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Noncohesive Critical Coulomb Wedges' An Exact Solution 

F. A. D AHLEN 

Department of Geological and Geophysical Sciences, Princeton University, New Jersey 

Active fold-and-thrust belts or submarine accretionary complexes can be modeled as critically tapered 
wedges of material on the verge of Coulomb failure everywhere, overlying a basal decollement where 
frictional sliding is occurring. Ignoring cohesion, the four strength parameters needed to describe a 
critical Coulomb wedge are its internal and basal coefficients of friction # and #b and its internal and 
basal Hubbert-Rubey fluid pressure ratios 2 and 2b. An exact relation between surface slope • and basal 
dip/• of a noncohesive critical wedge with uniform properties is derived. The state of stress within such a 
wedge has the same orientation everywhere, and • is constant if/• is, and vice versa. A coefficient of 
internal friction # = 1.1 is consistent with the known surface slope, basal dip, and pore fluid pressures in 
the active fold-and-thrust belt of western Taiwan, assuming that Byerlee's law, #, = 0.85, is valid on the 
base. The wide variety of tectonic styles observed to occur along convergent margins, including subduc- 
tion erosion, active accretion, subduction without accretion, and even extension and normal faulting, 
may be controlled by relatively small spatial or temporal variations in either #, or 2,. 

INTRODUCTION 

This is the third in a series of papers in which fold-and- 
thrust belts and accretionary wedges along compressive plate 
boundaries are considered to be analogous to the wedges of 
deforming soil or snow that form in front of moving bulldo- 
zers. The essential premise is that an actively accreting wedge 
attains a critical taper, which corresponds to an internal state 
of stress on the verge of Coulomb failure everywhere. The 
shape of the critical taper is controlled by the coefficient of 
friction on the basal decollement and by the strength of the 
rocks composing the wedge: Increasing the basal friction in- 
creases the taper, whereas increasing the strength of the rocks 
decreases it. The geological relevance of this critical Coulomb 
wedge model is established by Davis et al. [1983], hereafter 
referred to as wedge 1. In their paper a simplified version of 
the essential theory, which ignores the presence of cohesion 
within the wedge, is described. A more systematic treatment, 
taking cohesion into account, is presented by Dahlen et al. 
[1984], hereafter called wedge II. 

Both wedge I and wedge II make use of a small-angle ap- 
proximation applicable only to wedges of narrow taper. In 
this paper it will be shown that, in fact, the case of a non- 
cohesive wedge of arbitrary taper is amenable to a remarkably 
simple exact analytical solution. By comparing this exact solu- 
tion with the results obtained earlier, it is shown that the 
small-angle approximation is rigorously justified in the ab- 
sence of cohesion for all thin-skinned wedges of geological 
interest. Although the exact solution cannot be extended to 
deal with a cohesive wedge, the small-angle approximation 
should be valid in that case as well, by implication. This justi- 
fication of the cohesive narrow-taper analysis in wedge II be- 
longs logically in wedge I, but unfortunately, it was only dis- 
covered in retrospect. 

THEORY 

Consider a submarine wedge with a planar upper surface 
that slopes at an angle •. Let p denote the density of the 
wedge material, and let Pw be the constant density of the 
overlying water. The case of a subaerial wedge can always be 
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recovered by setting p,• = 0 as in wedge I and wedge II. The 
exact result takes its simplest form in a system of Cartesian 
coordinates x, z aligned with the upper surface of the wedge, 
as shown in Figure 1. The equations of static equilibrium 
expressed in those coordinates are 

•x •xz 
•- + •- pg sin • = 0 (la) 

• + • + pg cos • = 0 (lb) 
where g is the constant acceleration of gravity. The boundary 
conditions on the upper surface of the wedge, z = 0, are 

ß x• = 0 a• = - p•gD (2) 

where D is the local water depth as shown. 
Let a• and a• denote the maximum and minimum principal 

stresses, and let • be the angle between a• and the x axis at 
any point in the wedge. The state of stress in a wedge lacking 
cohesion and on the verge of Coulomb failure must satisfy the 
local conditions 

}(a: - ex) = -ff• (3a) 
csc • sec 2• - 1 

- tan 2• • 
z= = (3b) 

csc • sec 2• - 1 

where • = tan • is the coe•cient of internal friction. The 
quantity • is the effective stress' 

e• = % + p• (4) 

where p• is the pore fluid pressure. Since p• = p•gD on z = 0, 
boundary conditions (2) may be rewritten in terms of the ef- 
fective stress as 

•== e•=0 (5) 

As in wedge I and wedge II, it is convenient to introduce 
generalized Hubbert-Rubey fluid pressure ratio/t, defined by 

Ps- pwgD (6) 
I*1- pwgD 

Attention will henceforth be restricted to a wedge with uni- 
form properties, i.e., one for which p, #, and/t are constant. 
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Fig. 1. Cross-sectional sketch of a submarine noncohesive critical 

wedge showing the Cartesian coordinates x, z and the angles •,/•, q•o, 
and q%. Strength in the wedge is proportional to the effective stress ffz, 
shown schematically by the shaded area on the right. 

In general, as illustrated in wedge II, the orientation of the 
principal stresses can be expected to vary from place to place 
within a critical Coulomb wedge. We will now show, however, 
that if the wedge is uniform and noncohesive, the orientation 
is everywhere the same, i.e.; •p = •Po, a constant. It is this 
simplifying feature that makes an exact treatment of the prob- 
lem possible. In fact, it is easily verified by substitution that 
equations (1), (3), and (5) are satisfied by 

provided 

if: = --(1 -- ,•)pgz cos 0• (7a) 

:,,: = (p -- pw)gZ sin 0• (7b) 

tan 2q•ø (1 •__-P•/P,) tan 0t (8) csc qo sec 2½0- 1 

Equation (8), which gives the stress orientation angle ½o im- 
plicitly in terms of 0•, can alternatively be written in the ex- 
plicit form 

½o = ,}arcsin (sin \sin ;) - «0( (9) 
where 0( is a modified slope angle defined by 

0( = arctan [(1 •_p•/p.)tan 0•] (10) 
If a wedge is both dry and subaerial, so that 2 = 0 and p,• = 0, 
then 0(= 0•. In verifying that the effective state of stress is 
given by (7), use has been made of the relation dD/dx = 
-sin 

Having established that a state of stress characterized by 
½ = ½o is consistent with the equilibrium equations, the fail- 
ure criterion, and the upper boundary conditions, all that re- 
mains is to examine the conditions on the base. The traction 

% acting to resist basal sliding is assumed to be governed by a 
coefficient of friction t¾ = tan % and a basal pore fluid pres- 
sure pœ•, i.e.; 

:•, = - tt•(a. + ps b) (11) 
where a. is the basal normal traction. Both t¾ and the basal 
fluid pressure ratio defined by 

,,1,•, = p /' - p wg D (12) 
I*=1- P wg D 

are assumed to be constant. The introduction of two separate 
parameters • and •0 allows for the possibility that the pore 
fluid pressure may experience a sudden change across the 
basal decollement, as shown in Figure 1. If an effective coef- 
ficient of basal friction,/%' = tan %', is defined by 

/z•' =/z•(11 -- ;t;) (13) 

basal boundary condition (11) may be rewritten more suc- 
cinctly as 

rb = --,%'d. (14) 

where d, = a. + pœ is the effective stress just above the basal 
decollement. In general, for a critical wedge to exist, its base 
must be a zone of weakness or at least no stronger than the 
interior, i.e., 

0 </h,' </• (15) 

Let/? denote the dip of the basal decollement. The effective 
basal tractions can be expressed in the adopted x, z coordinate 
system as 

% = «(a• - ax) sin 2(0• + fl) + rx• cos 2(0• + fl) (16a) 

t•n -- (•z -- Txz sin 2(0• +/•) -- «(az -- ax)[1 -- cos 2(0• +/•)] 

(16b) 

When equations (16) are inserted into boundary condition 
(14), it is found that the latter is equivalent to 

= - ½o 

where 

tan 
= u•' (•8) 

csc rp sec 2•p•- 1 

Equation (18), which defines angle ½b implicitly, may alter- 
natively be written in the explicit form 

(sin%') • , q% = « arcsin \ sin rp -:(p•, (19) 
Equation (17) is the exact critical taper equation for a non- 

cohesive Coulomb wedge. It defines basal dip/? for a wedge of 
given surface slope 0• and given properties p, It, 2,/zb, and 2•. 
Note that /? is a constant independent of x and z; this was 
never assumed, nor was it guaranteed at the outset. We began 
by considering a wedge of constant surface slope 0•, found the 
unique state of critical stress (7) within it, and then inferred 
that a constant decollement dip /? was consistent with basal 
boundary condition (14). Every critical noncohesive wedge 
with uniform properties thus has a regular triangular cross 
section with a planar top and bottom and uniformly oriented 
slip lines within it. The artifice of showing that the constancy 
of 0• implies that of/? rather than vice versa has been employed 
only for mathematical convenience. From a physical point of 
view the decollement dip is a more fundamental quantity, 
which together with the material properties determines the 
surface slope. 

Critical taper equation (17) has a simple geometrical inter- 
pretation, which is illustrated in Figure 1. As shown in wedge 
I, the quantity ½• defined in (19) is the angle between a• and 
the base. Equation (17) is thus nothing more than the relation- 
ship between any two internal angles of a triangle and the 
opposite external angle. 

Insertion of the critical taper equation back into equation 
(16a) leads to a simple expression for basal shear traction 
namely, 

(20) %=(p-pw)gZ sin 
The term (p - pw)gZ sin 0• has been employed (with Pw = 0) in 
glaciology for at least three decades to estimate the traction 
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acting on the bed of a glacier [Orowan, 1949], and it has been 
used by Elliott [1976] to estimate the traction at the base of a 
wedge-shaped thrust sheet. For a noncohesive wedge on the 
verge of Coulomb failure everywhere this familiar "glacier for- 
mula" must be multiplied by an additional factor sin 2•0/sin 
2½0, as shown by (20). 

Because angles 0c,/•, and •o are all constant, every critical 
noncohesive wedge is self-similar in the sense that a magnified 
version of any portion near the toe is indistinguishable from 
the wedge itself. This property is a consequence of the lack of 
any inherent length scale in the equations of static equilibrium 
and the failure equations. A cohesive wedge has on the other 
hand a natural length scale given by So/pg, where So is the 
cohesive strength. Because of this a critical cohesive wedge 
with uniform properties is not self-similar but rather has a 
surface slope 0c that increases away from the toe if/• is con- 
stant. A seemingly peculiar aspect of the state of stress in a 
noncohesive wedge is the nonalignment of a• and a3 with the 
upper surface. This, however, is allowed since the difference 
a•- a3 actually vanishes along z = 0 because the material 
there is devoid of strength. If there is any cohesion so that the 
material along the upper surface can sustain a nonzero devia- 
toric effective stress, then a• and a3 must become aligned with 
the free surface to satisfy the boundary conditions. This align- 
ment is accomplished through the presence of an upper cohe- 
sive boundary layer, as discussed in wedge II. The thickness c• 
of this boundary layer is related to the cohesive length scale 
by c5 • So/I#(1 - l)pg]. The variation of ½ within the bound- 
ary layer and the consequent curvature of both the slip lines 
and the surface topographic profile both make it impossible to 
obtain an exact analytical solution if cohesion is present. 

APPLICATION TO TAIWAN AND OTHER AREAS 

As documented in wedge I, the active fold-and-thrust belt of 
western Taiwan is characterized by the parameters 
0c=2.9 ø+0.3 ø , /•=6 ø_+1 ø, and 2=2o=0.67+0.05. The 
corresponding theoretical relationship (17) between 0c and /• 
for various values of # is shown in Figure 2, assuming that 
Byerlee's law, #0--0.85, is applicable on the base. The box 
represents the observed geometry of the Taiwan thrust belt, 
and the shaded bands correspond to the uncertainty in the 
measured pore fluid pressure ratio. The best fitting value of 
the internal friction is #- 1.1. A slightly lower value was 
inferred using the approximate theory in wedge I, namely, 
#- 1.03. The difference between 1.1 and 1.03 is 6%, which is 
not an unreasonable error for an approximation that treats a 

HIGHER INTRINSIC WEDGE STRENGTH 

'.:.•-.•:½•:•.•.::•½.:..::...... IIb = O. 85 
•:•:•ii!iii!"'•:':'•'•:•:• ............ • = • = 0.6 • • 0.05 

• 10• 

o 

ß 5 

0 • 
0 • 5 • 10 ø 15 ø 2 0 • [5 • 

b•s•l dip •ngle • 

Fig. 2. Surface slope • versus basal dip fl for Taiwan pore fluid 
pressure conditions. Best fitting coefficient of internal friction is 
• = 1.1 if • = 0.85. 

15ø I ' • [ • HIGHER BASAL FLUID PRESSURE 
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'• •.• •b = 0.67 

6 0' 
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Fig. 3. Possible Taiwan solutions having • = • and a higher pore 
fluid pressure on the basal decollement. 

taper of 0c +/• = 8.9 ø as a small angle. The conclusion is un- 
changed that a higher intrinsic wedge strength is required to 
satisfy the Taiwan observations if #0 = 0.85 and 1 = 10. In 
wedge II it is shown that cohesion contributes substantially to 
this higher wedge strength; the value inferred there from the 
observed step-up angles of forward verging thrust faults, So = 
5-20 MPa, is consistent with laboratory measurements of 
shale and sandstone fracture strengths. 

An alternative to a higher intrinsic wedge strength, which is 
also consistent with the observed geometry of the wedge in 
Taiwan, is a higher basal fluid pressure. Since direct fluid 
pressure information from wells intersecting the basal decolle- 
ment is only available in the foothills very near the defor- 
mation front, this possibility cannot be completely eliminated. 
Figure 3 shows the theoretical relation between 0c and/•, as- 
suming that # = #0 = 0.85 and 1 = 0.67 for various values of 
10; Taiwan is again represented by the box. A value )t0 - 0.76, 
which is 16% higher than 1- 0.67, is seen to be consistent 
with the data. In this interpretation the Taiwan wedge is frac- 
tured so pervasively that frictional sliding governed by By- 
erlee's law is possible on surfaces of optimum orientation 
everywhere within it, and the lower strength of the base is due 
to the increased overpressure. 

It is frequently argued that Byerlee's law may not be appli- 
cable in modeling large-scale faults or fault zones either be- 
cause of the presence of clay-rich gouges or possibly for other 
reasons. Figure 4 shows a number of other possible combi- 
nations of #0 and # in addition to #0 = 0.85 and # - 1.1 that 
are consistent with the Taiwan wedge geometry, assuming that 
1 = )t0- 0.67. As already noted in wedge I and wedge II, the 
coefficient of basal friction may be as low as #0 = 0.2. 

LOWER COEFFICIENT OF BASAL FRICTION 

c• h = hb= 0.67 
• •t b = 0.85; •. = 1.10 

• •...•//" Pb=0.6; JJ. =0.83 • 5ø-L -'--,,.• .• / [zb= 0.35; . = 0.49 

0ø• , 
0 ø 5 ø 10 ø 5 ø 

basal dip angle I• 

Fig. 4. Possible Taiwan solutions if the assumption is relaxed 
that Byedee's law is valid on the decollement. The geometry is consis- 
tent with a coefficient of basal friction as low as #• - 0.2. 
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Fig. 5. Surface slope cz versus basal dip fi for various values of/1. =/1,, using the nominal values of # and #b found in 

Taiwan. Boxes indicate observed geometries of several active wedges, allowing pore fluid pressure ratios within them to be 
inferred; the inferred values are all in excess of hydrostatic, /1. =/1, = 0.4. 

By adopting the nominal values #•- 0.85 and # = 1.1 
found in Taiwan, we can infer the fluid pressure ratios ,• = ,•t, 
for other active accretionary wedges from their observed ge- 
ometries. The values so inferred are essentially identical to 
those found earlier using the approximate theory; this is ap- 
parent upon comparing Figure 5 with Figure 17 of wedge I. 
Whereas the approximate theory predicts a linear relationship 
between • and fi for fixed values of the strength parameters, 
the exact relationship exhibits a slight curvature which is more 
pronounced when #t, • #, as seen in Figures 2-5. The theoreti- 
cally inferred values of •. = •.t, are all overpressured and in 
good agreement with nearby fragmentary well data, as noted 
earlier in wedge I. 

The quantity sin 2•t,/sin 2•0, which appears in the formula 
for basal shear traction •t,, is plotted versus fi for #t, = 0.85, 
# = 1.1, and •. = •.t, in Figure 6. The inferred value of this 
parameter for most wedges is considerably in excess of unity; 
in Taiwan, where the geometry and fluid pressures are best 
constrained, the best fitting value is sin 2•t,/sin 2•0 = 6.7. 
Uncritical use of the uncorrected glacier formula to estimate 
whether •t, or the apparent coefficient of friction on the basal 
decollement [McCarthy et al., 1983] will in general lead to 
values that are biased too low. 

STABLE VERSUS UNSTABLE WEDGES 

There is a simple graphical construction that may be used 
to determine particular solutions to the exact critical wedge 
equations (9,), (17), and (19). Let F(q/) denote the function 

tan 2q/ 
F(•) = (21) 

csc (p sec 2•- 1 

shown plotted for the case # = 1.1 in Figure 7. In general, F(•) 
exhibits a maximum and minimum at • = _+_[0t/4)- ((p/2)], 
where it attains the values _+# as shown. The critical taper 
• + • is given by •t, - •0, where F(•t,) = Pt,' and F(•0) = tan 
•'. For every #t,' in the range 0 _< #t,' < # there are two inter- 
sections with F(•) and thus two possible values of •t, in the 
range 0 _< •t, _< •t/2; for #t,' - # there is a single intersection at 
the maximum •t, = 0t/4)- ((p/2), and for #t,'> # the wedge 
existence limit is exceeded, so no solutions are possible. The 
labels A and B show the correspondence between the intersec- 
tions of #t,' with F(•) and the intersections of the line having 
slope #t,' with the M ohr circle representation of the basal 
stress state. The complete family of critical tapers • + • con- 
sists of two distinct branches, one associated with each of the 
two values of •t,; all the solutions discussed in this paper so 

,o ,u..,;,., ' /'///'/// I ,o] ' ' ' "' ,,:o.,, ,y/l//// "='" / / /I 
. ø"o.,'/// ß • o.• • / FJ•Z / / / 1 

2 •b = 0.85 
• •:1.1 

o• , , • o,• 
basal dip angle • basal dip angle • 

•i•. 6. Plot o• the •lade• formula co•e•tJon factor sin 2•/sin 2•o w•sus • fo• wfious values of • = •. •o• most of the 
actJw wedges shown Jn •J•u•e 5 the •actot lies Jn the •an•e 3-8. 
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-o.-o 

p =1.1 

=,, 

•- a.+ •-•. 

'n'/2 

-TT/2 

-'rr/2 0 'rr •2 

stress orientation angle • 

Fig. 7. Mohr diagram illustrating the state of stress at the base of the wedge and graph of F(q•) showing the angles q•o, 
q•0, and • +/L There are two tapers for every permissible value of tan •', one associated with each of the two possible 
angles 

far have been for the narrower of these two possible tapers, 
corresponding to intersection A. The existence of two 
branches of tapers having different basal stress orientations is 
not entirely unexpected since a similar situation has been 
noted by Nye [1951] in a theoretical discussion of the plastic 
flow of glaciers. 

It is also evident from the graphical construction that there 
is a maximum possib!e surface slope, independent of the basal 
conditions, given by •Zmax' = .•0 or 

•Zma x = arctan '1 - •-w•' (22) 
The corresponding value of •Po when •z = •Zma x is q]O = (•/4) 
-(q•/2). Since failure occurs along surfaces oriented at angles 
+_ [(n/4) - (•/2)-I with respect to •, the surface of a maximally 
steep wedge is a slip face. If the wedge is dry and subaerial, so 
that 2 = 0 and Pw = 0, the maximum surface slope angle is the 
classical angle of repose, •Zma x = Cp. Equation (22) is the gener- 
alization of this familiar result to a submarine slope having a 
nonzero pore fluid pressure pœ. 

To illustrate the features just discussed, consider a simple 
example, having Pw = 0, 9• = •.b = 0, and q• = 30 ø. These pa- 
rameters are approximate for a subaerial wedge composed of 

dry sand, as in the laboratory experiments described in wedge 
I. The theoretical relation between •z and/5 for such a wedge is 
shown in Figure 8 for various values of the basal friction angle 
%; all possible solutions having both the surface slope and 
basal dip positive are represented. The existence of a maxi- 
mum surface slope at the angle of respose is evident, as is the 
existence of two branches of tapers for every % < •. The two 
branches merge and become identical in the limit %-• cp. The 
laboratory experiments described in wedge I were all carried 
out in a small region of the lower left corner of the plot, 
roughly along the segment having q% = 15 ø. 

More generally, it is not necessary to restrict the angles •z 
and/5 to being positive. The only essential restriction is that to 
be physically meaningful, the taper must be in the range 
0 _< •z +/• <_ n. The complete family of critical dry sand 
wedges having basal dips/5 _< n/2 is shown in Figure 9 for the 
case % = 10 ø. Additional solutions having /? > n/2 exist as 
well, but they are associated with a normal rather than a 
reverse sense of drag on the basal decollement. Such solutions 
will not be considered in this paper, although they may be of 
interest in modeling the low-angle detachment structures in 
the Basin and Range Province of the western United States 
[Wernicke, 1981; Allmendinger et al., 1983]. Cross sections of 

40 ø I I I ! I I I I 

DRY SAND WEDGE X= Xb=O 

• 30 ø angle of repose q)=30 ø 

• "• 15 ø 10 ø 5 ø q)b Oø o o o 2 

• 10 ø 
'• 25 ø 200 

0 ø 
0 o 10 ø 20 ø 30 ø 40 ø 50ø 60 ø 70 ø 80ø 90 ø 

basal dip angle ½ 
Fig. 8. Surface slope • versus basal dip/• for dry sand wedges, showing the angle of repose 0•ma , = ½ and the two possible 

branches of critical tapers. 



10,130 DAHLEN: NONCOHESIVE CRITICAL COULOMB WEDGES 

_10 ø 0 ø 10 ø 20 ø 30 ø 40 ø 50 ø 60 ø 70 ø 80 ø 90 ø -30 ø 0 o 30 ø 60 ø 90 ø 

basal dip angle [• basal dip angle /• 
Fig. 9. Diagram showing stable and unstable regions of dry sand Fig. 11. Stability diagrams for critical dry sand wedges having 

wedges having ½ = 30 ø and ½b = 10 ø. Critical wedges labeled 1-8 are various basal friction angles, showing shrinking of stable region as <pb 
depicted in Figure 10. approaches ½. 

several critical dry sand wedges at various points on each of 
the two branches are illustrated in Figure 10; the slip lines 
which are oriented at ___ 30 ø to c: are in each case displayed. 
Th:• ' locus of critical wedges, by definition, separates wedges 
that are stable from those that are unstable. The latter occupy 
the shaded portion of the stability diagram in Figure 9. 
Wedges in regions I and III fail by thrusting or by a combi- 
nation of thrusting and normal faulting because the frictional 
traction on their bases i•s too great. The resulting deformation 
acts to increase the taper of wedges in region I and to decrease 
it in region III. Wedges in regions II and IV are, on the other 
hand, unstable because the friction on their bases is too weak. 
They fail in both instances by normal faulting, decreasing their 
taper in region II and increasing it in region IV. The mode of 
deformation in region II is gravity spreading, similar to the 

flow of an accumulating glacier in the direction of its surface 
slope regardless of the attitude of its base [Paterson, 1969]. 
Any wedge in the unshaded interior portion of the stability 
diagram is stable as long as the basal friction is unchanged. 
An increase in the amount of basal friction causes regions I 
and III to grow in size and regions II•and IV to diminish, as 
illustrated in Figure 11. The Stable region shrinks to a narrow 
sliver and ultimately disappears as the dry wedge existence 
limit #b -- # is approached. 

EFFECT OF BASAL FRICTION ON TECTONIC STYLE 

Recent geophysical investigations and drilling conducted 
along convergent plate boundaries have revealed a wide vari- 
ety of tectonic processes at work there. Active accretion and 
imbricate thrusting, as postulated in early trench slope models 

EXAMPLES OF CRITICAL DRY SAND WEDGES 

1. normal faulting and 
downslope flow 

24 

horizontal base 

5. accretionary wedge fails 
by thrusting 

horizontal free surface.• 

2. surface at angle of 
repose 

slip face-, 

15' 

6. combined normal and 

thrusl faulting 

3. combined normal and 4. thrust faulting 

thrust faulting 

,,,-horizontal free surface 
.::.ii: !::?::?:'•. ?:./:!?: i::?: ====================== 

7. surface at angle 
of repose 8. normal faulting 

80 ø :::i.:" i: •['""-•'•: ...... 80 • 
Fig. 10. Cross sections of critical dry sand wedges having (p = 30 ø and (Pb = 10ø' Labels 1-8 correspond to points in 

stability diagram shown in Figure 9. Angle between slip lines is 90 ø - (p = 60 ø. 
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Fig. 12. Surface slope cz versus basal dip /• for submarine wedges having 9• = 0.8. As 9• is increased, a hypothetical 

wedge, shown by squares, first enters the stable regime and then the unstable extensional regime. These three states in the 
history of the wedge are depicted in Figure 13. 

[Seely et al., 1974; Karig and Sharman, 1975], are definitely 
occuring in many regions, such as along the Barbados Ridge 
[Westbrook et al., 1983; Moore et al., 1982a] and off southern 
Mexico [Moore et al., 1982b]. Sediment subduction without 
accretion is, however, occuring along other margins, such as 
the Japan Trench [von Huene et al., 1982] and the Mid- 
America Trench off Guatemala Iron Huene et al., !980]. 
Normal faults at the base of the inner trench slope and other 
evidence of extension in the forearc have also been observed in 

both these localities [Karig et al., 1983; Aubouin et al., 1982]. 
Finally, subduction erosion, or removal of material from the 
base of the wedge, has been suggested as the explanation for 
the observed large-scale Neogene subsidence off Japan Iron 
Huene et al., 1982] as well as for the notable lack of any 
accreted sediments in the Mariana Trench [Hussong and 
Uyeda, 1981]. It is generally accepted that these variations in 
the style of tectonism must be the consequence of variations in 
the degree of frictional coupling between the subducting and 
overriding plates. The critical Coulomb wedge theory devel- 
oped here can be used to make this idea more precise. In fact, 
relatively small variations in the amount of basal friction can 
easily account for all the variations in behavior that are ob- 
served. 

This will be illustrated with two hypothetical scenarios, 
which show what can transpire in the history of a typical 
overpressured submarine wedge. Initially, the wedge is pre- 
sumed to be critical and actively •ccreting, with parameters 
p=2.5 g/cm 3, #b=0-85, #=1.1, /1=;t b=0.8, •=4 ¸ , •Po= 
2.1 ̧, and/• = 4.2 ̧. Consider the effect of a variation in basal 
pore fluid pressure ratio /lb, keeping p, #b, #, /1, and /• fixed. 
Such a change might, for example, be produced by a change in 
the character of the incoming sediments on the subducting 
plate. A decrease in #• will produce the same effect as an 
increase in /1•, and vice versa, since theoretically they occur 
only in the combination #•(1-/1•). Frequent variations in 
either/lb or #• are more likely to occur along margins where 
the rate of subduction of the underlying plate is relatively 
rapid. 

The effect of a reduction in friction due to an increase in/1• 
is illustrated in Figures 12 and 13. A moderate increase up to 
/1• = 0.9 reduces the critical surface slope for/• = 4.2 ̧ to near 

zero, and the wedge becomes supercritical and stable; subduc- 
tion without accretion can then occur. A more drastic increase 

up to/1• = 0.98 lowers the second critical branch of the stabili- 
ty diagram enough for the wedge to be on the .verge of exten- 
sional failure. The principal compressive stress a• is in that 
case nearly vertical, ½0 = 76ø, and steeply dipping normal 
faults may be initiated as shown. If/lb continues to increase 
even further, the wedge will thin and subside by gravity 
spreading. 

Figures 14 and 15 illustrate the opposite effect, that is, of an 
increase in basal friction due to a decrease in/1•. A relatively 
slight decrease down to /1• = 0.76 increases the critical taper 
substantially, leading to increased deformation'and steepening 
of the surface slope. A further decrease down [o /1• = 0.74 is 
sufficient to bring the wedge to the verge of the existence limit 
#•(1 -/lb) = #(1 -/l). If/1• decreases beyon d this limit, a new 
decollement must be formed up in the wedge for subduction to 

critical cOmpress•ve -'-" .__.. ........ :':::iii!::!i 
wedge 

thrust faulting 

supercritical wed ge --• ................... ; ......................... 
subduction without accretion 

wedge 
normal faulting 

Fig. 13. Cross sections of the hypothetical wedge in Figure 12. 
The shape of the wedge remains the same, but the tectonic style 
changes as the basal pore fluid pressure ratio is first raised to ;•, = 0.9 
and then to 9• = 0.98. Angle between slip lines is 90 ø - ½ = 42.3 ø. 
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Fig. 14. As 40 is decreased, a hypothetical wedge increases its critical taper until #0(1 - 40) = #(1 - •), at which point the 
region of stability vanishes. The three states of the wedge corresponding to the squares are depicted in Figure 15. 

continue. One set of slip lines is parallel to the base in a wedge 
whose basal and interior strengths are equal since •b = (n/4) 
-(q9/2), and this will be the preferred attitude of any new 

decollement. The precise location of the decollement will be 
governed by preexisting weaknesses, but the net result will 
always be basal erosion. 

In summary, the variations of basal friction required to ex- 
plain the range of tectonic processes observed along conver- 
gent margins are geologically reasonable. The hierarchy of 
processes going from high friction to low includes subduction 
erosion, accretion and imbricate thrusting, subduction without 
accretion, and extension and normal faulting. In the above 
hypothetical example, variations of the basal pore fluid pres- 
sure ratio in the range lb = 0.74--0.98 can account for all of 
these. 

A=Ab= 0.8 •n•t•al critical 

wedge 

steepens •: 
.. 

b ' ....::i:•: 

• possible new 
decollements 

Fig. 15. Cross sections of the steepening hypothetical wedge in 
Figure 14. When #0(1- 9•0)= #(1- 4), a new decollement must be 
formed, preferentially along one of the slip lines parallel to the base. 
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