In [1]:
import pydeck as pdk
import pandas as pd

Plotting lights at night

NASA has collected global light emission data for over 30 years. The data set is a deeply fascinating one and has been used for news stories on the Syrian Civil War [1], North Korea [2], and economic growth [3].

In this notebook, we'll use a deck.gl HeatmapLayer to visualize some of the changes at different points in time.

Getting the data

The data for Chengdu, China, is cleaned and available below. Please note this data is meant for demonstration only.

In [2]:
LIGHTS_URL = 'https://raw.githubusercontent.com/ajduberstein/lights_at_night/master/chengdu_lights_at_night.csv'
df = pd.read_csv(LIGHTS_URL)
df.head()
Out[2]:
year lng lat brightness
0 1993 104.575 31.808 4
1 1993 104.583 31.808 4
2 1993 104.592 31.808 4
3 1993 104.600 31.808 4
4 1993 104.675 31.808 4

Setting the colors

pydeck does need to know the color for this data in advance of plotting it

In [3]:
df['color'] = df['brightness'].apply(lambda val: [255, val * 4,  255, 255])
df.sample(10)
Out[3]:
year lng lat brightness color
9953 1993 103.725 30.525 4 [255, 16, 255, 255]
102896 2001 104.375 30.558 5 [255, 20, 255, 255]
108871 2001 103.950 30.092 4 [255, 16, 255, 255]
168798 2013 103.767 30.408 26 [255, 104, 255, 255]
4490 1993 103.908 31.025 4 [255, 16, 255, 255]
310281 1999 105.242 30.608 13 [255, 52, 255, 255]
227246 2011 105.250 31.108 4 [255, 16, 255, 255]
81913 2009 105.650 29.783 4 [255, 16, 255, 255]
120991 2003 104.092 31.258 3 [255, 12, 255, 255]
54833 1995 103.450 29.500 4 [255, 16, 255, 255]

Plotting and interacting

We can plot this data set of light brightness by year, configuring a slider to filter the data as below:

In [4]:
plottable = df[df['year'] == 1993].to_dict(orient='records')

view_state = pdk.ViewState(
    latitude=31.0,
    longitude=104.5,
    zoom=8)
scatterplot = pdk.Layer(
    'HeatmapLayer',
    data=plottable,
    get_position=['lng', 'lat'],
    get_weight='brightness',
    opacity=0.5,
    pickable=False,
    get_radius=800)
r = pdk.Deck(
    layers=[scatterplot],
    initial_view_state=view_state,
    views=[pdk.View(type='MapView', controller=None)])
r.show()
In [5]:
import ipywidgets as widgets
from IPython.display import display
slider = widgets.IntSlider(1992, min=1993, max=2013, step=2)
def on_change(v):
    results = df[df['year'] == slider.value].to_dict(orient='records')
    scatterplot.data = results
    r.update()
    
slider.observe(on_change, names='value')
display(slider)