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A critically tapered fold-and-thrust belt or submarine accretionary wedge is one that is on the verge of 
Coulomb failure everywhere, including its base where frictional sliding along a decollement is assumed to 
be occurring. Cohesion within a wedge can add significantly to the overall strength near the toe; the 
effect of this is to decrease the near-toe taper, leading to a critical topographic profile that is concave 
upward if the decollement is planar. We obtain an approximate self-consistent solution for the state of 
stress within a thin-skinned cohesive critical Coulomb wedge, and determine the relationship between the 
wedge taper and its strength and basal friction. The theory is then applied to the presently deforming 
fold-and-thrust belt of western Taiwan. Fitting of theoretical critical wedge shapes to topographic pro- 
files and measurements of the step-up angles of thrust faults from the basal decollement are used to 
constrain the Taiwan wedge strength parameters. An attractive assertion fully consistent with all the 
observations is that the mechanics of fold-and-thrust belts and accretionary wedges is governed by 
normal frictional and fracture strengths of rocks measured in the laboratory. In particular, if Byerlee's 
law/•b = 0.85 is adopted as the coefficient of sliding friction on the base, we find a coefficient of internal 
friction/• - 0.9-1.0 in the wedge and a wedge cohesion S O - 5-20 MPa. Other solutions having strengths 
and ambient stresses up to 4 times lower than this can also, however, satisfy the data. 

INTRODUCTION 

This paper is a continuation of an earlier one (Davis et al. 
[1983-1, hereafter referred to as Wedge 1) in which we present- 
ed a theoretical model for the gross mechanics of fold-and- 
thrust belts and accretionary wedges along compressive plate 
boundaries. In that paper we considered these wedge-shaped 
zones of deformation to be analogous to the wedges of soil or 
snow that form in front of moving bulldozers. When an initial- 
ly thin layer of Coulomb material is encountered by a bulldo- 
zer or plate boundary, it deforms, steepening its surface slope, 
until a critical taper is attained that allows stable sliding to 
occur along the base without continued internal deformation. 
If additional material is encountered and accreted at the toe, 
the wedge will grow self-similarly, maintaining its critical 
taper. 

The theoretical treatment of this problem in Wedge 1, 
which yielded a formula relating the wedge taper to its materi- 
al properties, was purposely simplified in order to focus atten- 
tion on the essential physical concepts and geological observa- 
tions. In the present paper we present a more systematic 
analysis, determining the state of stress everywhere within a 
critical wedge by solving the static equilibrium equations sub- 
ject to the appropriate boundary conditions. Furthermore we 
consider the influence of an additional material parameter, 
wedge cohesion, which gives rise to a concave curvature of the 
critical topographic surface and affects the orientation of the 
principal stresses and Coulomb fractures within the wedge. 
After confirming that the more complete theory accurately 
describes the results of the laboratory sandbox experiment 
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described in Wedge 1, we apply it to the active fold-and-thrust 
belt of western Taiwan. Taking into account the extensive 
structural and fluid-pressure data available there, we analyze 
the shape of the topographic surface and the angles at which 
thrust faults step up from the basal decollement. Our principal 
conclusion that the gross geometry and structure of the 
Taiwan wedge are consistent with normal laboratory frictional 
and fracture strengths of sedimentary rocks is unchanged; in 
fact it is reinforced. 

In the interest of brevity we have not attempted to make 
this paper self-contained; some familiarity with the contents of 

_ 

Wedge 1 is presumed. In particular that earlier paper contains 
the geological justification for both the use of a bulldozer- 
wedge model and the choice of a Coulomb material behavior, 
as,well as a discussion of the expected realm of applicability of 
the theory within the earth. A few minor changes in notation 
have been made, partly as a result of a change from the system 
of Cartesian coordinates employed earlier. In addition we 
have adopted the convention prevalent in continuum mechan- 
ics that a tensile stress is positive, and we now denote effective 
stresses by an overbar rather than an asterisk. 

CRITICAL COULOMB WEDGE THEORY 

The natural coordinate system for examining the state of 
stress within a wedge-shaped region is a system of cylindrical 
coordinates with the origin at the toe. Such a system was 
adopted by Chapple [1978] in his analysis of a perfectly plas- 
tic wedge having a constant yield stress. We shall use r to 
denote the radial distance from the origin and 0 to denote the 
angular depth, measured down from the upper surface (see 
Figure 1). The location of the origin must be allowed to vary 
along the basal decollement, which is assumed to be planar, 
because of the topographic curvature exhibited by a critical 
cohesive wedge. This inconvenience, which is dictated by our 
use of cylindrical coordinates, is more than offset by the ease 
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Fig. 1. Schematic cross section of a critical cohesive Coulomb 
wedge, illustrating some of the geometrical quantities arising in the 
analysis. Heavy shading denotes region of wedge for which the cylin- 
drical coordinates r, 0 shown are appropriate. 

with which boundary conditions along the top and bottom of 
the wedge can be stipulated and satisfied. The slopes of the 
upper surface and decollement will again be denoted by • and 
fi, respectively, and we shall now use ½ to denote the angle of 
inclination between the axis of greatest principal compressive 
stress and a radius vector, as shown. 

A critical wedge, by definition, is one on the verge of shear 
failure everywhere. Using our new sign convention, the empiri- 
cal Coulomb criterion relating the shear and normal tractions 
across a plane at failure is 

I,1 = So - (1) 

where So is the cohesion and # = tan •b is the coefficient of 
internal friction. The effective stress d. appearing in (1) is given 
by 

d. = a. + P,r (2) 

where pf is the pore-fluid pressure. Alternatively, if expressed 
in terms of the effective principal stresses d• and d3, the failure 
criterion (1) takes the form 

(1 + sin •) d• - 1 - sin d3 - Co (3) 
where 

Co = 2So 1 - sin (4) 
is the uniaxial compressive strength [Jaeger and Cook, 1969]. 

It is straightforward to show that the state of two- 
dimensional stress within a cylindrical wedge at failure is 
given by 

So cot 
«(O 0 -- Or)-- (So) 

csc •b sec 2½ - 1 

tan 2½(So cot 
*r0- CSC •b sec 2½- 1 

These constitutive relations provide a complete description of 
the deviatoric stresses «(o0- or) and *r0 in terms of two un- 
knowns, the effective stress g0 and the stress orientation angle 
½. Analysis of the Mohr circle geometry depicted in Figure 2 
is one method of deriving (5). The equations of static equilibri- 
um, which must be satisfied throughout the wedge, are 

(•O r 
!' -•F + -• + Or -- O0 + pgF sin (0 - •) = 0 (6a) 

r • + • + 2ZrO + par cos (0 -- •)= 0 (6b) 

where p is the wedge density and g is the acceleration of 
gravity. The upper surface of a subaerial wedge must be trac- 
tion free. More generally, for a submarine wedge overlain by 
water of density Pw and local depth D, the upper boundary 
conditions are 

TrO = 0 O 0 = -- pf = -- pwgD (7) 

on 0 = 0. The shear traction resisting frictional sliding on the 
base is assumed to be 

'•rO "-- -- !•bdO (8) 

on 0 = • + fi, where #b = tan •bb is the basal coefficient of 
friction. This empirical friction law is the basal counterpart of 
the Coulomb failure criterion (1) within the wedge. 

Equations (5)-(8) constitute a well-posed hyperbolic bound- 
ary value problem for the stresses Or, O0, and XrO. The effective 
principal stresses are given in terms of Or, oo, and XrO by 

d 1 -- d O -- «(o 0 -- Or) -- [¬(o 0 -- Or) 2 -1- TrO2] 1[2 (9a) 

d3 --- /•0 -- «(00 -- Or) -1- [¬(00 -- Or) 2 -1- Tr02] 1/2 (9b) 

or alternatively, by 

d• = do - «(oo - orX1 + sec 2½) (10a) 

d 3 = d 0 - «(o o - Or)(1 -- sec 2½) (10b) 

A common method of solving for the stress in problems such 
as this is to integrate the characteristic equations defining the 
slip lines along which failure can occur [Hill, 1950]. In the 
present instance this must be done numerically on a two- 
dimensional grid; such an approach has recently been adopted 
in the perfectly plastic case by Stockreal [1983]. We shall pre- 
sent here a much simpler approximate solution which should 
be valid in all wedges of geological interest. A major advan- 
tage of this solution is that its dependence on the various 
geometrical and material parameters is fairly explicit, allowing 
a wide range of different possible models to be easily and 
systematically explored. As in Wedge 1, we shall develop the 
theory for a submarine wedge, knowing we can always find 
the corresponding result for a subaerial fold-and-thrust belt by 
setting p,• = 0. 

The Critical-Taper Equation 

The principal approximation we shall make is that 

7' 

ohesion S O 

Fig. 2. Mohr diagram illustrating the state of two-dimensional ef- 
fective stress at an arbitrary point within the wedge 
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•+fi<<l (11) 

The thin-skinned nature of actual wedges justifies this small- 
angle or narrow-taper approximation. We shall also restrict 
corisideration to regions sufficiently far from the vertex, by 
requiring that 

pgr/So >> 1 (12) 

In practice, this latter restriction is seldom significant, as we 
shall see. Upon employing (11) and (12) in the integration of 
(6b), we find to lowest order that 

where 

•o = -(1 - •l)pgrO (13) 

,• = p f -- p•gD pgrO (14) 
is the Hubbert and Rubey [1959] fluid-pressure ratio, suitably 
generalized to the submarine case as in Wedge 1. Equations 
(13) and (14) simply state that the "vertical" stress in a thin- 
skinned wedge is approximately lithostatic, which accords well 
with intuition. 

Integration of (6a) making use of (5a) and (13) in addition to 
(11) and (12) now leads to an alternative first-order formula 
for the shear stress, namely, 

fo 0 dO fro = (P - p,•)gr•O + 4(1 -- ,•)pgr csc •fi sec 2• - 1 

•j dO (15) + 2So cot 4> csc 4> sec 2•p - 1 
Equations (5b) and (15) together yield the formula 

7 0 dO (1 - p.,/p)o•O + 4(1 - 2) 
csc •b sec 2•k - 1 

+ 2(Sø• cot•b •o ø dO \pgr/ csc •b sec 2• -- 1 

tan2½ [ (S•rr) ] =csc•psec2½-I (i-2)0+ cot• (16) 
which allows the angle • to be determined everywhere by a 
straightforward one-dimensional numerical quadrature, start- 
ing from • = 0 at 0 = 0. For a given •, (16) is integrated 
downward until the condition (8) for frictional sliding along 
the base of the wedge is satisfied, thus determining fl. For a 
given fi, iteration of (16) is required to find the surface slope • 
that allows the basal boundary condition to be satisfied. In 
either case, the wedge taper • + fi is given by 

o• + fi = (1 - p,•/p)• + (1 - •b)#b.- Q(So/pgr) cot •b (17) 
(1 - p•,/p) + (1 - •I)K 

where ha is the basal value of the fluid-pressure ratio and 

fl # 0 dO K = 4(0• +/?)-2 (18a) 
csc •p sec 2½ - 1 

fl # dO Q = 2(0• + •)-• (18b) 
csc •p sec 2½ - 1 

Equation (17), which we call the critical-taper equation, fol- 
lows directly from comparing (8) and (15) on the base 
0 = 0• + fl. The condition that the wedge be in a state of hori- 
zontal compression rather than extension is that 0 < ½ < n/4, 
implying that the coefficients K and Q are bounded by 

2 
O_<K, Q_<• (19) 

csc d) - 1 

In the above derivation, it has been tacitly assumed that the 
density p and the various strength parameters So, #, ,•, #•, and 
,• are all constants. It is obvious that the analysis could be 
readily extended to deal with spatially variable parameters, 
but this does not seem warranted at the present time given the 
quality of available geological data. For a given constant de- 
collement dip fi and strength parameters #, ,•, #•, and • the 
critical-taper equation (17) gives the variable surface slope • as 
a function of the dimensionless radial distance pgr/So from the 
origin. 

The basal decollement of a critically tapered wedge must be 
weaker than the material composing the wedge in order for 
stable sliding to occur along the base. Letting H = r(• + fi) 
denote the local wedge thickness, we can write this wedge 
existence condition as 

p•(1 - 2•) • p(1 - 2) + So/part (20) 

Far from the toe, in the limit pqr/So • •, the critical taper 
approaches a constant asymptotic value 

(1 - p•/p)• + (1 - •)• 
• + • (21) 

(1 - p/e) + (1 - 

that is independent of the cohesion So. This limiting taper, 
corresponding to negligible cohesion, agrees in form with that 
derived in Wedge 1 where cohesion was ignored. The integral 
(18a) defining K in (21) differs slightly from that obtained 
previously, partly because both solutions are approximate and 
partly because the new definition of ½ in cylindrical coordi- 
nates is different. The existence condition for a large wedge is 
the same as that for a noncohesive wedge, namely, 
(1 - •)p• • (1 - X)p or ½•' • ½, where 

½•'= arctan [pgl - X•)/(1 - •)] (22) 

is an adjusted basal friction angle allowing for a possible dif- 
ference between • and •. Moving toward the toe from the 
back, the taper • + fi is seen from (17) and (19) to decrease 
from its noncohesive asymptote (21), where it is maximum. 
The curvature of the critical surface topography is as a result 
concave upward for a wedge of uniform properties, as indicat- 
ed earlier. 

The effective state of stress along the upper surface 0 = 0 is 
given by do = •3 = 0 and d• = • =-Co, where Co is the 
uniaxial compressire strength defined by (4). The variation of 

Fig. 3. Cartoon comparing the present analysis with that of Hub- 
bert and Rubey [1959]. 
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½ in the region just below the upper surface can be shown by 
expansion of (16) to be 

(1 -- pw/p)o•(csc • T. _1)_ ]0 (23) ½ • 1 + 2(So/pgr) cot •b + 2(1 - •)0J 
near 0 = 0. The noninterchangeability of the limits 0--• 0 and 
So--• 0 in (23) is associated with the existence of an upper 
boundary layer in which cohesion plays a dominant role even 
near the back of the wedge. A finite amount of cohesion, no 
matter how slight, is required to insure that • is aligned with 
the surface topography so that • • 0 as 0--• 0. The finite sur- 
face inclination ½o of • at the top of a strictly noncohesive 
wedge is given by 

(1 - pw/p)•(csc •b - 1) 
½o=lim lim½= (24) 

0-.o So-.O 2(1 - •) 

The thickness of the upper boundary layer in a cohesive 
wedge is seen from (23) to be of order h = So/f#(1 - •)pgl. In 
the region near the toe where H • h the entire wedge is domi- 
nated by cohesion. The concave topography associated with 
the near-toe reduction in taper is a direct consequence of the 
increasing importance of cohesion relative to the overall 
wedge strength as H decreases. 

According to (17), the critical surface slope • is negative for 
distances r from the toe less than 

QSo cot •b 
ro = (25) 

pc[(1 - 2,)#, + (1 - 

Equation (25) gives the maximum length of a wedge-shaped 
body with zero surface slope that can be thrust over a dipping 
basel decollement without undergoing internal Coulomb fail- 
ure. It is reminiscent of a well-known formula derived by Hub- 
bert and Rubey [1959] for the maximum length L 0 of a rec- 
tangular thrust sheet overlying a horizontal decollement. By 
implication, an initially rectangular body longer than L0 will 
deform until it attains a critical taper toward its rear (see 
Figure 3). The theory presented here calculates this critical 
taper explicitly, allowing for a dipping decollement and avoid- 
ing the artificial leading free face of Hubbert and Rubey. 

To construct theoretical wedge profiles, we must contend, as 
mentioned, with the variable position of the origin along the 
decollement. Let x and y be a system of Cartesian coordinates 
with a fixed origin and y pointing upward, so that the linear 
equation y + x tan fi = 0 defines the position of the decolle- 
ment as shown in Figure 1. In the small-angle approximation, 
the curve describing the concave upper surface of a critically 
tapered wedge can be written in parameterized form in these 
coordinates as 

x(r) = r + + •)-iron' dr (26a) 

y(r) dr + •(• + fi)-ird dr (26b) 
o o 

where the terms depending on d= d•/dr account for the 
movement of the origin. In setting the lower limit of integra- 
tion in (26) equal to r 0, we are stipulating that the front of the 
wedge consists of a flat-topped, triangular undeformed 
Hubbert-Rubey toe. 

Step-Up of Thrusts From the Basal Decollement 

At every point in a critically tapered wedge, there will be 
two planes oriented at angles +_(rr/4 - •p/2) with respect to the 

6• axis on which the failure criterion will be satisfied [Jaeger 
and Cook, 1969]. Knowing this, it is a simple matter to recon- 
struct the slip lines within the wedge once the orientation •, of 
d• has been determined everywhere. Forward verging slip 
lines dip at an angle 

g - ½ (27) 
4 2 

relative to the local radius vector at any point, whereas back- 
ward verging ones dip at the steeper angle 

+ 2½ ..... ½ (28) 
4 2 

It is particularly simple to determine ½'t, and thus gt,- rr/4 
- •p/2 - ½t, on the base of the wedge; we only need to com- 

pare (5b) with the boundary condition (8), making use of (13). 
This leads to the relation 

[#(1 - 2) + So/part] sin 

=/.tb(1 _ ;•b)[( 1 + #2)1/2 __ # COS 21pb ] (29) 

where, as before, H = r(• + fi) is the local wedge thickness. 
Equation (29), which serves to define ½'t, implicitly, can be 
rewritten in terms of •p and •p•,' as 

sin •bt,'[1 + (So/pgH) cos •b cos 2½t,] 
sin (•bb' + 2½b) = sin •b + (So/pg17) cos •b (30) 
where we have defined the effective wedge thickness 

a = (1 - 2)n (31) 

An alternative direct derivation of this latter form can be 

based on the Mohr circle geometry shown in Figure 4. In the 
limit of negligible cohesion, both (29) and (30) approach the 
result given in Wedge 1, namely, 

1 (sin •,') 4•,' (32) •,•--* • arcsin k, sin • 2 
We shall make use of these results below in interpreting the 

observed basal step-up angle gt, of forward verging thrust 
faults in western Taiwan. The underlying assumption, which 
seems quite reasonable, is that the observed faults were formed 
as fresh fractures coinciding with the slip lines in a Coulomb 
material. In the special case of a wedge and decollement of 
identical properties, i.e., So = 0 and •Pt,' - •P, the forward verg- 
ing thrusts should have a listric or "sledrunner" geometry, 
since ½q, = rr/4- •p/2 so g•,--0. More generally, this is true 
whenever there is equality in (20). In all other cases, forward 

on decollement 

Fig. 4. Geometry of Coulomb fractures stepping up from the 
basal decollement and Mohr diagram illustrating the basal state of 
effective stress. 
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Fig. 5. Comparison of theoretical critical surface slope with mea- 
sured mean slopes in sandbox experiments. Data are same as in 
Wedge 1 but show in addition the formal experimental error bars. 

verging thrusts step up from the base at a finite angle, which 
should be the normal geologic situation. 

The frictional traction on the basal decollement is 

I% [ = #t,(1 -- •t,)pgH (33) 

and the shear traction on the thrusts at the point where they 
step up is the fracture strength (1), which reduces to 

I,l = cos ½csc 2½•[#•(1 -- It,)pgH] (34) 

The quantity 

z = I/1.1 = sin 2½•/cos ½ (35) 

is a useful measure of the ratio of decollement strength to the 

overall wedge strength. In general this ratio must be in the 
range 

0 < Z < 1 (36) 

where the upper limit corresponds to the case of identical 
properties or, more generally, equality in (20). 

A Weak Basal Decollement 

The above results can be simplified if the decollement is 
very weak compared with the wedge strength so that Z << 1, or 
equivalently, 

#t,(1 -- •t,)<< #(1 -- ;•) + So/pgn (37) 

The angle ½• is in that case small, i.e., ½• << 1, and (29) and (30) 
reduce to 

1 (1- sin •)'/2[ #t,(1 _--•t,' ] ½• = • '1 + sin Lit(1 - Z) + So/½OH I (38) 
Both the integrals K and Q can be approximated by their 
upper bounds 

2 
K • Q • (39) 

csc •p- 1 
so that 

• +/• • I( ] - •/•)/• + (] -- 
--(csc •--1')(p•r) cot 

csc ½ - 1 (40) 
In addition, the approximation (23) is valid throughout the 
wedge; in fact equating ½ at 0 = c• + fi to (38) yields (40). 

forward verging •,•. backthrust thrust __ • ...... ?.:.. ....... '"i'•:": • 

:::::-.'->5!::::;•:!;:.,;, o 

3 ......... • ............. "':- :-'.:;;;?".:"-' ..... ::':½.';:.-•:-,:;!¾":.;! •-;!" 4'•;)-:;::!i}:, ;,.-:..: .; ':' 
. • •. • ........... "'"' 

Fig. 6. Photographic side view of a deforming sand wedge, showing development of horstlike uplift bounded by pairs 
of forward and backward verging thrusts. The dip of each thrust generally increases after its original formation due to 
continued deformation. Black sand layers are passive markers. 
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TABLE 1. Mean and Standard Deviation of Observed Step-Up 
Angles in Sandbox Experiment Compared With Theoretical Angles 

Assuming It = 0.6 and It0 = 0.3 

Angle 

Exact Weak-Base 

Observed, Theory, Approximation, 
deg deg deg 

Forward thrusts 60 22.3 + 2.3 20.9 21.4 
Back thrusts 60 + 2½0 38.5 q- 4.5 38.1 37.6 

In the noncohesive case, (32) giving ½b is exact. 

Comparing (24), (38), and (40) we see that the limiting taper far 
from the toe can be written most simply as 

• + fl • 4%- ½o (41) 

The slip lines or thrust faults in this weak-base noncohesive 
limit are straight, or planar, since q• • q•o + 0. 

CONFIRMATION WITH LABORATORY SANDBOX MODEL 

The parameter values appropriate to the laboratory sand- 
box model described in paper 1 are S o=0, •.=•0=0, 
• • 0.6, and •0 • 0.3. The critical-taper equation (17) for a dry 
subaerial noncohesive wedge reduces to 

• + •- (42) 
I+K 

The integral K in this case is very nearly constant over the 
range of experiments, 0 ø • • • 6 ø. With • = 0.6 and •0 = 0.3, 
the value obtained by numerical quadrature is K = 2.02; the 
analytical weak-base approximation (39) gives K • 2.12. 
These two predictions are compared with the experimental 
observations in Figure 5. The agreement of both is well within 
the experimental uncertainty, and the weak-base approxi- 
mation is in this case adequate. 

By stratifying the sand with passive black marker beds, the 
nature of the deformation within the wedge can be observed 
clearly during an experimental run. In general, the defor- 
mation is dominated by motion along a few discrete forward 

• 5 ø 

o 4 ø 

• 3 0 

3 2 ø 

1 ø 

[• = 6 ø pb = 0.85 • = 0.85 

0.90 
1.00 

i 

0 200 400 600 800 1000 12 

-62 ø 

__ 4.1 ø 

- 3.4 ø 

- 2.8 ø 

- 2.3 ø 

)0 

normalized d•stance from or,gin pgr/S 0 

Fig. 7. Critical surface slope versus normalized distance from origin 
pgr/S o. Parameters are appropriate to Taiwan. 

and backward verging thrust faults (see Figure 6). Faults form 
initially near the rigid buttress at the back .of the wedge, and 
the locus of active faulting moves toward the toe as defor- 
mation progresses. The basal step-up ang16s of 23 forward 
thrusts and 15 back thrusts were measured off photographs. 
Only freshly formed faults undistorted by sub-•equent faulting 
or rotation •ere included in the observations. The measure- 
ments are calmpared with the theoretically p,r•dicted step-up 
angles in Table 1. Once again, the agreement•:'{vith the theory 
is excellent. The evident success of the critical wedge theory on 
the laboratory scale encourages its application to more com- 
plicated and less well constrained geological situations. 

APPLICATION OF THEORY TO TAIWAN 

An introduction to the tectonic setting of the active fold- 
and-thrust belt of western Taiwan, including a demonstration 
that the wedge is presently at critical taper, is given in Wedge 
1. The parameter values characterizing Taiwan are also dis- 
cussed in detail there, and are summarized in Table 2. In all 
modeling reported here we have adopted a regional decolle- 
ment dip /• = 6 ø, fluid-pressure ratio 9• = S•b = 0.67, and':rock 
density p = 2500 kg/m 3. Extensive drilling data, supplemented 
by seismic reflection profiling, provide the basis for these esti- 
mates; wells in the foothills that intersect the basal decolie- 

TABLE 2. Measured and Inferred Parameters of Western Taiwan Fold-and-Thrust Belt 

Parameter Value Method of Determination With Reference 

Overall surface slope •, deg 

Regional decollement dip fl, deg 

2.9 + 0.3 

6_+1 

Density p, kg/m3 2400-2700 

Fluid-pressure ratio 2 0.67 q- 0.05 

Thrust step-up angle 6b, deg 13.3 q- 2.4 

Basal coefficient of friction It, 0.85 

Internal coefficient of friction 0.9-1.0 

Wedge cohesion So, MPa 5-20 

Strength ratio Z 0.4-0.5 

Linear regression of topographic profiles 
[Davis et al. 1983]; more detailed fitting 
in this paper 

Seismic reflection profiling and deep drilling; 
best constrained in front 30 km of wedge 
[Davis et al., 1983] 

Direct measurement of core samples and sonic 
logs in wells [Narnson, 1982; this paper] 

Formation pressure tests and sonic logs in 
wells; at least in the foothill zone ;t = ;t• 
[Suppe and W!ttke, 1977; Davis et al., 1983] 

Surface mapping, downhole dip-meter surveys 
and seismic profiling; inferred from theory of 
fault-bend folding [$uppe, 1983; Narnson, 1982; 
this paper] 

Assumed; based on laboratory measarements of 
maximum friction of many silicate rock types 
[Byeflee, .1978] 

Inferred using critical Coulomb wedge theory 
(this paper) 

Inferred using critical Coulomb wedge theory 
(this paper) 

Inferred (this paper) 
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Fig. 8. Suite of theoretical critical wedge profiles having p = 2500 kg/m 3, ,;t = ,;t• = 0.67, and #• = 0.85. 

ment confirm that 2 - 2•. The value of p is also that measured 
in the foothills, which is where we have reliable step-up angle 
data. In the Central Mountains, where deeper rocks are now 
exposed, the mean density is closer to 2700 kg/m3; we have 
ignored this density increase in our modeling. To begin with, 
we assume that Byedee's law #• = 0.85 is applicable on the 
base, although later we explore the consequences of relaxing 
that assumption. The remaining two unknown strength pa- 
rameters are the internal coefficient of friction # and the 
wedge cohesion So, which we now infer from the observed 
surface topography and the step-up angles of thrust faults near 
the deformation front. Guided by our noncohesive results in 

Wedge 1, we do not employ the weak-base approximation in 
what follows. 

Fitting the Surface Topography 

The critical-taper equation (17) for a subaerial fold-and- 
thrust belt with 2 = 2• reduces to 

fi + (1 - J,)#•, - O(So/pgr) cot •p 
0• + fi = (43) 

1 + (1 - 

The decrease in surface slope toward the toe of a cohesive 
wedge is illustrated for Taiwan conditions in Figure 7, which 
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Fig. 9. Contours of root-mean-square misfit for profiles 1-5, located as shown on sketch map. Shaded regions denote set 
of wedge strength parameters providing best fit to observed topography. 
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Fig. 10. Observed step-up angles of thrust faults near toe of wedge in western Taiwan compared with theoretical step-up 
angle for various values of wedge strength parameters. 

is a plot of • versus pgr/So for various values of # in the range 
0.85 _</• _< 1.10. The noncohesive asymptotes corresponding 
to pgr/So-• ov are given on the right. Note in passing that the' 
normalized lengths of the undeformed Hubbert-Rubey toe are 
in the range pgro/S o = 27-55, which justifies the approxi- 

mation (12). The curvature ds/dr is most pronounced near 
r = r0, decreasing monotonically as r increases and the surface 
slope asymptotically approaches its noncohesive value. In 
Wedge 1 we inferred a coefficient of internal friction # = 1.03 
from the average overall surface slope 0c = 2.9 ø -t-0.3 ø, ignor- 
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Fig. 11. Cross sections near toe of Taiwan wedge in vicinity of profiles 1-5, showing nature of step-up angle observa- 
tions. 
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Fig. 12. Seismic time section near toe of wedge in northwestern 
Taiwan with structural interpretation by Namson [1982] showing 
fault-bend fold produced by thrust fault stepping up from decollement 
at base of Talu Shale. Data courtesy of Chinese Petroleum Corpora- 
tion. Scale is approximately 1: 1. 

ing cohesion. For wedges of finite length r and cohesion So we 
must consider the shape of the topographic profiles in more 
detail. 

To illustrate the dependence of the critical wedge shape on 
the parameters /4 and So, we have plotted a suite of cross 
sections, all for #b -- 0.85, in Figure 8. An increase in either # 
or So corresponds to a strengthening of the wedge material, 
leading to a decrease in the overall taper, since a stronger 
wedge can be thinner and still not undergo internal defor- 
mation while being thrust over a basal decollement. It is clear 
from the theoretical profiles that the concave curvature pro- 
duced by a geologically reasonable cohesion is a subtle, essen- 
tially second-order, effect for typical wedge lengths of order 
100 km. To first order, the three wedges corresponding to 
# = 0.85 with So - 20 MPa, # = 0.95 with So = 10 MPa, and 
# = 1.05 with So = 0 all have very similar shapes, which might 
be difficult to discriminate in the presence of any small-scale 
topographic irregularities. This expectation has been con- 
firmed by the results of the detailed topographic fitting we 
now describe. 

Five profiles in the active region of deformation in central 
western Taiwan were selected for fitting. The profiles are ori- 
ented perpendicular to the mountain belt and extend from the 
deformation front at the edge of the coastal plain in the west 
to the highest part of the Central Mountains of Taiwan in the 
east; the spacing between profiles is 10 km. The depth to the 
basal decollement is variable across the region of fitting, going 
from H = 3.5 km just east of the deformation front on the 
northernmost profile to H - 7.5 km at a similar position on 
the southernmost profile. More detailed information about the 
topography of western Taiwan may be found in Suppe [1981]; 
the profiles we have labeled 1-5 are numbers 170-130 in his 
compilation. 

In Figure 9 we show contours of the misfit for the five 
profiles, for various values of # and So, assuming #b = 0.85. 
For each trial value of/4 and So, we have allowed the vertex of 

the theoretical wedge to move along the basal decollement 
until obtaining a best fit, and the contoured misfit is the rms 
residual of this least-squares best fit. As anticipated, there is a 
tradeoff between/4 and So that cannot be resolved by topo- 
graphic fitting alone. The five profiles can be fit equally well 
by choosing/4 -- #• = 0.85 with So in the range 15-30 MPa or 
by choosing/4 in the range 1.0-1.1 with negligible cohesion; 
the latter possibility agrees, as expected, with that deduced 
earlier in Wedge 1. The magnitude of the misfit is approxi- 
mately 300-450 m, which is the amplitude of the valley and 
ridge topography in western Taiwan. 

Step-Up Angle of Thrusts 

We can better constrain the wedge strength parameters 
and So in Taiwan by taking account of the angles at which 
thrust faults step up from the basal decollement. In Figure 10 
we show a histogram of observed step-up angles of forward 
verging thrusts near the toe of the wedge in the western foot- 
hills. Data are from well-constrained fault and decollement 

dips based on surface mapping, coring and downhole dip 
meter surveys, and seismic reflection profiling [Suppe and 
Namson, 1979; Namson, 1982; Suppe, 1983, and unpublished 
data]. Figures 11 and 12 illustrate the nature of the data. 
Thrusts that reach the surface have dips defined by the dip of 
the beds in the hanging wall, such as the Sani thrust in Figure 
11a. Some faults are further constrained by drilling, such as 
the Shuangtung thrust farther to the east in the same cross 
section. Many faults are folded as a result of deeper imbri- 
cations, including both the Sani and Shuangtung thrusts. The 
basal step-up angle data shown in the histogram have been 
corrected for any later folding of this sort, using the methods 
of Suppe [1983]. 

Three peaks are apparent in the histogram' a major peak at 
6•= 10ø-17 ø and minor ones at 6•= 200-25 ø and 
300-35 ø . The steepest dipping faults are known or suspected to 
be reactivated normal faults; an example is shown at depth 
under the Hoshe anticline in Figure 1 lb. The faults dipping at 
200-25 ø are known or suspected to propagate by the process 
of fault-propagation folding [Suppe, 1985] in which a fold 
grows concurrently ahead of the propagating fault tip. The 
Meilin anticline near the toe in Figure l lb is an example of 
this structural phenomenon. Upon eliminating probable reac- 
tivated normal faults and data thought to be complicated by 
fault-propagation folding, we are left with 42 faults that we 
believe to be relatively clean Coulomb fractures stepping up 
into the wedge. Both the Sani thrust and its neighbor to the 
west fall into this category; the fault stepping up from the base 
of the Talu Shale in Figure 12 is another example. 

The mean and standard deviation of the step-up angles of 
the 42 presumed Coulomb fractures is 

•, = 13.3 ø q- 2.4 ø (44) 

which is shown as the shaded band on the right of Figure 10. 
We now consider the implications of this observation for 

the wedge rock properties. Equation (29) defining •, reduces 
in the case/t =/t•, to 

##t, cos 2•t, + (# + So/pgl•) sin2•t, = #t,(1 + #2)1/2 (45) 

in terms of the effective depth/7; we can likewise simplify (30) 
by setting 4b' = 4•. Theoretical values of 6• for #b = 0.85 and 
various values of # and So/pg17 are shown on the right of 
Figure 10, superimposed on the observed band of step-up 
angles. It is seen that the observations require the dimension- 
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less cohesion to be in the range So/pgH = 0.2-0.35, essentially 
independent of # over the range considered. The thickness 
near the toe is H - 3.5-7.5 km, which implies S O = 5-20 MPa. 
Zero cohesion is definitely precluded by the observed suite of 
step-up angles, as long as #b = 0.85. 

If So = 5-20 MPa, we see from the tradeoff plots (Figure 9) 
that the coefficient of internal friction must be somewhere in 

the range #- 0.9-1.0. The best-fitting theoretical wedge pro- 
files, assuming # - 0.95, are compared with the actual topog- 
raphy for the five studied sections in Figure 13. Also shown 
for each of the five sections is the location of the deformation 

front, where folding and thrusting first begins, and the posi- 
tion where the depth to the decollement is best determined. 
Undeformed foredeep and coastal plain sediments, which have 
not yet been accreted, lie to the west of the deformation front, 
where they cover the unfitted theoretical critical profiles. The 
values of So yielding the best fits are in the range 5-20 MPA, 
as expected. 

The variation of •/with angular depth 0 at various points in 
the wedge is illustrated in Figure 14 for the case # = 0.95. Just 

in back of the Hubbert-Rubey toe, where • = 0 ø, it can be seen 
that • • 0 to a very good approximation; this corresponds to 
a state of stress in which 6• is horizontal at all depths. As the 
distance from the origin r and the slope • increase, so does • 
until in the limit r-• c• the basal inclination •b • 14.8 ø. The 
development of a cohesion-dominated upper boundary layer 
near the back of the wedge is apparent' the absolute thickness 
of the cohesion-dominated region is constant, but its thickness 
relative to that of the wedge as a whole decreases away from 
the toe. For surface slopes in the range • = 2ø-3 ø, as observed 
in western Taiwan, cohesion is important throughout the 
wedge, and the dip relative to horizontal •- 0 of 6• is at 
most a few degrees. This implies that fault inclinations that are 
unaffected by subsequent folding should show little variation 
with depth in the wedge and only moderate variation with 
distance from the toe. 

The ratio Z of decollement strength to wedge strength is 
shown for various values of # and So/pgH in Figure 15. For 
the values just found, namely, # = 0.9-1.0 and So/pgH = 
0.2-0.35, the ratio is seen to be Z = 0.4-0.5. 
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Fig. ]3. Best-fitting theoretical cohesive critical wedges compared with observed topography along profiles ]-5. Coef- 
ficient of internal friction has been fixed at # = 0.95. 
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Fig. 14. Inclination • of 6x with respect to local radius vector as 
a function of angular depth at several locations in wedge, assuming 
/• = 6 ø. Normalized distances from origin corresponding to • = 00-4 ø 
are pgr/So = 34, 47, 75, 154, and 1725, respectively. 

DISCUSSION OF RESULTS 

The wedge strength parameters inferred above are in excel- 
lent agreement with laboratory measurements of the fracture 
strength of sedimentary rocks. For example, Figure 16 shows 
the fracture strengths measured by Hoshino et al. [1972] on 
Tertiary shales and sandstones, i.e., rocks very similar to those 
of the Taiwan fold-and-thrust belt. Some typical maximum 
friction data for shales and sandstones from Byedee [1978] 
are shown for comparison, together with his empirical fit sum- 
marizing the results of many other measurements. The fresh 
fracture data are, as expected, more scattered than the friction 
data, but it is clear that for I•.l-< 200 MPa they can be ad- 
equately characterized by a cohesion in the range So = 5-20 
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Fig. 15. Ratio X of basal strength to wedge strength for various 
values of internal friction and cohesion. 
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Fig. 16. Summary of laboratory measurements of fracture 
strength and maximum friction of dry shales and sandstones. Data 
from Hoshino et al. [1972] and Byeflee [1978]. 

MPa and a coefficient of internal friction g slightly greater 
than 0.85. An independent study of faults at an outcrop scale 
of 1-10 m in Pleistocene sediments of eastern Taiwan also 

suggests that g >• 0.85, based on the angle (90 ø - ½) between 
conjugate fault sets [Barrier et al., 1982]. This good agreement 
between the macroscopic wedge parameters and laboratory 
fracture data suggests that the strength is controlled prin- 
cipally by the need to fracture locked geological structures in 
order for continued deformation to occur. 

Another aspect of the deformation must be the occurrence 
of frictional sliding along already established faults that were 
either formed earlier as fractures in the wedge or that may 
have existed previously. In either case the fault surfaces may 
become folded owing to deeper imbrications, leading to a wide 
range of fault orientations within the wedge. The theoretical 
range of fault orientations that can accommodate frictional 
sliding can be easily determined from the Mohr circle geome- 
try shown in Figure 17. The limiting dips with respect to the 
local radius vector for forward verging faults are given by 

•max,min = • -'j- «(½ -- ½b') -[- «• (46) 

where • is the corresponding dip of fresh fractures, given by 
(27), and 

sin ½b'[1 + (So/pgI7) cos ½ cos 2•] (47) 
cos • = sin ½ + (So/pgI7) cos ½ 

The quantities •, •m,, and •mi. have been plotted as a func- 
tion of 0 for Taiwan fluid-pressure conditions at two locations, 
where the surface slope is, respectively, • = 2 ø and • = 3 ø, in 
Figure 18. It can be seen that faults with dips as steep as 
•m, = 35ø can exhibit frictional sliding throughout a large 
part of the active Taiwan wedge. This is consistent, at least 
qualitatively, with both the observed imbricate steepening of 
Coulomb fractures and the reactivation of preexisting normal 
faults as discussed above. 

As a final comparison, we show in Figure 19 a theoretical 
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Fig. 17. Schematic depiction of preexisting fault orientations on which frictional sliding can occur. Dip of forward 
verging faults relative to local radius vector must be in range 6•,i, < 6 < 6 .... denoted by shaded triangle in Mohr 
diagram. 

critical wedge cross section with slip lines calculated using 
#b = 0.85, # = 0.95, and So = 12 MPa together with a sim- 
plified geological cross section drawn to the same scale. Three 
features deserve comment. The first is that the geologic section 
from Taiwan is dominated by large slip on a few faults in 
contrast with the continuous state of failure within the theo- 

retical wedge. This observation of widely spaced faults need 
not imply a significant conflict between theory and observa- 
tion. For example, the bulk of the deformation of the sandbox 
wedge, which is known to obey the theory, was along discrete 
major faults. Furthermore, field observations in Taiwan indi- 
cate that the rock is cut by numerous minor faults with spac- 
ings of tens of meters and slips of decimeters to meters, sug- 
gesting that the wedge is at or near failure throughout. The 
second feature to note is that the region of undeformed sedi- 
ments lying to the west of the deformation front is 2-3 times 
as extensive as the theoretical undeformed Hubbert-Rubey 
toe. The constant influx of sediments eroded off the growing 

wedge to the east essentially keeps the critical taper buried, 
thus inhibiting deformation. The third feature is the predomi- 
nance of forward thrusting over back thrusting; at present 
only 2-3 back thrusts, all with poorly constrained step-up 
angles, are known in western Taiwan. This predominance is 
typical of other fold-and-thrust belts as well and must be at- 
tributed to factors that have been neglected in the above 
analysis. One such factor is the finite nature of the defor- 
mation. Freshly fractured forward thrusts can accommodate a 
greater amount of horizontal shortening for a given increase 
in gravitational potential energy than the more steeply dip- 
ping freshly fractured backthrusts, and this should tend to 
favor them, particularly if the shortening is extensive. Another 
factor that may be important is anisotropy; forward thrusts 
are more likely to coincide intermittently with strati- 
graphically controlled planes of weakness because their shal- 
lower dip is closer to bedding. Essentially equal amounts of 
forward thrusting and back thrusting are observed in the lab- 
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Fig. 18. Frictional sliding limits, specified as dip with respect to local radius vector, at two locations in wedge for Taiwan 
conditions/? = 6 ø,/t =/t o = 0.67, #• = 0.85, and # - 0.95. Corresponding dip relative to horizontal is 6 - 0 + •. 
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Fig. 19. Theoretical cohesive Coulomb wedge cross section with slip lines superimposed, calculated using inferred 
Taiwan parameters, compared with simplified geological cross section in vicinity of profiles 1-5. See Figure 1 lb for details. 

oratory sandbox experiment, where anisotropy is presumably 
not present and the total shortening is not too great. Finally, 
it should be noted that back thrusts of small displacement in 
Taiwan or any other mountain belt would be difficult to ob- 
serve geologically. 

DEPENDENCE ON BASAL FRICTION COEFFICIENT 

The above results are all predicated on our use of Byerlee's 
law g• = 0.85 to describe the friction on the base. The prin- 
cipal argument favoring the use of this law is its widespread 
applicability in describing the results of laboratory measure- 
ments for a variety of silicate rock types. Some a posteriori 
support for the choice may be drawn from the close corre- 
spondence between the inferred wedge strength parameters 
and laboratory fracture strength measurements, but this 
cannot be said to justify it completely. There is still consider- 
able skepticism about whether laboratory studies of relatively 
pristine small samples are truly representative of the strength 
of complex rock bodies in situ, on the much larger scales of 
geological interest. Apart from this question of a possible de- 
pendence of rock strength on scale and structural complexity, 
it is known that a few materials, notably clays and clay-rich 
fault gouges, exhibit laboratory frictional coefficients substan- 
tially lower than Byerlee's law, in the range 0.3-0.6 [Morrow 
et al., 1982]. Because of these questions, we now consider 
briefly the effect of other choices of the basal friction coef- 
ficient • in Taiwan. 

The results are summarized in Figure 20, which shows the 
locus of values g and g• consistent with the overall surface 
slope • = 2.9 ø in the absence of cohesion, and those consistent 
with the step-up angle • = 13.3 ø for various indicated values 
of So. Any cohesive wedge capable of fitting the observed 
taper must lie between the noncohesive locus shown and the 
existence limit • = •. The range of values of • and • consis- 
tent with both the taper and step-up angle is indicated, 
roughly, by the stippled band. It is seen that regional rock 
strengths considerably lower than typical laboratory values 

cannot be eliminated solely on the basis of the field-scale ob- 
servations in Taiwan. In particular, the near coincidence of the 
two noncohesive loci in the interval • • 0.2-0.6 defines a 
family of low-strength solutions having So • 0 and • about 
20% greater than •. If •- 0.85, the shear traction on the 
basal decollement at a representative depth H- 10 km is 
Iz•l = 65 MPa; the lowest traction allowed by the data is on 
the other hand Iz•l • 15 MPa if • • 0.2. One final point to be 
noted is that the two conclusions • • 0.6 and So - 5-20 MPa 
are mutually dependent, since not only does the former imply 
the latter but vice versa. 

CONCLUSIONS 

A self-consistent theory for the mechanics of thin-skinned 
accretionary Coulomb wedges has been developed and ap- 
plied to the active fold-and-thrust belt of western Taiwan. Five 
wedge strength parameters, in addition to the decollement dip 
/• and wedge density p, characterize the state of stress in a 
critically tapered wedge' the internal and basal fluid-pressure 
ratios •. and •.•, the internal and basal coefficients of friction • 
and •, and the wedge cohesion So. In Taiwan, /•- 6 ø, 
p--2500 kg/m 3, and •.- •.•- 0.67 are measured quantities, 
and the remaining three parameters are constrained by two 
observations, namely, the overall taper of the mountain belt 
and the basal step-up angle of forward verging thrust faults 
near the toe. A model utilizing Byerlee's law • = 0.85 on the 
base and having # - 0.9-1.0 and So - 5-20 MPa in the wedge 
is in good agreement with these observations as well as with 
laboratory fracture strength data for shales and sandstones. 
On this basis we conclude that continued deformation of the 

Taiwan fold-and-thrust belt is resisted principally by the pres- 
ence of locked geological structures requiring fracture. The 
wedge is definitely not so pervasively fractured that frictional 
sliding governed by Byerlee's law is possible everywhere 
within it on surfaces of optimum orientation. If it were, so that 
#- • = 0.85 and So- 0, it would have an overall surface 
slope roughly twice a s steep and listric thrust faults stepping 
up from its base. Other solutions having proportionally lower 
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Fig. 20. Locus of possible wedge and basal strength conditions consistent with both average Taiwan taper and basal 
step-up angle. Models consistent with laboratory rock strengths occupy solid region. 

strengths, as low as #• • 0.2 and So • 0, are also compatible 
with the Taiwan data. What is best constrained is that the 

parameter # + So/pgl•, where //= (1- J.)H is the effective 
wedge thickness, must be about 20% greater than 
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