SV-COMP@TACAS'24

THETA:

Abstraction Based Techniques for Verifying
Concurrency (Competition Contribution)

Levente Bajczi, Csanad Telbisz, Mark Somorjai,
Zsofia Adam, Mihaly Dobos-Kovacs, Daniel Szekeres,
Milan Mondok, Vince Molnar

ftsrg Critical Systems

'Y Yo Research Group

New algorithms

 Abstraction-based partial order reduction:
- Variables untracked in the abstraction does not cause dependency
- Static POR based on source sets

New algorithms

 Abstraction-based partial order reduction:
- Variables untracked in the abstraction does not cause dependency

— Static POR based on source sets

Thread 1 Thread 2
Iy =1; X = 2;
Jiy = 2;
: assert(x == y);

New algorithms

 Abstraction-based partial order reduction:
- Variables untracked in the abstraction does not cause dependency
- Static POR based on source sets

Explicit-value
abstraction

I ={x}

Thread 1 Thread 2

Iy =1, 21 X = 2,
3y = 2; @
: assert(x == y);

New algorithms

 Abstraction-based partial order reduction:
- Variables untracked in the abstraction does not cause dependency
- Static POR based on source sets

Explicit-value Explicit-value
abstraction abstraction
IT = {x} 1= {x,y}
2 2

Thread 1 Thread 2

® © @<@
: assert(x == y);

New algorithms

 Abstraction-based partial order reduction:
- Variables untracked in the abstraction does not cause dependency
- Static POR based on source sets

Explicit-value Explicit-value Predicate
abstraction abstraction abstraction
IT={x} I = {x, vy} I1={x>0}

2 2 2

Thread 1 Thread 2

| o 3 gszefﬂz:(x = Vy); @ @> : :D @ @D

New algorithms

« Statement reduction based on current thread context

Thread 1 Thread 2
x =1 y =X
R
o

New algorithms

« Statement reduction based on current thread context

Thread 1 Thread 2
® O
© ®
y=1 x=0
®

-1 v#1]

New algorithms

« Statement reduction based on current thread context

Thread 1 Thread 2
® O
© ®
y=1 x=0
®
= 1] v#1]

S

The value of x is not
used after this state!

New algorithms

« Statement reduction based on current thread context

Thread 1 Thread 2
® O
© ®
y=1 x=0
®
= 1] v#1]

S

The value of x is not
used after this state!

New algorithms

« Statement reduction based on current thread context

Thread 1 Thread 2
@ @ Same statement may
’ . be removed once and
x=1 y=x kept the other time
y=1 x=10

@ x=1, y=0 5
- A yo1 yox @

The value of x is not
used after this state!

New algorithms

* Interprocedural analysis, stack abstraction for recursion
State: (g, S)

Location (Abstract)
stack data state

New algorithms

* Interprocedural analysis, stack abstraction for recursion
State: (g, S)

Location (Abstract) (q, S) EA (q'r S') = tOp(Q) = tOP(CI') ASES

stack data state

v

=N

\

New algorithms

* Interprocedural analysis, stack abstraction for recursion
State: (g, S)

Location (Abstract) (q' S) EA (q', S') = tOp(Q) = tOp(CI') ASES

stack data state

v Y
If (g, S) EA(g', S') found: [O s] — [@ 5']

- pop top location of g' = —A &2
— continue exploration Y \

SV-COMP@TACAS24

New algorithms

* Interprocedural analysis, stack abstraction for recursion
State: (g, S)

Location (Abstract) (q' S) EA (q', S') = tOp(Q) = tOp(CI') ASES

stack data state

v Y
If (g, S) EA(g', S') found: [O s] — [@ 5']

- pop top location of g' = —A &2
— continue exploration Y \

Advantages:

 Reduced abstract state-space
« Can solve infinitely recursive tasks

SV-COMP@TACAS24

Results, Future Directions

Results, Future Directions

* This year's focus:
— Concurrency (reachability): 3.5 times more tasks solved

— Striving for correctness: O incorrect tasks for reachability properties
(only 2 other tools managed this)

B Theta’22 W Theta’23 W Theta’24

o 0
ol &
% 300
2 200
—“ﬁ 100
=

Successful reachability tasks of THETA per year

Results, Future Directions

* This year's focus:
— Concurrency (reachability): 3.5 times more tasks solved

— Striving for correctness: O incorrect tasks for reachability properties
(only 2 other tools managed this)

B Theta’22 W Theta’23 W Theta’24

288

300
200
100

Tasks solved

Successful reachability tasks of THETA per year

* Next steps:
- frontend development: support for more C language constructs
— analysis of worse-than-expected results

