
Ultimate Taipan and Race Detection in Ultimate

Daniel Dietsch, Matthias Heizmann, Dominik Klumpp�,
Frank Schüssele, Andreas Podelski

University of Freiburg, Germany

SV-COMP 2023



Specifications in Ultimate

• In Ultimate C programs are translated to the intermediate
language Boogie

• Different C specifications are encoded as assertions in Boogie,
the tools check reachability of those asserts

• Goal: Encode data-races also as assertions



Specifications in Ultimate

• In Ultimate C programs are translated to the intermediate
language Boogie

• Different C specifications are encoded as assertions in Boogie,
the tools check reachability of those asserts

• Goal: Encode data-races also as assertions



Specifications in Ultimate

• In Ultimate C programs are translated to the intermediate
language Boogie

• Different C specifications are encoded as assertions in Boogie,
the tools check reachability of those asserts

• Goal: Encode data-races also as assertions



Data races

A program written in C contains a data race if there are two
different thread, s.t.

1 one thread writes to a memory location and the other thread
writes to or reads from the same memory location,

2 and at least one of the accesses is not atomic,

3 and neither access happens-before the other.



From Data Races to Reachability

• Introduce global boolean variables race x for every global
variable x

• Add statements for these variables in the translation
For actions that read x:

race_x := true;
<read(x)>
assert race_x == true;

For actions that write x:

havoc tmp; // nondeterministic assignment
race_x := tmp;
<write(x)>
assert race_x == tmp;



From Data Races to Reachability

• Introduce global boolean variables race x for every global
variable x

• Add statements for these variables in the translation

For actions that read x:

race_x := true;
<read(x)>
assert race_x == true;

For actions that write x:

havoc tmp; // nondeterministic assignment
race_x := tmp;
<write(x)>
assert race_x == tmp;



From Data Races to Reachability

• Introduce global boolean variables race x for every global
variable x

• Add statements for these variables in the translation
For actions that read x:

race_x := true;
<read(x)>
assert race_x == true;

For actions that write x:

havoc tmp; // nondeterministic assignment
race_x := tmp;
<write(x)>
assert race_x == tmp;



From Data Races to Reachability

• Introduce global boolean variables race x for every global
variable x

• Add statements for these variables in the translation
For actions that read x:

race_x := true;
<read(x)>
assert race_x == true;

For actions that write x:

havoc tmp; // nondeterministic assignment
race_x := tmp;
<write(x)>
assert race_x == tmp;



Atomicity

• For an action a, we call the sequence of Boogie statements
that results from this wrapping block(a)

• If a is part of an atomic block, then the entire block(a) falls
inside that atomic block in the translation

• This way the translation ensures that there are no data-races
between two atomic statements



Atomicity

• For an action a, we call the sequence of Boogie statements
that results from this wrapping block(a)

• If a is part of an atomic block, then the entire block(a) falls
inside that atomic block in the translation

• This way the translation ensures that there are no data-races
between two atomic statements



Atomicity

• For an action a, we call the sequence of Boogie statements
that results from this wrapping block(a)

• If a is part of an atomic block, then the entire block(a) falls
inside that atomic block in the translation

• This way the translation ensures that there are no data-races
between two atomic statements



SV-COMP Results

Tool Score

1 UGemCutter 151
2 UTaipan 139
3 Goblint 124
4 UAutomizer 120
5 CSeq 39

(a)

Tool Score

1 Goblint 1304
2 Deagle 1211
3 Dartagnan 768
4 UAutomizer 756
5 UGemcutter 732
6 UTaipan 612

(b)

Figure: Results of the Ultimate tools in the NoDataRace category in (a)
SV-COMP 2022 and (b) SV-COMP 2023


