
Ultimate TestGen:
Test-Case Generation with Automata-based

Software Model Checking

Max Barth1 and Daniel Dietsch2 and Matthias Heizmann2

and Marie-Christine Jakobs1

LMU Munich, Munich, Germany1

University of Freiburg, Freiburg, Germany2

Test-Comp 2024

M. Barth et al. LMU Munich and University of Freiburg 1 / 18



Automata-Based Software Model Check

▶ At SV-Comp 23 and 24 the highest overall score had the
model checker UAutomizer.

▶ UAutomizer uses automata-based model checking.
▶ Ultimate TestGen is the first test-case generator with

automata based model checking.

M. Barth et al. LMU Munich and University of Freiburg 2 / 18



Ultimate TestGen

▶ Implemented in the Ultimate framework.
github.com/ultimate-pa/ultimate

▶ A purely model checking based test case generation.

M. Barth et al. LMU Munich and University of Freiburg 3 / 18

github.com/ultimate-pa/ultimate


Automata-Based Model Checking

▶ A program is represented by a Program Automaton.

▶ Test goals are accepting states.

▶ The language is the set of all program paths to test goals.

▶ We call an accepted word error trace.

M. Barth et al. LMU Munich and University of Freiburg 4 / 18



Automata-Based CEGAR for Test-Case Generation

Encode
Test-Goals

Coverage
property Program

L(P ) = ∅? π
feasible ?

Test-Case
Exporter

n = 0 P

Encode test goals as accepting states in the Program
Automaton.

M. Barth et al. LMU Munich and University of Freiburg 5 / 18



Encode
Test-Goals

Coverage
property Program

L(P ) = ∅?

Done

π
feasible ?

Test-Case
Exporter

n = 0 P

Yes

L(P ) contains every error trace to a test goal.

M. Barth et al. LMU Munich and University of Freiburg 6 / 18



Encode
Test-Goals

Coverage
property Program

L(P ) = ∅?

Done

π
feasible ?

Test-Case
Exporter

n = 0 P

Yes

If L(P ) = ∅ there exists no path to a test goal in P.

M. Barth et al. LMU Munich and University of Freiburg 7 / 18



Encode
Test-Goals

Coverage
property Program

L(P ) = ∅?

Done

π
feasible ?

Test-Case
Exporter

n = 0 P

Yes

pick trace π such that
π ∈ L(P )

Pick an error trace π ∈ L(P ) to a test goal.

M. Barth et al. LMU Munich and University of Freiburg 8 / 18



Encode
Test-Goals

Coverage
property Program

L(P ) = ∅?

Done

π
feasible ?

Test-Case
Exporter

n = 0 P

Yes

pick trace π such that
π ∈ L(P )

π is feasible iff its SSA-based formula encoding is satisfiable.

M. Barth et al. LMU Munich and University of Freiburg 9 / 18



Encode
Test-Goals

Coverage
property Program

L(P ) = ∅?

Done

π
feasible ?

No

Test-Case
Exporter

n = 0 P

Yes

pick trace π such that
π ∈ L(P )

construct Interpolant Automaton A
n+1such thatπ ∈ L(An+1)

An Interpolant Automaton accepts π and error traces infeasible
for similar reason.

M. Barth et al. LMU Munich and University of Freiburg 10 / 18



Encode
Test-Goals

Coverage
property Program

L(P ) = ∅?

Done

π
feasible ?

No

Test-Case
Exporter

Test
suite

n = 0 P

Yes

pick trace π such that
π ∈ L(P )

construct Interpolant Automaton A
n+1such thatπ ∈ L(An+1)

test
case

Yes

Construct a test case from the feasibility proof.

M. Barth et al. LMU Munich and University of Freiburg 11 / 18



Encode
Test-Goals

Coverage
property Program

L(P ) = ∅?

Done

π
feasible ?

No

Test-Case
Exporter

Test
suite

n = 0 P

Yes

pick trace π such that
π ∈ L(P )

construct Interpolant Automaton A
n+1such thatπ ∈ L(An+1)

test
case

construct Error Automaton An+1

such that π ∈ L(An+1)

Yes

An Error Automaton accepts every error trace to a specific test
goal.

M. Barth et al. LMU Munich and University of Freiburg 12 / 18



Encode
Test-Goals

Coverage
property Program

L(P ∪ Ā0 ∪ ...Ān)
= ∅?

Done

π
feasible ?

No

Test-Case
Exporter

Test
suite

n = 0 P

Yes

pick trace π such that

π ∈ L(P ∪ Ā0 ∪ ...Ān)

construct Interpolant Automaton A
n+1such thatπ ∈ L(An+1)

test
case

construct Error Automaton An+1

such that π ∈ L(An+1)

Yes

Pick a new error trace π ∈ L(P ) and π ̸∈ L(A0 ∪ ... ∪ An).

M. Barth et al. LMU Munich and University of Freiburg 13 / 18



Test-Comp24 Results

Ranking of Ultimate TestGen:
▶ 10th. place in the Cover-Error category
▶ 8th. place in the Cover-Branches category
▶ 10th. place overall

M. Barth et al. LMU Munich and University of Freiburg 14 / 18



Weaknesses

▶ Checking the feasibility of an error trace can be very
expensive.

▶ Proving a test goal is not reachable is often prioritized over
achieving high coverage.

M. Barth et al. LMU Munich and University of Freiburg 15 / 18



Advantages

▶ If Ultimate TestGen terminates, every test goal not
covered is guaranteed not reachable.

▶ Ultimate TestGen creates exactly one test case for each
test goal.

M. Barth et al. LMU Munich and University of Freiburg 16 / 18



Test-Comp24 Results

▶ We had bugs in the test-case exporter, costing us 320 raw
coverage.

▶ TestCov fails to calculate coverage for some of our
test-cases.
▶ The run allocates to much memory.
▶ The run does not terminate.

M. Barth et al. LMU Munich and University of Freiburg 17 / 18



Conclusion

▶ Ultimate TestGen is a first time participant.
▶ We purely do automata-based model checking.
▶ Automata represent sets of error traces.
▶ CEGAR loop over the set of all error traces.
▶ We create test cases from feasibility proofs

(counterexamples).

M. Barth et al. LMU Munich and University of Freiburg 18 / 18


