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Statement of need
Atomistic spin texture simulations are crucial for understanding and predicting the behaviour
of magnetic materials at the nanoscale. These simulations provide insights into fundamental
properties like magnetic phase transition and are thus useful for exploring novel materials (Kabi-
raj & Mahapatra, 2023). The Metropolis(Metropolis et al., 1953) Monte-Carlo(Heisenberg,
1928) (MC) method is frequently utilised for atomistic spin texture simulations as a sampling
algorithm to investigate the phase space of a system and is especially effective for calculating
equilibrium properties (Evans et al., 2014; Müller et al., 2019). Efficient parallelization of
Metropolis Monte Carlo simulation is challenging since the evolving states are typically not
independent because of the Markov property. Here we focus on simulating magnetic phase
transition under the anisotropic Heisenberg Model in a very high dimensional space, which
is important for emerging two-dimensional (2D) magnetism and nontrivial topological spin
textures (Augustin et al., 2021). Previous attempts for parallelization are restricted to the
simpler Ising Model and not applicable to 2D materials because of their finite magneto crys-
talline anisotropy, complex crystal structures and long-range interactions. MC simulation of
the anisotropic Heisenberg model is very complex owing to the large number of additional
Hamiltonian calculations and interconnectivity between lattice points. The amount of calcu-
lations increases as N2, where N represents the dimension of a square lattice. This becomes
alarming when N exceeds 100, which is entirely justifiable for investigating topological spin
textures (skyrmions, merons, etc.) Here we present CUDA-METRO, a graphical processing
unit (GPU) based open source code for accelerated atomistic spin dynamics simulation. We
evaluated our code by precisely simulating complex topological spin textures and temperature-
dependent magnetic phase transitions for diverse 2D crystal structures with long-range mag-
netic interactions. We demonstrate exceptional acceleration while finding the ground state of
a 750× 750 supercell in 9 hours using an A100-SXM4 GPU.

Summary
We consider a lattice system with a periodic arrangement of atoms, where each atom is
represented by a 3D spin vector. This atomistic spin model is founded on the spin Hamiltonian,
which delineates the essential spin-dependent interactions at the atomic scale, excluding the
influences of potential and kinetic energy and electron correlations. The spin Hamiltonian of
the ith atom is conventionally articulated as
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Algorithm 1 Metropolis Selection
procedure M(Hf ,Hi)

if ∆H < 0 then
Return1(ACCEPT)

else if eβ∆H < R then ▷ R is uniformly random
Return1(ACCEPT)

else
Return0(REJECT)
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Where J is the isotropic exchange parameter, the Ks are the anisotropic exchange parameters,
with the superscript denoting the spin direction, A is the single ion exchange parameter, λ is
the biquadratic parameter, D is the Dyzaloshinskii-Moriya Interaction(DMI) parameter. µ is
the dipole moment of a single atom and B is the external magnetic field. si, sj are individual
atomic spin vectors. {sj} are the first set of neighbours, {sk} are the second set of neighbours
and so on. The subscripts below all Js and Ks denote the neighbour set, J1 denotes the first
neighbours, J2 the second and so on. In our code, we have limited the number of neighbour
sets to be 4 since it is expected for 2D materials that the interaction energy dies down beyond
that. All these above parameters except B are material specific parameters that are the inputs
to our MC code.
Starting from a random spin configuration, in this many-body problem, our objective is to find
the orientation of spin vectors for every atom so that the energy of the entire lattice reaches to
its minimum for a given magnetic field and temperature. Traditionally single spin update(SSU)
scheme is employed to solve this problem, which satisfies the detailed balance condition. In
the SSU method of updating the state, a single atomic spin is chosen at random and changed,
while noting down the energy shift. This new state is then accepted or rejected using the
Metropolis criteria as shown in Algorithm 1, where β = (kbT )

−1, kb being the Boltzmann
constant and T being the temperature. It is imperative that SSU becomes extremely inefficient
as the dimensionality increases.
In our method, as depicted in Algorithm 2, we select multiple atomic spins at the same time
and change them all at once, treating them as independent events. For any individual spin,
they do not feel the effects of the other changed spins. In each of these points, we use the
Metropolis criteria to accept or reject the changed spin vectors. This becomes our new state.
Here P denotes the number of lattice points we are evaluating at the same time for any given
state, while Γ is the batch size. Tuning Γ ensures that we can fill up our VRAM with pre-
generated random numbers instead of generating 4 × P numbers per step. These 4 random
number arrays are further processed into n, our site selection, (θ, ϕ), which become the angle
coordinates for a new random spin vector and r which is a conditional uniform random number
used to evaluate the Metropolis criteria.
At present, five different lattice types (square, rectangular, centred-rectangular, hexagonal and
honeycomb) are implemented in our code since most of the 2D magnetic materials fall into
this category (Kabiraj et al., 2022), and for neighbour mapping, we use analytical relations
(Koziol, 2020).
For a lattice of size N × N , 100% parallelization would correspond to selecting N2 spins
at random. Since each spin selection and its consequent Metropolis criterion is evaluated
on a separate CUDA core, it becomes apparent that we would need N2 CUDA cores to
achieve this 100% parallelization.Since the proposed algorithm may not adhere to the detailed
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Algorithm 2 Parallel Monte Carlo
procedure Step(Run)

Read Initial state
Create 4 P × Γ length uniform random arrays
Process the 4 uniform random number arrays
for i < Γ do

Slice the 4 arrays into sub-arrays with range [P × i : P × (i+ 1)− 1]
Execute P parallel BLOCKS with these sub arrays
for In each BLOCK do

Evaluate H before(T0) and after(T1) spin change ▷ Multithreading
Wait for all BLOCKS to finish then increment i

Update all P spins to next state
This state is now our next state

balance conditions, it yields approximate results, and there is a trade-off between paralleliza-
tion/acceleration and accuracy. It is found that if the parallelization is limited to 10% of the
lattice size, we obtain very accurate results with significant acceleration.
Unlike the SSU scheme, we do not extract simulation data after every N2 spin change, rather
we let it run till all the CUDA cores have sychronized and arrived at the next block check,
which defines our step. To directly compare, if the SSU has 1 spins changed between each
step, our algorithm will have P , where P is the number of CUDA cores used or parallelization
used. In the conventional SSU, data is extracted at every N2(a full sweep) steps, compared
to which, we would take N2

P steps to reach the same data point.
We validate our algorithm by accurately reproducing temperature-dependent magnetic phase
transitions and intricate topological spin textures already reported in the literature, either by
SSU based Monte Carlo or by Landau Lifshitz Gilbert(LLG)(Gilbert, 2004) spin dynamics, for
diverse crystal structures.
It was once thought that long-range magnetic order could not exist (Mermin & Wagner,
1966) in two or one-dimensional materials. In 2017, CrI3 was one of the first 2D materials
(Huang et al., 2017) where ferromagnetism was demonstrated. Using CUDA-METRO, we
first simulate the magnetic phase transition of CrI3 from ferromagnetic to paramagnetic with
increasing temperature. In Fig 1, we reproduce magnetic phase transition from (Kartsev et al.,
2020), and show the effect of parallelization with respect to the reference data. As mentioned
before, we can obtain very accurate results with respect to SSU methods by limiting the
parallelization at 10% or below of N2. The ferromagnetic to paramagnetic transition point
is known as Critical temperature and is extracted from the peak of the susceptibility versus
temperature plot.
Next, we demonstrate the nucleation of topological spin textures which are emergent phe-
nomena in condensed matter physics and are rapidly having importance in information tech-
nology(Bessarab et al., 2018; Luo & You, 2021). While MC simulations of medium-sized
supercells (64×64) yield quite accurate results for Critical temperature calculation, observing
topological spin textures, once needs much larger supercells.

Results
First, we simulate skyrmions in MnBr2(Cui et al., 2022) as shown in Fig 2. MnBr2 is a
square lattice and for this simulation, we have considered up to the second nearest neigh-
bour. This material exhibits anisotropic DMI with an anti-ferromagnetic ground state. An
anti-ferromagnetic skyrmion spin texture is accurately reproduced in our simulation. Anti-
ferromagnetic skyrmions are technologically important since they do not exhibit skyrmion Hall
effect. We further study the material CrInSe3 (Du et al., 2022) which has a hexagonal
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lattice. This simulation was conducted considering only the nearest neighbours and the for-
mation of skyrmions is shown in Fig 2. Once again our results are in agreement with the
original report. All these simulations were conducted in a 200 × 200(49 × 49nm2) supercell
and took 30s to stabilize these topological spin textures at a parallelization of 20% conducted
on a V100-SXM2 processor.
In Fig 3 we demonstrate the skyrmion neucleation process for the material MnSTe (Liang
et al., 2020), which has a hexagonal lattice. While we first observe several skyrmions, with
evolving MCS, they disappear and the whole lattice eventually becomes uniformly ferromag-
netic,which happens to be the direction of the applied magnetic field. This has not been
reported in the original literature(Liang et al., 2020), possibly because of the high computa-
tional time required for a traditional SSU scheme.

Fig 1: Discrepancy between simulation and reference(Kartsev et al., 2020) results at differing
levels of parallelization. At 10%, the simulation results are almost indistinguishable from the
reference data.

Fig 2: Presence of skyrmions in MnBr2 and CrInSe3. The material parameters are taken
from(Cui et al., 2022) and (Du et al., 2022) respectively. The color bar represents normalized
spin vectors in the z direction. Note that the spins of MnBr2 appear purple because there
are “red-blue” spin pairs for the vast majority.
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Fig 3: Lifetime of a skyrmion in MnSTe, from its creation to annihilation. The graph
denotes the average energy per atom. As we approach the global minima, the entire field
becomes aligned to the magnetic field as expected. Total time: 30s.
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