 2954 (+2237)
4 8257 (+60) 3527 (+573)
5 8400 (+143) 9532 (+6005)

2

Adapting Mopsa to SV-Comp’s Framework

Our approach

1 Analyze the target program with Mopsa
2 Postprocess Mopsa’s result to decide whether the property of interest holds

• Yes? finished, program is safe
• No? restart with a more precise analysis configuration

 Mopsa returns unknown or times out when a property is not verified.

Max. Conf. Tasks proved correct Tasks yielding timeout

1 6995 368
2 7775 (+780) 717 (+349)
3 8197 (+422) 2954 (+2237)
4 8257 (+60) 3527 (+573)
5 8400 (+143) 9532 (+6005) 2

Improvements made in 2024

I Dynamic memory allocation

• Based on the recency abstraction
• Now avoids summarization during unrollings

I Integer abstractions

• Constant exclusion domain
• Simplification of expressions with overflows of Boillot and Feret

I Goto-based loops

• AST-based iterations (compared to CFG), special fixpoint scheme
• Decreasing iterations added in that case
• Rewriting specific cases into loops (improves precision)

I Libc stubs

• Precise handling of memset of constant size
• NULL pointer synthesis from contiguous block of 0 bytes.

Boillot and Feret. “Symbolic Transformation of Expressions in Modular Arithmetic”. SAS 2023 3

Improvements made in 2024

I Dynamic memory allocation
• Based on the recency abstraction

• Now avoids summarization during unrollings
I Integer abstractions

• Constant exclusion domain
• Simplification of expressions with overflows of Boillot and Feret

I Goto-based loops

• AST-based iterations (compared to CFG), special fixpoint scheme
• Decreasing iterations added in that case
• Rewriting specific cases into loops (improves precision)

I Libc stubs

• Precise handling of memset of constant size
• NULL pointer synthesis from contiguous block of 0 bytes.

Boillot and Feret. “Symbolic Transformation of Expressions in Modular Arithmetic”. SAS 2023 3

Improvements made in 2024

I Dynamic memory allocation
• Based on the recency abstraction
• Now avoids summarization during unrollings

I Integer abstractions

• Constant exclusion domain
• Simplification of expressions with overflows of Boillot and Feret

I Goto-based loops

• AST-based iterations (compared to CFG), special fixpoint scheme
• Decreasing iterations added in that case
• Rewriting specific cases into loops (improves precision)

I Libc stubs

• Precise handling of memset of constant size
• NULL pointer synthesis from contiguous block of 0 bytes.

Boillot and Feret. “Symbolic Transformation of Expressions in Modular Arithmetic”. SAS 2023 3

Improvements made in 2024

I Dynamic memory allocation
• Based on the recency abstraction
• Now avoids summarization during unrollings

I Integer abstractions

• Constant exclusion domain
• Simplification of expressions with overflows of Boillot and Feret

I Goto-based loops

• AST-based iterations (compared to CFG), special fixpoint scheme
• Decreasing iterations added in that case
• Rewriting specific cases into loops (improves precision)

I Libc stubs

• Precise handling of memset of constant size
• NULL pointer synthesis from contiguous block of 0 bytes.

Boillot and Feret. “Symbolic Transformation of Expressions in Modular Arithmetic”. SAS 2023 3

Improvements made in 2024

I Dynamic memory allocation
• Based on the recency abstraction
• Now avoids summarization during unrollings

I Integer abstractions
• Constant exclusion domain

• Simplification of expressions with overflows of Boillot and Feret
I Goto-based loops

• AST-based iterations (compared to CFG), special fixpoint scheme
• Decreasing iterations added in that case
• Rewriting specific cases into loops (improves precision)

I Libc stubs

• Precise handling of memset of constant size
• NULL pointer synthesis from contiguous block of 0 bytes.

Boillot and Feret. “Symbolic Transformation of Expressions in Modular Arithmetic”. SAS 2023 3

Improvements made in 2024

I Dynamic memory allocation
• Based on the recency abstraction
• Now avoids summarization during unrollings

I Integer abstractions
• Constant exclusion domain
• Simplification of expressions with overflows of Boillot and Feret

I Goto-based loops

• AST-based iterations (compared to CFG), special fixpoint scheme
• Decreasing iterations added in that case
• Rewriting specific cases into loops (improves precision)

I Libc stubs

• Precise handling of memset of constant size
• NULL pointer synthesis from contiguous block of 0 bytes.

Boillot and Feret. “Symbolic Transformation of Expressions in Modular Arithmetic”. SAS 2023 3

Improvements made in 2024

I Dynamic memory allocation
• Based on the recency abstraction
• Now avoids summarization during unrollings

I Integer abstractions
• Constant exclusion domain
• Simplification of expressions with overflows of Boillot and Feret

I Goto-based loops

• AST-based iterations (compared to CFG), special fixpoint scheme
• Decreasing iterations added in that case
• Rewriting specific cases into loops (improves precision)

I Libc stubs

• Precise handling of memset of constant size
• NULL pointer synthesis from contiguous block of 0 bytes.

Boillot and Feret. “Symbolic Transformation of Expressions in Modular Arithmetic”. SAS 2023 3

Improvements made in 2024

I Dynamic memory allocation
• Based on the recency abstraction
• Now avoids summarization during unrollings

I Integer abstractions
• Constant exclusion domain
• Simplification of expressions with overflows of Boillot and Feret

I Goto-based loops
• AST-based iterations (compared to CFG), special fixpoint scheme

• Decreasing iterations added in that case
• Rewriting specific cases into loops (improves precision)

I Libc stubs

• Precise handling of memset of constant size
• NULL pointer synthesis from contiguous block of 0 bytes.

Boillot and Feret. “Symbolic Transformation of Expressions in Modular Arithmetic”. SAS 2023 3

Improvements made in 2024

I Dynamic memory allocation
• Based on the recency abstraction
• Now avoids summarization during unrollings

I Integer abstractions
• Constant exclusion domain
• Simplification of expressions with overflows of Boillot and Feret

I Goto-based loops
• AST-based iterations (compared to CFG), special fixpoint scheme
• Decreasing iterations added in that case

• Rewriting specific cases into loops (improves precision)
I Libc stubs

• Precise handling of memset of constant size
• NULL pointer synthesis from contiguous block of 0 bytes.

Boillot and Feret. “Symbolic Transformation of Expressions in Modular Arithmetic”. SAS 2023 3

Improvements made in 2024

I Dynamic memory allocation
• Based on the recency abstraction
• Now avoids summarization during unrollings

I Integer abstractions
• Constant exclusion domain
• Simplification of expressions with overflows of Boillot and Feret

I Goto-based loops
• AST-based iterations (compared to CFG), special fixpoint scheme
• Decreasing iterations added in that case
• Rewriting specific cases into loops (improves precision)

I Libc stubs

• Precise handling of memset of constant size
• NULL pointer synthesis from contiguous block of 0 bytes.

Boillot and Feret. “Symbolic Transformation of Expressions in Modular Arithmetic”. SAS 2023 3

Improvements made in 2024

I Dynamic memory allocation
• Based on the recency abstraction
• Now avoids summarization during unrollings

I Integer abstractions
• Constant exclusion domain
• Simplification of expressions with overflows of Boillot and Feret

I Goto-based loops
• AST-based iterations (compared to CFG), special fixpoint scheme
• Decreasing iterations added in that case
• Rewriting specific cases into loops (improves precision)

I Libc stubs

• Precise handling of memset of constant size
• NULL pointer synthesis from contiguous block of 0 bytes.

Boillot and Feret. “Symbolic Transformation of Expressions in Modular Arithmetic”. SAS 2023 3

Improvements made in 2024

I Dynamic memory allocation
• Based on the recency abstraction
• Now avoids summarization during unrollings

I Integer abstractions
• Constant exclusion domain
• Simplification of expressions with overflows of Boillot and Feret

I Goto-based loops
• AST-based iterations (compared to CFG), special fixpoint scheme
• Decreasing iterations added in that case
• Rewriting specific cases into loops (improves precision)

I Libc stubs
• Precise handling of memset of constant size

• NULL pointer synthesis from contiguous block of 0 bytes.

Boillot and Feret. “Symbolic Transformation of Expressions in Modular Arithmetic”. SAS 2023 3

Improvements made in 2024

I Dynamic memory allocation
• Based on the recency abstraction
• Now avoids summarization during unrollings

I Integer abstractions
• Constant exclusion domain
• Simplification of expressions with overflows of Boillot and Feret

I Goto-based loops
• AST-based iterations (compared to CFG), special fixpoint scheme
• Decreasing iterations added in that case
• Rewriting specific cases into loops (improves precision)

I Libc stubs
• Precise handling of memset of constant size
• NULL pointer synthesis from contiguous block of 0 bytes.

Boillot and Feret. “Symbolic Transformation of Expressions in Modular Arithmetic”. SAS 2023 3

Our results – SoftwareSystems track

Category Prop. |tasks| Mopsa’23 Mopsa’24 Best score (2024)

AWS R 197 32 36 137 Symbiotic
coreutils M 140 0 0 0 _
coreutils N 30 0 4 4 Mopsa
BusyBox N 54 4 8 8 Mopsa
DDL R 2442 3174 3476 3476 Mopsa
DDLL R 8 10 14 14 Mopsa
DDL M 141 0 8 71 Bubaak-SpLit
other R 22 0 10 10 Mopsa
other M 34 0 12 12 Mopsa
uthash R 138 0 192 228 Bubaak*, Symbiotic
uthash M 138 0 96 204 Bubaak*, Symbiotic
uthash N 114 0 204 204 Mopsa 4

A word on witness validation

I Inject invariants in the program and verify this new program

I Similar to Metaval’s approach, with less changes on the original program
I Handy new YAML format!
I Goblint has a much smarter approach

Beyer and Spiessl. “MetaVal: Witness Validation via Verification”. CAV (2) 2020
Saan, Schwarz, Erhard, Seidl, Tilscher, and Vojdani. “Correctness Witness Validation by Abstract
Interpretation”. VCMAI 2024 5

A word on witness validation

I Inject invariants in the program and verify this new program
I Similar to Metaval’s approach, with less changes on the original program

I Handy new YAML format!
I Goblint has a much smarter approach

Beyer and Spiessl. “MetaVal: Witness Validation via Verification”. CAV (2) 2020
Saan, Schwarz, Erhard, Seidl, Tilscher, and Vojdani. “Correctness Witness Validation by Abstract
Interpretation”. VCMAI 2024 5

A word on witness validation

I Inject invariants in the program and verify this new program
I Similar to Metaval’s approach, with less changes on the original program
I Handy new YAML format!

I Goblint has a much smarter approach

Beyer and Spiessl. “MetaVal: Witness Validation via Verification”. CAV (2) 2020
Saan, Schwarz, Erhard, Seidl, Tilscher, and Vojdani. “Correctness Witness Validation by Abstract
Interpretation”. VCMAI 2024 5

A word on witness validation

I Inject invariants in the program and verify this new program
I Similar to Metaval’s approach, with less changes on the original program
I Handy new YAML format!
I Goblint has a much smarter approach

Beyer and Spiessl. “MetaVal: Witness Validation via Verification”. CAV (2) 2020
Saan, Schwarz, Erhard, Seidl, Tilscher, and Vojdani. “Correctness Witness Validation by Abstract
Interpretation”. VCMAI 2024 5

Strengths & Weaknesses

Strengths

I Scalability (even for DeviceDriversLinux-Large)

I Commitment to soundness, 20 verdict fixes

Weaknesses

I Fixed sequence of configurations
I Unable to provide counterexamples
I Not competitive outside SoftwareSystems: array segmentation, partitioning?

Milanese and Miné. “Generation of Violation Witnesses by Under-Approximating Abstract Interpretation”.
VMCAI 2024 6

Strengths & Weaknesses

Strengths

I Scalability (even for DeviceDriversLinux-Large)
I Commitment to soundness, 20 verdict fixes

Weaknesses

I Fixed sequence of configurations
I Unable to provide counterexamples
I Not competitive outside SoftwareSystems: array segmentation, partitioning?

Milanese and Miné. “Generation of Violation Witnesses by Under-Approximating Abstract Interpretation”.
VMCAI 2024 6

Strengths & Weaknesses

Strengths

I Scalability (even for DeviceDriversLinux-Large)
I Commitment to soundness, 20 verdict fixes

Weaknesses

I Fixed sequence of configurations
I Unable to provide counterexamples
I Not competitive outside SoftwareSystems: array segmentation, partitioning?

Milanese and Miné. “Generation of Violation Witnesses by Under-Approximating Abstract Interpretation”.
VMCAI 2024 6

Strengths & Weaknesses

Strengths

I Scalability (even for DeviceDriversLinux-Large)
I Commitment to soundness, 20 verdict fixes

Weaknesses

I Fixed sequence of configurations

I Unable to provide counterexamples
I Not competitive outside SoftwareSystems: array segmentation, partitioning?

Milanese and Miné. “Generation of Violation Witnesses by Under-Approximating Abstract Interpretation”.
VMCAI 2024 6

Strengths & Weaknesses

Strengths

I Scalability (even for DeviceDriversLinux-Large)
I Commitment to soundness, 20 verdict fixes

Weaknesses

I Fixed sequence of configurations
I Unable to provide counterexamples

I Not competitive outside SoftwareSystems: array segmentation, partitioning?

Milanese and Miné. “Generation of Violation Witnesses by Under-Approximating Abstract Interpretation”.
VMCAI 2024 6

Strengths & Weaknesses

Strengths

I Scalability (even for DeviceDriversLinux-Large)
I Commitment to soundness, 20 verdict fixes

Weaknesses

I Fixed sequence of configurations
I Unable to provide counterexamples
I Not competitive outside SoftwareSystems: array segmentation, partitioning?

Milanese and Miné. “Generation of Violation Witnesses by Under-Approximating Abstract Interpretation”.
VMCAI 2024 6

Mopsa-C at SV-Comp 2024

Raphaël Monat, Marco Milanese, Francesco Parolini,
Jerôme Boillot, Abdelraouf Ouadjaout, Antoine Miné

SV-Comp
8 April 2024

