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# safe operations

Language  Benchmark Max. LoC ~Time Selectivity i
# operations

c? Coreutils 550 20s 99.8%

Juliet 340,000 2.5h 98.9%
Python? PyPerformance 1,792 1.3m 99.2%

PathPicker 2,560 3.0m 99.2%
Python+C* ahocorasick 4,800 1.0m 98.0%

bitarray 5,700 4.6m 94.6%

20uadjaout and Miné. “A Library Modeling Language for the Static Analysis of C Programs”. SAS 2020
3Monat, Ouadjaout, and Miné. “Static Type Analysis by Abstract Interpretation of Python Programs”. ECOOP 2020
“Monat, Ouadjaout, and Miné. “A Multilanguage Static Analysis of Python Programs with Native C Extensions”. SAS 2021 2
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Mopsa at SV-Comp
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[ Analyze the target program with Mopsa
[2 Postprocess Mopsa's result to decide whether the property of interest holds

o Yes? finished!
e No? restart with a more precise analysis configuration

Suboptimal strategy

» Task: decide if a property holds on a program
But Mopsa analyzes full programs and detects all runtime errors
—> We could at least add slicing

» New analyses restart from scratch
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[20 + string-length domain, medium structs initialized
I3 + polyhedra with static packing
4 + congruences & widening tweaks: thresholds, delay

Conf. (V) (U
1 5695 279
2 6433 (+738) 365 (+86)
3 6885 (+452) 1844 (+1479)
4 6909 (+24) 2009 (+165)

21220 tasks in total, 12636 correctness tasks

Mopsa validates 54% of correct tasks (61% for overall winner, UAutomizer).
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For our first participation, we competed in

» ReachSafety,

» MemorySafety,

» NoOverflows ranking 6/19,

» SoftwareSystems bronze medal!

Results in the SoftwareSystems category

Verifier Bubaak CPAchecker Goblint  Mopsa Symbiotic  Ultimate
Proved correct 291 1,651 1,256 1,610 942 1,423
Proved incorrect 143 59 0 0 84 2
CPU Time (s) 2,000,000 730,000 800,000 580,000 400,000 1,400,000
Rank 2 6 10 3 1 7

























°Saan. Witness Generation for Data-flow Analysis. 2020
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» Fun! (up-to exhaustion)
» Good time for software improvements
e 20 issues fixed
« We already have a 2024 feature wishlist
» Interaction and comparison with other tools from a broad community
» Better understanding of the benchmarks

» Becoming a de facto standard
e Always ongoing benchmark curation

» Brings new research questions
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