
ESBMC v7.4: Harnessing the Power of

Intervals

Rafael Menezes, Mohannad Aldughaim, Bruno Farias, Xianzhiyu Li, Edoardo

Manino, Fedor Shmarov, Kunjian Song, Franz Brauße, Mikhail R. Gadelha,

Norbert Tihanyi, Konstantin Korovin, and Lucas C. Cordeiro.

Project

• ESBMC is a verification engine capable of verifying C programs by

relying on BMC, k-Induction and SMT.

• It is a joint project with the Federal University of Amazonas (Brazil),

University of Southampton (UK), University of Manchester (UK), and

University of Stellenbosch (South Africa).

08/04/2024 2

ESBMC architecture

Combines BMC, k-induction, abstract interpretation, CP/SMT solving

towards correctness proof and bug hunting

www.esbmc.org

GOTO

Program

Verification

Conditions

Abstract Syntax

Tree (AST)

Scan

SMT

Solver

Symbolic

Execution

Engine

Property holds

Property violated

C/C++/CHERI

/CUDA

Control-flow

Graph

Generator

clang

Memory

Model

External

Libraries

Correctness

Witness

Violation

Witness

Scan
Java/Kotlin Soot

Scan
Solidity Solidity

Scan
Python ast2json

Abstract

Interpretation

Code

Instrumentation
CP Solver

Large

Language

Models

Root Cause Analysis /

Program Repair

Source code

Models

Parallelization

Software

onnx2c /

keras2c

Tiny ML

APACHE

LICENSE

VERSION 2.0

Caching /

Slicing

Interval Analysis

Interval Analysis

• The interval analysis consists of computing all

values the variables might assume at each

statement.

• The analysis can be used to infer properties

regarding the program states and flow.

08/04/2024 Overview 5

Line Interval for “a”

3 (−∞, +∞)

4 (−∞, 100]

5 (100, +∞)

Interval Analysis in BMC

• Interval analysis can help BMC by removing unreachable instructions:

08/04/2024 Overview 7

Contradiction

Unreachable

Interval Analysis in k-induction

• k-induction algorithm hijacks loop conditions to nondeterministic

values, thus computing intervals become essential

08/04/2024 8

Contracting Intervals

• The restrictions can be computed by using contractors

(Forward/Backward)

08/04/2024 Extensions for ESBMC 9

We can apply contractor algorithms to contract ”a” in terms of
“b”:

Forward: 𝑦 = 𝑎 − 𝑏 → 𝑦 = 𝑎 − 𝑏 ∩ (−𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦, 0]
Backwards:

𝑎 = 𝑎 ∩ 𝑏 + 𝑦
𝑏 = 𝑏 ∩ 𝑎 − 𝑦

Forward: 𝑦 = [1,11]-[2,9] ∩ −𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦, 0 = = [-8,0]

Backwards:
𝑎 = 1,11 ∩ 2,9 + −8,0 = 1,9
𝑏 = 2,9 ∩ 1,9 − −8,0 = 2,9

ESBMC has support for other contractors by
relying on ibex: a C++ numerical library based
on interval arithmetic and constraint
programming.

Results

✓The instrumentation and

optimizations helped the

verification of unique tasks.

The preprocessing takes a

toll in the hardware

benchmarks.

08/04/2024 10

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

200%

p
ro

d
u

ct
-…

p
ro

d
u

ct
-…

p
ro

d
u

ct
-…

p
ro

d
u

ct
-…

p
ro

d
u

ct
-…

p
ro

d
u

ct
-…

ec
a-

…
ec

a-
…

ec
a-

…
ec

a-
…

ec
a-

…
ec

a-
…

ec
a-

…
ec

a-
…

ec
a-

…
ec

a-
…

ec
a-

…
h

ar
d

w
ar

e-
…

h
ar

d
w

ar
e-

…
h

ar
d

w
ar

e-
…

h
ar

d
w

ar
e-

…
h

ar
d

w
ar

e-
…

h
ar

d
w

ar
e-

…
h

ar
d

w
ar

e-
…

h
ar

d
w

ar
e-

…
h

ar
d

w
ar

e-
…

h
ar

d
w

ar
e-

…
h

ar
d

w
ar

e-
…

Relative time difference (After/Before)

357 376

782 764

0 0

333
522

164 75

0 0

375

372

840
754

1 900

200

400

600

800

1000

1200

1400

1600

1800

2000

Correct
Before

Correct
After

Timeout
Before

Timeout
After

OOM
Before

OOM After

Interval Analysis (Before X After)

ECA ProductLines Hardware

Memory Leaks

Memtrack

• ESBMC employs a refined check for the valid-memtrack property.

1. At the end of an execution, for each memory object, add an assertion

that it was deallocated correctly.

2. Add a guard into the assertion that there is no pointer currently

referring to that memory object.

08/04/2024 12

Memcleanup

• The new algorithm leverages the existing one tracking the lifetime of

allocations for the valid-memcleanup property, but it specifically

excludes still-reachable objects from the check.

08/04/2024 13

Memory Object

Obj1

…

ObjN

Mem-cleanup checks if at the end of the execution, every
memory object was freed.

Memcleanup

• The new algorithm leverages the existing one tracking the lifetime of

allocations for the valid-memcleanup property, but it specifically

excludes still-reachable objects from the check.

08/04/2024 14

Memory Object

Obj1

…

ObjN

Pointer Target

Ptr1 Obj1

… …

PtrM NULL

Obj1 check is removed!

Results

• The new algorithm to verify valid-

memtrack benchmarks.

• There is a weakness in the current

implementation concerning dynamic

allocations only reachable through

pointers stored in arrays of statically

unknown size.

• We will address this weakness and

submit suitable tasks for this property to

SV-COMP in the future.

08/04/2024 16

70

83

60

65

70

75

80

85

Correct Unknown

Memtrack

Math Operational Models

math.h

• ESBMC did not have precise OM for float operations. This used to be

enough.

• The neural network benchmarks relies on 32-bit floats, which leaded to

incorrect results.

• As a tradeoff between precision and verification speed, ESBMC now

features a two-pronged design: precise and approximated.

08/04/2024 18

math.h

• For the most commonly-used float functions, we borrow the MUSL

plain-C implementation of numerical algorithms.

08/04/2024 19

math.h

• For the corresponding double functions,

we employ less complex algorithms with

approximate behavior.

– For example, the exponential was

approximated by Taylor series.

08/04/2024 20

Results

• Without operational models of the

math.h library, ESBMC would assign

non-deterministic results, which may

cause incorrect counterexamples to be

returned.

• Providing explicit operational models for

many common functions in math.h

improved the results

08/04/2024 21

255

175 177

50

553

0
0

100

200

300

400

500

600

Correct Unknown Incorrect

Before X After OMs

Before After

Data Races

Data Race Instrumentation

08/04/2024 24

• Assuming that foo and bar are running in different threads, the assertion will check whether
there is an interleaving where a read will happen before the assignment happens.

Symbolic Execution

• To improve the analysis, the property is

now hybrid.

• The incorrect verdicts are mostly due to

still missing support for detecting data

races during dereferences of pointers to

compound types.

08/04/2024 25

488 499

26

0

100

200

300

400

500

600

Correct Unknown Incorrect

Data Race Results

Thanks for watching!

Computing Intervals

• For non-loop sequences:

1. Initialize variable interval to (−∞,∞) ;

2. Use conditionals to restrict the interval;

3. Merge intervals after conditionals;

08/04/2024 Interval Analysis in ESBMC 27

Computing Intervals (contractor)

• Restrictions are computed through the use of

contractors:

• 𝑎 = −𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦, 49

• 𝑎 = [50, 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦]

• Merging is computed with the Hull operation:

[3,3] ⊔ [5,5] = [3,5]

08/04/2024 Interval Analysis in ESBMC 28

Computing Intervals

• For non-loop sequences:

1. Initialize variable interval to (−∞,∞) .

2. Use conditionals to restrict the interval.

3. Merge intervals after conditionals.

08/04/2024 Interval Analysis in ESBMC 29

Line Interval for “a”

4 (−∞, +∞)

5 (−∞, 50)

7 [3,3]

9 [50, +∞)

11 [5,5]

12 [3,5]

Computing Intervals

08/04/2024 30

math.h

• The IEEE 754 standard mandates bit-precise semantics for a small

subset of the math.h library only (it includes: addition, multiplication,

division, sqrt, fma, and other support functions such as remquo).

• In contrast, the behavior of most transcendental functions (e.g., sin,

cos, exp, log) is platform-specific. Still, the standard recommends

implementing the correct rounding whenever possible.

08/04/2024 31

	Start
	Slide 1: ESBMC v7.4: Harnessing the Power of Intervals

	Overview
	Slide 2: Project
	Slide 3: ESBMC architecture

	Interval Analysis
	Slide 4: Interval Analysis
	Slide 5: Interval Analysis
	Slide 7: Interval Analysis in BMC
	Slide 8: Interval Analysis in k-induction
	Slide 9: Contracting Intervals
	Slide 10: Results

	Memleak
	Slide 11: Memory Leaks
	Slide 12: Memtrack
	Slide 13: Memcleanup
	Slide 14: Memcleanup
	Slide 16: Results

	Operational Models
	Slide 17: Math Operational Models
	Slide 18: math.h
	Slide 19: math.h
	Slide 20: math.h
	Slide 21: Results

	Data Races
	Slide 22: Data Races
	Slide 24: Data Race Instrumentation
	Slide 25: Symbolic Execution

	End
	Slide 26: Thanks for watching!

	Extra Slides
	Slide 27: Computing Intervals
	Slide 28: Computing Intervals (contractor)
	Slide 29: Computing Intervals
	Slide 30: Computing Intervals
	Slide 31: math.h

