QAGU

Journal of Geophysical Research: Solid Earth

RESEARCH ARTICLE
10.1002/2014JB011612

Key Points:

« Generalization of the critical Coulomb
wedge (CCW) theory by limit analysis

« Constrain mechanical properties and
overpressures in North Chile

« Provide the exact CCW solution in
two appendices

Supporting Information:
« Text S1

Correspondence to:
X. P. Yuan,
xyuan@geologie.ens.fr

Citation:

Yuan, X. P, Y. M. Leroy, and B. Maillot
(2015), Tectonic and gravity
extensional collapses in overpressured
cohesive and frictional wedges,

J. Geophys. Res. Solid Earth, 120,
doi:10.1002/2014JB011612.

Received 18 SEP 2014
Accepted 13 JAN 2015
Accepted article online 18 JAN 2015

Tectonic and gravity extensional collapses in overpressured
cohesive and frictional wedges

X.P.Yuan', Y. M. Leroy'2, and B. Maillot?

TLaboratoire de Géologie, UMR 8538, CNRS, Ecole Normale Supérieure, Paris, France, 2Now at Total, CSTJF, Pau, France,
3Laboratoire GEC, Université de Cergy-Pontoise, Cergy-Pontoise, France

Abstract Two modes of extensional collapse in a cohesive and frictional wedge of arbitrary topography,
finite extent, and resting on an inclined weak décollement are examined by analytical means. The first mode
consists of the gravitational collapse by the action of a half-graben, rooting on the décollement and pushing
seaward the frontal part of the wedge. The second mode results from the tectonics extension at the back
wall with a similar half-graben kinematics and the landward sliding of the rear part of the wedge. The
predictions of the maximum strength theorem, equivalent to the kinematic approach of limit analysis and
based on these two collapse mechanisms, not only match exactly the solutions of the critical Coulomb
wedge theory, once properly amended, but generalizes them in several aspects: wedge of finite size,
composed of cohesive material and of arbitrary topography. This generalization is advantageous to progress
in our understanding of many laboratory experiments and field cases. For example, it is claimed from
analytical results validated by experiments that the stability transition for a cohesive, triangular wedge
occurs with the activation of the maximum length of the décollement. It is shown that the details of the
topography, for the particular example of the Mejillones peninsula (North Chile) is, however, responsible for
the selection of a short length-scale, dynamic instability corresponding to a frontal gravitational instability.
A reasonable amount of cohesion is sufficient for the pressures proposed in the literature to correspond to a
stability transition and not with a dynamically unstable state.

1. Introduction

The kinematic approach of limit analysis, also called the maximum strength theorem (MST) [Maillot and
Leroy, 2006] for compressional deformation in fluid-saturated porous media [Pons and Leroy, 2012], is
extended to the extensional context. The objective of this work is to propose this simple method to analyze
the gravity and tectonic extensional deformation modes occurring in overpressured frictional wedges
extending the stability conditions presented by Dahlen [1984] and Xiao et al. [1991] to arbitrary-shaped
topography and cohesive materials.

Two kinds of collapse modes, combinations of normal faults and axial surfaces, typical of tectonics areas

in extension are considered. For example, the Schell Creek range, Nevada, presents a collapse mechanism
composed of a normal fault and an axial surface, both rooting on a weak décollement. This asymmetric
collapse mode is referred to as a half-graben [Groshong, 1989]. It is a mechanical instability that typically
results from excessive sedimentation and/or weakening of a detachment horizon as seen in river deltas
[MandlI and Crans, 1981] or in the shallow portion of the convergent margin off Antofagasta [Delouis

et al., 1998; von Huene and Ranero, 2003; Sallarés and Ranero, 2005]. This gravitational collapse is the first
mechanism to be studied in this contribution in the context of fluid-saturated wedges. The second mode of
instability is due to a regional extensional tectonic event (e.g., Brazos Ridge fault, offshore Texas [Xiao et al.,
1991; Withjack et al., 1995]). This second mode which is also based on the half-graben kinematics described
above is referred to as a tectonic extensional collapse.

Sandbox analogue experiments have been proposed to validate the field interpretation either at the
subduction scale [Xiao and Suppe, 1992] or on the length scale of the half-graben which could structure
a hydrocarbon reservoir [Patton, 2005]. Recently, an impressive effort has been conducted to create
analogue experiments with fluid overpressure by controlling the air flow through the base [Mourgues and
Cobbold, 2003; Mourgues et al., 2009; Lacoste et al., 2012]. Such developments bring us one step closer to
the conditions found in sedimentary basins and accretionary wedges. They call for new theoretical
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developments to capture the onset and the evolution of failure in overpressured materials. This is an
important motivation for the present work.

Most of our theoretical understanding is based on the critical Coulomb wedge (CCW) theory [Davis et al.,
1983] first proposed for compressional wedges. Dahlen [1984] introduces extensional conditions which are
pertinent to our gravitational collapse mode. The work of Xiao et al. [1991] further generalizes the CCW
theory by reversing the sense of slip on the décollement which corresponds to our tectonic collapse mode.
The solution in the last two references is nevertheless approximate in the sense that its validity is limited to
low topographic slopes and pore pressures. It is only recently that the CCW theory was amended by Wang
et al. [2006] to produce an exact solution (called the exact critical Coulomb wedge (ECCW) theory in this
contribution) that was applied to sandbox experiments [Mourgues et al., 2014].

This contribution contents are as follows: Next section is concerned with the general stability conditions for
a wedge of arbitrary topography and composed of a cohesive, frictional material. The stability conditions
are specialized in section 3 for our gravitational instability mode. The special case of a triangular wedge
composed of a cohesionless material is then proposed preparing the grounds for the successful comparison
with the ECCW theory. The two challenges of this comparison are first to make sure that our parametriza-
tion of the pressure ratio is identical to the one proposed by Dahlen [1984] (see Appendix A) and second to
complement the modification proposed by Wang et al. [2006] to obtain the exact implicit solution (ECCW)
(see Appendix B). For the case of cohesive materials and a triangular wedge, it is found that the stability
transition is associated with the gravitational collapse along the maximum possible décollement length.
This claim is validated by comparing our predictions with the results of a series of experiments with sand
and plaster, the proportion of the later material controlling the overall cohesion. Section 4 sees the appli-
cation of the general stability conditions to tectonic collapse. The comparison with the ECCW theory is
then presented before the MST is applied to the sandbox experiments of Xiao et al. [1991]. It is shown that
our approach not only captures the onset of collapse but also predicts the evolution of the deformation
style during the retreat of the vertical wall. To show the versatility of our method, section 5 is proposed to
analyze the stability conditions of the active margin off Antofagasta in North Chile [von Huene and Ranero,
2003; Sallarés and Ranero, 2005]. It is shown that the pressure conditions proposed in von Huene and Ranero
[2003] imply a dynamically unstable state, unless some bulk cohesion is introduced. At 5 MPa bulk cohe-
sion, the wedge is in a stable mode, very near quasi-static instability. This stability transition is consistent
with the quasi-static topographic evolution responsible for the debris flow toward the subduction channel
[Delouis et al., 1998].

2. Limit Analysis for Extension

The objective of this section is to present the theory used throughout this contribution and, in particular, to
define the concept of collapse mechanism.

2.1. Prototype and Collapse Mechanisms

The geometry of our prototype and of the collapse mechanism is presented in Figure 1. It consists of a
wedge of arbitrary topography and of a triangular-like shape resting on a straight décollement (AB) inclined
at an angle g (positive if dipping landward as in Figure 1b;  is the absolute value of f). The two collapse
mechanisms in Figures 1a and 1b consist of a normal fault bounding a half-graben (HG). Material within the
HG is sliding on the normal fault (solid segments, JH and GE dipping at y), and part of this material is crossing
the conjugate shear plane (dotted segments, JI and GF, dipping at ). This material flux results in the push
of the frontal section (labeled FS for frontal and seaward) or of the back region (labeled BL for back and
landward), as in Figures 1a and 1b, respectively. In the former case, the collapse is purely gravitational, and
in the latter case it is due to the retreat of the back wall (AC), boundary of the wedge and the collided plate,
because of a tectonic extension. Note that in Figure 1b, the large arrow indicates the sense of compression.
In the tectonic extension case, the force Q, will often be compressive, but not necessarily.

The rest of this section presents the theory necessary to decide on the position of the collapse mechanism
(points G or J) and the dip of the normal fault and the shear plane. The position of the three points EFG or
HLlJ define entirely the collapse mechanism referred to as the gravitational (Figure 1a) and the tectonic mode
(Figure 1b), respectively.
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) 2.2, Theorem of Effective

4 Virtual Powers
This theorem is the weak form (integral)
of the equation of motion and was
presented in Pons and Leroy [2012]
except for the introduction of inertia:

a ) L —
Landward Seaward
C—

b) - | péxt(l'—/) — pi,nt(L—/) = pacc(g) v L_/ KA(”
Qe T

"""""""" a This theorem is constructed in the
supporting information for the sake

of completeness. It states the equality
between the acceleration power and the
difference between the effective external
and internal powers for any kinematically
admissible (KA) velocity field denoted

Back-wall

Figure 1. Definition of the two collapse modes: (a) the gravity collapse
mode relies on a half-graben (HG) with seaward slip of the frontal
section (labeled FS for front and seaward) on the décollement; (b) the N .
tectonic collapse mode has a similar kinematics with slip of the back U.The set of KA fields does not contain
region (labeled BL for back and landward) associated to the landward just the exact, unknown velocity field
slip of the HG along the normal fault GE. The distance D(x) defines the but comprises any field consistent with
depth of the submerged domain over any material point located by the

the boundary conditions of our problem.
vector x.

It includes also the piecewise uniform
velocity fields U associated to the kine-
matics of the two collapse mechanisms
described above.

The effective external power is defined by

Pe’xt(g)=/ Id-QdS+/ pg-gdv+/ pdivgdv+/ psn-Jds. )
Qf Q = Q

t Zy

The first term is the force per unit area Id applied on 0Q/, part of the wedge boundary (for example, the
sea fluid pressure over the topography BC). The second term is the power of the gravity field (p is the
fluid-saturated volumetric mass and g the gravity acceleration vector) in the domain occupied by the wedge
(Q,) (Figure 1). The last two terms in (_2) correspond to the power of the velocity field Q on the fluid pres-
sure, seen as an external field, either in the bulk or within any velocity discontinuity Q) along a surface of
normal n. These velocity discontinuities are found across the normal fault, the shear plane, the activated
part of the décollement and possibly at the contact with the back wall. All these surfaces are grouped in
the set £ ;. Note in (2) that the pressure p in the bulk could be different from the pressure py found in the
discontinuities. No attempt is made to justify the origins and how such pressure discontinuities are
maintained in time.

The effective internal power introduced in (1) reads

pi'm(U)=/ o adv+/ T, -Jds, 3)
- Q= = sy -
and corresponds to the effective stress tensor ¢’ multiplied by the rate of deformation tensor Q (computed

from the virtual velocity field Q) and to the effective stress vector T’ times the velocity jump across the
surfaces in the set Z;,. All the velocity fields considered herein will be piecewise continuous so that only
discontinuities will contribute to the effective internal power.

The acceleration power in (1) is

pacc(g)z/ pg-QdV, (4)
Q

t

with a denoting the acceleration field. Note that the sign of this power depends on the orientation of the
velocity field with respect to the acceleration.
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To complement these definitions, we need to introduce the effective stress carried by the solid phase of our
fluid-saturated continuum

!/

1

=ao+ps, ®)
where § is the identity tensor, as well as the effective stress vector on any surface
I'=T+pn, (6)

oriented by its normal n.

The last ingredient required to complete this section is the parametrization of the pressure field. The
proposition of Hubbert and Rubey [1959] is adopted here with the following fluid pressure ratio:

00 = p() = prgD(x)

X) = —m with  6(x) = pg(x, + D(X)) — prgD(x), (7)

in which p; and D(x) are the fluid volumetric mass and the thickness of the fluid above the saturated
continuum at point x (see Figure 1a for illustration), respectively. The stress o in (7) is negative and
corresponds to the pressure resulting from the weight of the column above the point x of interest. The sec-
ond axis is vertical and directed upward, Figure 13, so that the gravity acceleration vectoris g = —ge,. The
scalar A in (7) varies between p/p and 1 corresponding to the range of pressure between hydrostatic and
lithostatic. The fluid pressure ratio A can also be expressed as the sum of the overpressure ratio difference
A4 and the hydrostatic pressure ratio Ay,

A= DA+ Ay With Ao = ¢/, ®)

so that A/ varies within the range of 0 and 1 — p;/p. The fluid pressure p and its difference from the
hydrostatic pressure at any point of the medium are thus expressed as

p=gl-Apx, + (s — pAD] and Ap=—Adpg(x, + D). 9)

Note that the fluid pressure parametrization relies on the vertical axis of our coordinate system and not on
the distance to the topography. This difference is crucial to understand some of the discrepancies found in
the application of the CCW theory and discussed in what follows.

2.3. MST

A weak form of the equations of motion has just been introduced. The effective internal and the acceleration
powers for our examples are nevertheless unknown since neither the stress vector acting on the discon-
tinuities nor the acceleration are determined. The application of the maximum strength theorem (MST)
palliates to this difficulty and provides the dominant collapse mechanism, a concept to be defined, after a
few assumptions on the material strength are discussed. Before proceeding, the reader should be warned
that there is still a strong debate in the mechanics literature on the validity of this MST [see Chen, 1975 and
Michalowski, 1995, for references] because of the interpretation of the virtual velocity. We favor the school
of thoughts relying on convex analysis [Salen¢on, 2002] and discussed at length in Maillot and Leroy [2006]
and Souloumiac et al. [2010]. Comparison with an exact solution (ECCW) as well as experimental results are
hoped to justify our preference.

The effective stress vector acting on a discontinuity of normal n and tangent t, member of X, is
decomposed in a normal o], and a tangential component 7 in the right-handed basis {n, t}. This vector is
within the set

G={T"||7| +tan(p)c, — C <0}, (10)

bounded by the Coulomb criterion defined by the friction angle ¢ and the cohesion C. This set is convex

in the space (7, o), an essential property for what follows. Consider now the jump in velocity across any
discontinuityzwhere the effective stress vector T’ is acting and apply convex analysis [Salencon, 2002] to see
that there is a maximum to the power T’ - zwhich is called the support function ﬂ(z). This function depends
on the orientation 5 ofz, the angle, counted positive anticlockwise, with the normal to the plane of discon-
tinuity (2 ‘n= J cos 5). The experience of previous works with this theoretical framework without pressure
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stable (-) 0 unstable (+) field [Cubas et al., 2008] or including the
i U - fluid phase [Pons and Leroy, 2012] is that
no collapse dynamical collapse Plext —-P'mr T
Onset of collapse the velocity jumps have to be selected
Figure 2. The stability conditions are defined along the axis set by the ~ SUch that#n = &(z/2 — ¢). These special
difference P, — P/ .. orientations correspond to the minimum
value of the support function, which is
then expressed as

7(J)=JCcos @, with J-n=Jcosn and = +(x/2 - @). (11)

The support function is integrated along the discontinuities constituting the set X, to provide the maximum
resisting power

PO = / rQ)yds > Pl (D), (12)
Zy

which is bounding by above the unknown effective internal power. Combined with the theorem of effective
virtual powers in (1), this bounding provides
! Iy Iy ! Iy Iy

PV -P (V<P (U V UKA. (13)
If the effective external power is smaller than the maximum resisting power for any KA velocity field, the
structure is said to be stable under quasi-static conditions (no inertia). It is the condition P . = P! fora
given velocity field which signals the quasi-static onset of collapse. If the difference P/  — P! is positive, the
structure is said to be dynamically unstable. The collapse mechanism corresponding to the maximum value
of that difference is said to be dominant and does control the stability conditions, illustrated in Figure 2.

3. Gravitational Collapse

The MST is now applied to the gravitational collapse mode to obtain general stability conditions. These
conditions are then specialized to the particular case of cohesionless materials and of a triangular-shaped
wedge so that the comparison with the classical CCW theory is possible. The role of the length-scale set
by the cohesion in the stability conditions is then discussed before presenting laboratory experiments to
validate the proposed theory.

3.1. General Stability Conditions Based on the MST

The KA velocity field for gravitational collapse is piecewise uniform. It is different over the frontal region (FS),
the half-graben (HG), and the back region (BL), Figure 3a. The support function in (11) guides us in orienting
the velocity in each region: the velocity of the FS is inclined by the angle ¢, from the décollement and

has for norm UFS' The HG velocity is inclined by the angle ¢, from the normal fault JH and has the norm
U,ic- The BL has a null velocity since the back wall is not displaced. The velocity jump at the shear plane
Jlis the difference QFS - QHG, a vector of norm Jg, and oriented by the angle @, from JI in Figure 3a. The
velocity vectors are thus all oriented, and we are left with the determination of their norms. The hodograph
of the velocity jump across the shear plane which is presented in Figure 3b provides that information by
application of the law of the sines

Ung Urs Jsp

- = — = — . (14)
SiN(@ —@sp —B—@p)  SINO+7 —@sp—pne)  SIN(Y + f — o + @p)

There is nevertheless an indeterminacy in the value of the three ratios in (14) which is eliminated by setting
one of them arbitrarily equal to 1.

The external effective power defined in (2) for this velocity field reads
A A ey B A I ~
PO = g - (SesUps + SeUye) + /J ppdSn, - Ugs + /J pydSn, - Jop

H ) B
+/ pJHdSQJH-QHG+/pdSQH,-QHG+/ pdsn, - U, (15)
J H I
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in which Sgs and Sy are the areas of the
front and the half-graben, respectively.
The first term in the right-hand side of
(15) corresponds to the power of the
velocity field on gravity. The next three
integrals are the contributions of the
power of the velocity on the pressure
field within the décollement (JB), the

Figure 3. (a) The velocity field for the gravitational collapse. (b) The shear plane .Ul)’ and the normal fault
hodograph of the velocity jump across the shear plane JI. (JH), respectively. The last two terms
result from the power of the pressure

on the topography. Note that the
velocity field being divergence free, there is no contribution to the effective external power of the pressure
field within the bulk. Expression (15) is now simplified by application of the following weak form of
Archimedes’ theorem (see derivation in the supporting information): the power of the velocity field on the
hydrostatic part of the pressure is equal to the opposite of the power of the same velocity field on the
vertical forces resulting from the weight of the displaced regions, if assumed of density p;. The effective
external power is then

PLo@ = (o= ppg - (SesUps + Sualyc)

B . ! A H R (16)
+ / App ds Ny gps + / Apy ds ny- -lsp + / Apyy ds Ny gHG >
J J J

and is expressed simply in terms of the departure of the pressure from the hydrostatic condition.

The maximum resisting power in (12) is now combined with the support function in (11) for the proposed
velocity field:

P! (0) = CpL g cos(@p)Ups + CyeLyy c0s(@np) Uy + Copl cOs(sp)sp - (17)

It is the sum of the contribution of the décollement segment JB, the normal fault JH and of the shear
plane Jl.

Application of the MST requires now to maximize the difference P, . — P/ in terms of the dips y and
0 and the length L 4. If that maximum is negative, the system is stable, otherwise there is a quasi-static
or a dynamic instability and the optimum triplet of parameters (y, 8, and L ;) define the dominant
collapse mechanism.

3.2. Comparison With CCW Theory

The general solution in (16) and (17) is now specialized for the case of cohesionless materials. The maximum
resisting power is then null and the stability condition reduces to P, . = 0. In this instance, and for a
triangular wedge, the effective external power (16) reduces to

PL(0) = (p = p)G [SaUna Sin(y — one) — SesUs sin(ep + )]
L2 sin(y —a) . L% sin(6 + a) ,

+ Adgpg Tcosa Ung sin(@pne) + Adgpg Tcosa Jsp sin(ggp)
L2, sin(a + )
JB P _
+ A/IDPQWUFS Sln((pD) =0
with
sin(a + B)sin(y + 6) 2 sin(a + f)sin(@ — p) ,,
SHG = - — s K SFS = " LJB B
2sin(y —a)sin(@ + a) 2sin(0 + a)
sin(a + f) sin(a + f)
=—"l d Lyj=——L,, 18
M nGg—a) % " T Gn@ra) (18)

in which A4z and A4, are the fluid overpressure ratios of the bulk material and the décollement,
respectively. In accordance with the assumption of the CCW theory, the fluid ratios and friction angles in the
normal fault JH and shear plane JI are set to the bulk ratio A4, and the bulk friction angle @;.
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It is necessary to maximize (18) with respect
to the two angles 6 and y. Stability requires
this function to be negative at its maximum.
Note from (18) that the external power is
proportional to the square of the length

L, of the structure. As a consequence,

this length is not an outcome of the
optimization and remains arbitrary. This
indeterminacy is a common feature with the
CCW theory. Furthermore, the slope @ can
be varied in the MST approach as a
parameter to find the critical value a, for
which there is a transition from stable to
unstable conditions. In that sense, it is
intended to prove next that the results of
the optimization and the parametric study
are identical to those of the CCW theory.

The comparison of the MST and CCW
predictions requires to use identical defini-
tion of the overpressure ratios and thus of
the distance z to the sea floor. This z axis is
vertical in the original work of Hubbert and
Rubey [1959] as well as in Pons and Leroy
[2012] and in the present contribution. The
z axis is perpendicular to the décollement
in Davis et al. [1983] and to the topography
in Dahlen [1984] and Lehner [1986]. This last

choice is certainly in line with the classic
Figure 4. (a) Comparison of MST (symbols) and ECCW predictions Rankine assumption that stress varies with
(curves) for cohesionless materials, overpressure ratio Alp in the
décollement and bulk fluid overpressure ratio A4g. (b) The opti-
mum dips of the normal fault (NF, y.) and of the shear plane (SP, 6,)
determined by the ECCW (solid and dashed curves, respectively) differences in the pressure ratio definition
and by the MST (symbols). compared to the original definition adopted

herein. The differences are presented in

details in Appendix A.

distance to the topography and not with
the position along it. However, it leads to

There is a further complexity in the comparison of the MST and the CCW predictions due to an approx-
imation introduced by Dahlen [1984]. He assumed that the normal stress to the décollement can be
approximated by the stress normal to the topography, and he obtained an effective friction coefficient in
the décollement. The result of this approximation is a simple, albeit implicit expression for the critical taper
angle which is widely used today. The approximation is acceptable in compression since the taper angle is
small but leads to a loss of accuracy in extensional regime for which the taper angle is worth several tens of
degrees. This shortcoming was recognized and corrected by Wang et al. [2006]. This modification of the orig-
inal work of Dahlen [1984] is referred to in what follows as the exact critical Coulomb wedge (ECCW) theory
and is presented in Appendix B to complement the presentation of Wang et al. [2006].

Comparison of the MST and ECCW predictions are presented in Figure 4, the properties corresponding to
the third column of the Table 1. The MST predictions are obtained as follows: choose a value of §, determine
the optimum orientation of the two dips (6 and y), and check the sign of (18). For example, for § = 20°
and Az = 0.2, A1, = 0.3, the function is negative for a less than 17.3°, approximately, and is positive for
larger values. The stability transition a, is thus determined. The critical slope «, is presented in Figure 4a as
a function of the décollement dip . The ECCW and the MST results correspond to the solid curves and to
the symbols, respectively. The two sets of predictions are identical for the four sets of overpressures in the
bulk A4z and décollement A4j. The range in § does not exceed the bulk frictional angle since gravitational
collapse mode not using the décollement is expected beyond this value: the maximum «_ is indeed @, seen
as the repose angle. Looking at the various sets of pressure considered in this analysis, note that increasing
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Table 1. Geometrical and Material Parameters and Fluid Ratios for the Wedge Analysis?

Value/Range Value/Range Value/Range

Notation Definition (Gravitational Collapse) (Tectonic Collapse) (Field Example)  Unit
a topographic slope —30-45 —39-39 0-5 deg
B décollement angle —10-90 27-90 3.72 deg
Lag décollement length = = 29.1 km
D¢ depth of the back top (point C) - - 3.15 km
Pq friction angle (a = B, SP, NF) 30 39 27.9 deg
®p décollement friction angle 10 27 10,15 deg
PBwW back-wall friction angle = 0-39 = deg
(@ cohesion (a = B, SP, NF) 0-0.07pgl 55 0 (0-10) x 10° Pa
Cp décollement cohesion 0 0 0 Pa
Caw back-wall cohesion = 0 = Pa
of fluid phase density 1000 1000 1030 kg/m?3
p saturated rock density 2120 2000 2400 kg/m3
Ahydro hydrostatic pressure ratio 0.47 0.5 0.42 =
Adg bulk overpressure ratio 0-0.4 0-0.5 0-0.58 =
Adp décollement overpressure ratio 0-0.53 0-0.5 0-0.58 =

g gravity acceleration 9.81 9.81 9.81 m/s?

aParameters are for the gravitational collapse (third column), the tectonic collapse (fourth column), and for the field
study (fifth column). Values are constant or varied within the ranges presented. Notation: B: Bulk, SP: shear plane, NF:
normal fault, D: décollement, and BW: back wall.

the bulk and décollement pressure ratios decreases the critical slope a.. Note also that the gravitational
instability mode does not require a seaward dipping décollement (8 negative). The pressure and frictional
properties of the décollement can overcome the difficulty of pushing upslope the sediments in the frontal
section during a gravitational collapse. Finally, note that the two theories do predict the same fault dips 6
and y, Figure 4b.

3.3. The Role of Cohesion in a Triangular Wedge

The CCW theory relies on the assumption of cohesionless materials so that the stress state within the wedge
scales with the distance z to the topography. The introduction of cohesion ruins this simplicity and the
elegance of a potentially analytical solution for the critical stability conditions. The MST approach does not
suffer from such limitations.

The characteristic length is chosen as the extent of the décollement L 55, and this leads to the characteristic
stress pgl 45 taken as the reference stress. Dimensionless quantities are noted with a superposed tilde. The
stability criterion (13) with no inertia is written in a dimensionless form, symbolically, as

[P (8.7) <CP! (0.7), (19)

where € = C/(pgl ) and using expressions (17) and (18). The right-hand side is independent of L 5, and
the left-hand side is proportional to it. As a consequence, the stability condition (equality in 19) must be
true for any admissible value of L 5, in particular with its maximum value. Therefore, the stability transition is
associated with the maximum value L 5, which is close to one for our collapse mechanism.

The influence of the bulk cohesion on the critical slope a, is now presented in Figure 5a where the activa-
tion of the whole décollement is assumed (L ; = 1, for sake of simplicity). The physical properties are given
in the third column of Table 1. The dimensional décollement cohesion Cj, is set to zero, the bulk cohesion
C, is varied from 0 to 0.07, and the décollement dip § is set to zero. Results are obtained for dry conditions
(blue curve), hydrostatic conditions (Ad; = AAp = 0, black curve), décollement overpressure conditions
(Adg = 0,AAp = 0.4, red curve), and both décollement and bulk overpressures (Ad; = Al = 0.4,
green curve). The blue (dry) and black (hydrostatic) curves initiate at the same a, since ﬁéxt is proportional
to (p — py) (see first line in 18). The three curves have the same trend: the larger is Cg, the larger is the critical
slope. The crossing between the blue and red curves at C; = 0.044 and more generally the fact that the
distance between the black and red curves is decreasing with increasing cohesion is more intriguing. This
nonlinear trend is tentatively explained by considering the dimensionless overpressure in the décollement
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the décollement. Keeping this position
constant while increasing Cg results in a
decrease of the dimensionless pressure.
This pressure term in the external power
(18) thus decreases, and the results for
no-overpressure (black curve) and with
overpressure (red curve) should indeed
converge for large values of the cohesion.
Bulk overpressure, however, is very efficient
at reducing «, (green curve), and
high-cohesion values are not sufficient to
bring back «, to the hydrostatic value.

The influence of the cohesion is also illus-
trated in Figure 5b where the length L 5 is
presented as a function of the fluid pres-

sure ratio A4, for C; = 0.01 and 0.02. For

Cp=0.02 C; = 0.02, the system is stable for A4,

less than 0.4. For larger values the system is
unstable for the largest slip extent 5 ~ 1.
Note that shorter lengths are also unstable
1 for Aip > 0.4. However, the largest length
\ remains the most unstable in the sense
defined above that the difference P — P! .
is the largest. Decreasing the cohesion

(Cz = 0.01) reduces the domain of stability
in this fluid pressure ratio-length plane but
does not alter the selection of the longest
possible length at the onset of collapse.

Collapse length L,

0.33 0.43 0.53
Decollement pressure ratio AKD

Figure 5. (a) The influence of the bulk cohesion C‘B on the critical

slope a, is presented where the value of a, is computed at a series

of values of bulk cohesion C‘B for the dry (blue curve), hydrostatic

(black curve), and overpressure conditions on the décollement (red 3.4. Experimental Validation

curve) and in the bulk (green curves), respectively. (b) The normal- .

. ;o . ) The theory presented above indicates that

ized collapse length L 5 is shown as the function of the décollement . ) .

fluid ratio A4y, for bulk cohesion Cg = 0.01 and 0.02, respectively.  the first collapse is associated with the

The triangle in Figure 5a, bulk cohesion Cg = 0.02 (e.g., Cg =4.1 MPa maximum length of the décollement

with an extent Lyg = 10 km), shows that the maximum slope of a (Lg = Lyg). To provide an experimental

stable wedge is less than 21.3°. validation of this claim, we propose to vary
the angle § keeping a constant taper angle

a + f in a laboratory experiment. This variation is conducted up to first failure to be able to inspect the first

collapse mode.

The experimental setup consists of a rectangular glass box, initially horizontal, in which a wedge of cohe-
sive material is built with a length L;; = 30 cm and a maximum height 5 cm, yielding a taper angle of 9.5°,
Figures 6a and 6b. It rests on a 2 mm thick glass microbeads layer. At the back, the wedge has a topography
parallel to the décollement composed of a sandpaper. The experiment consists in lifting the back side of
the box to increase the basal slope § until the wedge collapses by sliding against the fixed base and lateral
walls. The basal dip at failure is denoted f.. Its value depends in particular on the cohesion of the mate-
rial of the wedge. In most experiments (results indicated with an open circle in Figure 7) the material was
in direct contact with the vertical lateral walls of the box. To estimate the bias due to this lateral friction,
several experiments were conducted inserting a layer of glass microbeads between the wall and the
material (results indicated with a black circle in Figure 7).

The analogue material production, characterization and implementation were done as follows. The bulk,
cohesive materials are mixtures of CV32 eolian quartz sand (maker: SIFRACO, Sand CV32, 250 um median
grain size) and plaster in various proportions (Table 2, first and second columns). These materials were sifted
to fill the box and the surface was then scraped to obtain the desired wedge shape. During scraping, some
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Figure 6. (a) Cross section of the experimental prototype proposed

to check that the stability transition sees the maximum length of the
décollement activated. (b) The photography presents the initial state.

(c) The slope § is increased by lifting the back of the box (black arrows in
Figure 6a) until the wedge collapses.

2> | @ Experiment* o
O Experiment o
00 CCW Theory (@, =33°)

[
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c

Critical basal dip
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n

>

,_.
~
-

. .
0.01 0.02 0.03 0.04 0.05
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0

Figure 7. The critical basal dip . (taper angle constant, 9.5°) at the onset
of gravitational collapse (Figure 6) as function of the cohesion of the
wedge material. The open circle are experimental results with relatively
high friction on the sidewall of the box, the black circle are obtained
with lower lateral friction (glass microbeads between sidewall and bulk
material, friction around 17 + 1°). The dotted, solid, and dashed curve
are the theoretical results of bulk friction angle gg = 35°, 40°, and 45°,
respectively.

compaction of the pack is expected,
thus perturbing its density and
frictional properties. The use of triaxial
tests or of a Casagrande box to
measure the frictional properties of this
class of analogue materials is precluded
because the normal stress will compact
the material and increase very substan-
tially the cohesion beyond the value
achieved in our setup. We nevertheless
performed dedicated measurements of
these properties. The density was mea-
sured using density cups [Trautmann
et al., 1985; Maillot, 2013], and the
frictional properties (bulk cohesion Cg
and friction angle ¢g) were estimated
by digging a vertical cliff in the bulk
material and increasing its height to

its maximum value H, until collapse.
Collapse, at least theoretically, is asso-
ciated with the sliding of a triangular
section replacing the cliff by an inclined
ramp. Such collapse mechanism has
been considered recently for studying
weathering of natural cliffs [Utili and
Crosta, 2011] and is classical in the

civil engineering literature [Davis

and Selvadurai, 2005]. It is known

that the material properties and the
geometrical parameters of the collapse
mechanisms are related by

4C, cos
3G coslgp) i, P
pg 1 —sin(@g) 2
(20)

with the ramp dip « being the classical
fault dip in extension for a Coulomb
material. Results with the associated
error range are shown in Table 2.

The décollement is composed of glass
microbeads, a material of different
frictional properties than the bulk.
Cohesion is disregarded (Cp, =0),

and the friction angle with glass is
estimated by measuring the inclination
required to initiate gravitational sliding
of a thin-walled cylinder containing
glass beads and resting on the glass
base of the box. The basal friction is
estimated to be ¢p = 17 + 1°.

Experimental and theoretical results are
presented in Figure 6¢, 7, and Table 2
(last two columns). The first observa-
tion (Figure 6¢) is that the collapse
involves the activation of the whole
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Table 2. Parameters for Gravitational Collapse Experiments and for the Experiments Proposed to Estimate the Frictional and Cohesive Properties of the Sand and
Plaster Mixture?

Material Cliff Height Slope Dip Cohesion Friction Angle Density Normalized Cohesion Dip Measured
Sand Plaster(wt %) H, (cm) x (deg) Cg (Pa) @3 (deg) p (g/cm3) Cp (= Ca/pglps) B (deg)

100 0 - - 0 30-33 1.710 0 17

85 15 3-4 62-68 50-70 35-45 1.515 0.012-0.016 18.7,20.3,18.8°, 17.8°
75 25 6-7 62-68 100-120 35-45 1.464 0.023-0.027 18.6,19.8,17.8°

50 50 11-12 62-68 180-200 35-45 1.163 0.043-0.047 22,22,21.3°

25 75 9-10 62-68 150-170 35-45 0.931 0.035-0.040 215

2Note that the cohesion is not a monotonically increasing function of the plaster proportion.
bValues obtained in tests where glass microbeads were introduced along the sidewalls to reduce the friction.

length L, of the weak décollement. The frontal deformation observed at the tip of the wedge (Figure 6c) is
due to imperfections of the surface slope toward the tip which are ignored in the present analysis.

The second observation is that f, fluctuates by 1 or 2° when repeating experiments. Therefore, its increase
with cohesion from an average of 17° to 22° is meaningful. It is in good agreement with the 5° increase
predicted with the MST for three values of g, (35°, 40°, and 45°). However, the value of . for the
experiments with lateral friction (open circles) is systematically larger by 2° or 3°, than predicted, either with
the MST or the CCW theory (¢ = 33°, the square in Figure 7) for cohesionless materials. We attribute this
difference to spurious friction on the lateral walls. Indeed, experiments with reduced lateral friction (black
circles) present a lower discrepancy, while keeping the same trend in the variation of §, with EB. According
to Souloumiac et al. [2012], bias due to lateral friction depends on lateral to basal surface ratio of the
material in contact with the glass box. Here this ratio is 5/28 = 0.18, a value where lateral friction effects
are small, but not negligible. If one could conduct experiments without lateral friction effects, the fit would
be improved.

The main conclusions of that series of 10 experiments is that the collapse onset occurs for the largest
possible slip extent and that the critical wedge angle is well predicted by the MST accounting for cohesion.
The experimental uncertainties are coming mainly from the difficulty in (i) constructing homogeneous and
reproducible packs and (ii) estimating the frictional properties of these packs at very low stress levels. In
that respect, Galland et al. [2006] and van Gent et al. [2010] have proposed useful devices and protocols to
characterize the friction, the cohesion, and the tensile strength, accounting for the initial compaction (or
void ratio) of the powder.

4, Tectonic Extensional Collapse

The tectonic extensional collapse induced by the retreat of the vertical back wall is now discussed, Figure 1b.
The upper bound to the force Q,, is calculated for the three different collapse mechanisms presented in
Figure 8. The first mechanism is typical of a supercritical wedge sliding on its décollement as a rigid block.
The second mechanism concerns a subcritical wedge, and the internal deformation is close to the back wall.
The third mechanism is valid for both subcritical and supercritical wedges depending on the length L ¢

of the activated décollement, measured from the back wall to the root (point G) of the normal fault (GE) and
shear plane (GF). The two regions, BL and HG, have uniform velocities. The three mechanisms share the same
velocity of the back wall QBW, which is directed horizontally and of norm U, set to one. Note that for the
three cases, slip between the bulk material and the back wall is accounted for. The derivation of the bounds
is presented in the supporting information, and only the final results are provided here.

4.1. Mechanism (1): Décollement Fully Activated

The first collapse mechanism corresponds to the rigid translation of the wedge on the fully activated
décollement at the uniform velocity of norm U, a vector oriented by the angle ¢, from the décollement,
see Figure 8a. The velocity jump at the back wall is the difference QBW - QD, a vector of norm ij and
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Figure 8. The tectonic extensional collapse is examined with three mechanisms corresponding to (a) the full activation
of the décollement, (b) the activation of a normal fault (AE) rooting at the back wall, and (c) the partial activation of
the décollement, of a normal fault (GE) and of a shear plane (GF). The hodograph of the velocities is also presented for
each mechanism.

oriented by the angle @g,, from the vertical direction. The application of the MST provides the tectonic
upper bound Q,,

Qu1 = Cplag €05(9p)Up + CawLac cOs(@pw) g — (p = p)gSpac Up sin(B — p)
~ sin(pp) 1 ~ p(A) + p(C)

— AppgSpscUp COS/‘; + EMBngjCUD COS(f = p) = ————Lyc 1)
where Gy, Cp, and Syp¢ are the back-wall interface cohesion, the décollement cohesion, and the wedge
area, respectively. Pressure at any point M is denoted by p(M). The wedge velocity and the back-wall jump
are related by

cos(@gw) 4 sin(f—gp)
cos(@gy — B+ @p) T cos(@gy — B + (PD)’

according to the hodograph in Figure 8a.

0, = (22)

4.2. Mechanism (2): A Normal Fault Rooting at the Back Wall

The second collapse mechanism consists of a normal fault rooting at the base of the back wall and dipping
at y, Figure 8b. There is no activation of the décollement. The half-graben has the uniform velocity field of
norm 0., which is oriented by the angle @y from the normal fault, Figure 8b. The jump in velocity across
the back-wall interface is J,,, = Uy, — U, . and is oriented with the angle @g,, from back wall. The MST leads
to the following expression for the tectonic upper bound Q,,

Qu> = Celae COS((PNF)UHG + Cawlac COS(?"BW)ij —(p- pf)gSHGUHG sin(y — ong)
sin(@yg) p(A) + p(C)

— AdzpgS,ucU
8P9°16YHa cosy 5

1 .
+ EAABngjCUHG cos(y — @ne) — Lycs (23)

in which Cyr and Sy are the normal fault cohesion and the surface of the half-graben. The velocities
associated to this second collapse mechanism are

0. = cos(@py) 5 sin(y — onp)
He cos(pgw — ¥ + @np) | W cos(@gy — ¥ + @np)

are deduced from the hodograph in Figure 8b.
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4.3. Mechanism (3): A Normal Fault and a Shear Plane Rooting on the Décollement

The third mechanism consists of the normal fault GE dipping at y and the shear plane GF dipping at 6,
Figure 8c. The two planes root at point G on the décollement which is activated from point A to G. The
geometry of this third mechanism is thus described with three parameters: y, 8 and the distance L .. The
velocities of BL and HG are uniform and denoted by QBL and QHG. These velocities are oriented by the
angles ¢ and @y from the corresponding plane, see Figure 8c. There are two velocity discontinuities
corresponding to the shear plane (J., = Uy, —U,,.) and to the interface with the back wall (J,,, = U, — U
These two jumps are oriented by the angles ¢¢, and @g,, from the shear plane and to the back wall,
respectively. The tectonic upper bound is

BL)'

Qu3 = CurLa os(@np) Upg + Csplr COS(sp)Jsp + Colag COS(ep) Up,
+ Cowlac €05(@pw)aw — (P = P1)9Sk6Una SIn(r — @ng) — (p — p)gSe Us, sin(B — @p)

~ sin(gpp) ~  sin(@ye) A~ Sin(@sp)
- AAngSAGPCUBLTSg — AAgpgScerUne - A/prgSGFPJSPTSQP
1 ~ (A) + p(O)
+ 5 84gpgL2 Uy cos(f — gp) - %LAC. (25)

The velocity jumps over the shear plane and at the back wall are presented in two hodographs in Figure 8c.
The application of the law of sines provides

A cos(@gy) . sin(B — @p)
UBL - 9 JBW = 9
cos(pgw — B+ @p) cos(pgw — B+ @p)
A ~ sin e N . sin(@ — - +
I =0 (pp—B+7— On) O = 0, (0 — @sp — @p + B) 26)

BL _: 5 BL .
Sin(@ — @sp + 7 — @np) Sin(@ — @gp + 7 — Onp)

4.4. Comparison With CCW Theory for Extensional Collapse

The objective is to compare our predictions with the CCW theory for extensional collapse for dry,
cohesionless materials [Xiao et al., 1991]. These authors presented the CCW theory for extensional wedges
and their results are illustrated in Figure 9a with the dotted, closed curve. Results are obtained for the
material properties summarized in the fourth column of Table 1. The wedge is said to be supercritical within
the region bounded by this curve: the whole décollement is activated. Outside this domain, we expect only
the rear part of the décollement to be activated, next to the retreating wall.

It is proposed to compare the MST with the CCW theory in the following manner. Consider the two
segments AA’ and BB’ in Figure 9a corresponding to a variation of the surface slope and the décollement
dip, respectively. Along these segments, we compute the three upper bounds (21)-(26). The least of the
three upper bounds is the closest to the exact, unknown tectonic force, and the corresponding mechanism
is considered to be dominant.

Consider first the segment AA’ in Figure 9a along which g =32° and « varies within (=26°; 30°). The

three upper bounds, normalized by pgS .z, along this transect are presented in Figure 9b. The collapse
mechanism (1) (décollement fully activated) is dominant between point A and point A3 on the CCW
stability curve (—14.7°). For larger values of «, it is mechanism (3) which is dominant up to point A,;.
Mechanism (2) is dominant for the rest of the segment. These transitions from mechanism (1) to (3) and then
(3) to (2) are illustrated in Figure 9c where the length of the activated décollement, normalized by Lyg, is
presented. The value is 1 between A and A, ;; it drops to a small value between A,; and A,; and finally drops
to zero between A,; and A’. The MST has thus captured exactly the CCW predictions which is seen here as a
transition between modes (1) and (3).

Consider now segment BB’ in Figure 9a along which @ = 0° and g varies within (20°; 45°). From point B
to B, it is mode (2) (no décollement activation) which is dominant. This last point marks the transition

to mode (3) which dominates up to point B,; at the crossing of the CCW stability limit (36.7°). Within the
supercritical domain, mode (1) dominates of course. The three upper bounds along this segment BB’ at the
basis of this interpretation are presented in Figure 9d.

This method for probing the CCW stability boundary is repeated between points C and C’ to come to the
conclusion that MST and CCW theories are in agreement.
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Figure 9. (a) The extensional CCW stability boundary [Xigo et al., 1991] between points C and C’ is shown to corre-
spond to the transition between mode (1) (décollement fully activated) and mode (3) (partial activation). This finding is
obtained by comparing the least upper bounds for the three modes along segment (b) AA” and (d) BB'. (c) The extent of
the activated décollement along segment AA’ is presented.

The new information is the role of the back wall, not accounted for in the CCW theory, which controls the
collapse mechanism away from the stability boundary in the subcritical domain. The limit between mecha-
nisms (2) and (3) as function of g is presented by the dashed curve in Figure 9a. This limit is dependent on
the back-wall interface friction angle @g,, (assumed equal to the bulk friction in this section). This finding is
of course more relevant for the interpretation of experimental than field studies.

4.5. Experimental Validation

The concept of tectonic collapse mechanism is now validated by applying the MST to the interpretation

of the sandbox experiment done by Xiao et al. [1991]. The sandbox is resting on an inclined ramp with a
Mylar sheet acting as a décollement. The initial setup as well as the first mode of collapse are presented in
Figure 10a. The left section of the sand body is sticking to the Mylar sheet while slip occurs along a short
segment of the décollement close to the back wall. A normal fault roots at the left end of this segment and
partitions the sand body into two regions, a graben being observed on the right of the box. Note from the
inclined markers at the back wall the presence of a vertical zone of intense shear. The geometry of the
sandbox (f = 32°, a = 0), the sand friction angle (p; = 39°), and the friction on the décollement (¢, = 27°)
are provided by the authors. The missing information is the friction angle along the back wall.

The application of the MST is done in two steps. First, the nature of the first collapse mechanism is used to
infer the frictional properties along the back wall. Second, the MST is applied on a modified topography to
capture the jump in position of the collapse mechanism from the back-wall region to the left of the sandbox,
Figure 11a.

To capture the missing material property, the three potential collapse mechanisms discussed in section 4
are considered. They do apply to this setup because the upward motion of the Mylar sheet is equivalent
to the downward movement of the back wall. The first collapse mechanism corresponds to supercritical
conditions. The second mechanism is subcritical and assumes that the slip occurs on the back wall and the
onset of a normal fault rooting at its base. The dip of this fault is optimized. The third collapse mechanism
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Figure 10. (a) Two photographs of the experiments of Xiao et al. [1991] showing the initial setup and the first collapse
mechanism. (b) The map of dominant failure mechanism in the space spanned by the back wall and the décollement
friction angles.

assumes that the lower part of the décollement is activated with a half-graben mechanism within the sand
body. The dips of the two faults and the position of their common root on the décollement are found
by optimization.

The dominance of these three mechanisms is now presented in a map spanned by the friction angle along
the back wall (pg,,) and the décollement friction angle (¢p), Figure 10b. Material and interfaces are assumed
cohesionless. It is seen that for a décollement friction angle below 23.8°, the whole décollement is acti-
vated, regardless of the back-wall friction. For larger décollement friction values, the dominance is divided
between collapse mechanisms (2) and (3), the boundary between the two being the blue straight line in
Figure 10b. Mechanism (2) with a normal fault rooting at the base of the retreating wall is dominant for the
larger values of the décollement friction, and mechanism (3) is important in the intermediate range present
in the triangular region of Figure 10b. Note that within this triangular domain, the shear plane conjugate to

a)

(g
-

T T T
Ay, |Ay,= 1.37Ay,

Dimentionless collapse length LAG

Height [cm]
8
T

Ay /Ay,= 137
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Figure 11. (a) The photograph taken from Xiao et al. [1991] shows the development of two collapse mechanisms, the
first at the back-wall contact, and the second on the left of the sandbox. (b) The parametrization of the topographic
evolution due to the development of the first collapse mechanism as well as the position of the second mechanism are
illustrated. (c) The length of the activated décollement for the dominant mechanism as a function of the topographic
step amplitude. (d) The idealized evolution of the geometry, the successive position of the frontal collapse mechanisms
during topographic up to the transition to the second collapse mechanism (green).
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Figure 12. (a) Interpretation of the seismic section oriented east to west Our interpretation of the experimental
at the convergent margin off Antofagasta, North Chile, modified from findings of Xiao et al. [1991] is that

von Huene and Ranero [2003] and Sallares and Ranero [2005]. White dots  collapse mechanisms (3) is activated
show the detachment, and arrows display the normal faults existing in
the wedge. (b) The optimized collapse mode is rooting in the region of
overpressures idealized as a straight surface.

and its development results in a step
in the topography. This mechanism is
nevertheless abandoned after a while
for a new half-graben collapse more
to the left, as seen in Figure 11a and illustrated in Figure 11b. It is proposed to capture this transition by
modifying incrementally the geometry of our prototype and by repeating the application of the MST. For
that purpose, the topography seen in Figure 10a prior to the transition of the collapse mechanism to the
left is approximated by three segments. The segment to the left, unaltered by the deformation, being Ay
above the segment to the right. The central segment has a linear slope between the two other horizontal
segments. The vertical displacement Ay is starting from Ay, = 4.6 cm corresponding to the estimate made
from the lower photograph in Figure 10a. The position of the retreating wall is computed by assuming
that the area of sand seen through the glass wall is preserved during the experiment (a proxy for

mass conservation).

The normalized collapse length L,; (= L,g/Lsg) function of Ay /Ay, is shown in Figure 11c. The activity

is occurring at the back of the wedge and four successive positions of the collapse mechanisms are
presented in Figure 11d. The position of the root of the half-graben is displaced to the right following the
wall displacement and the dips of the normal fault and shear plane seem to be unaltered. There is a critical
Ay, = 1.37 Ay, at which the extent of the activated segment of the décollement changes drastically. The
new collapse mechanisms (in green in Figure 11d) is then to the left. The new shear plane is outcropping
within the transition zone of the topography. We shall not try to validate the value of Ay, from the experi-
mental results which may, incidentally, suffer from sidewall friction bias that would displace the new shear
plane updip of the décollement [Souloumiac et al., 2012]. Nevertheless, this exercise shows the versatility
of the MST in capturing the essential features of the structural evolution. A dedicated experiment would
certainly shed light on the qualitative merits of our predictions.

5. Application to North Chile

Having validated the collapse modes in extension, it is now proposed to apply the MST at the field scale
accounting for potential overpressures, disregarded so far. The example of the North Chile margin in the
area of the Mejillones peninsula [Delouis et al., 1998] is proposed for that purpose. The subduction is taking
place with erosion of the prism where the continental debris moved to the wedge toe are partly entering
the subduction channel. This region has been recognized to be in extension above a weak detachment
which is not the subduction interface but a subhorizontal fluid barrier within the continental plate

[von Huene and Ranero, 2003; Sallarés and Ranero, 2005]. Normal faults are rooting in the detachment

and participate to the extensive deformation resulting ultimately in erosion of the prism. Our objec-

tive is to determine the position of the active normal faulting, associated to our gravitational collapse
mechanisms, as a function of the overpressure ratios within the detachment as well as in the bulk material.
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a) The geometry of our prototype is
constructed from the seismic section

0.5 N>/ A presented in Figure 9b of Sallarés

0.4 - 7 a | and Ranero [2005] and shown here as
' |> -7 Antofagasta Fi 12afi Ofi
front. - C  prism igure 12a from east to west. Of interest

<S03t B . is the region above the interplate
< i -~ dynamically unstable ] boundary which is approximated by the
0.2 .-'B blue segment AB dipping at § = 3.72°
0.1  stable Cp=0MPa| - on average and of a total length of
- ’ . . 9p =10° 29.1 km. It constitutes the décollement
CAO 0.1 02 03 04 0.5 considered in all previous examples.
AL The topography is discretized by a set
b) | B of 236 points and the optimization of
7] 7e-05 0.06 o the gravitational collapse mechanism
“ dynamically unstable 0.05 .= presented in Figure 12b consists in
zjﬁ 0811 collapse onset - 0 » % finding the maximum difference
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o G o5 G 7e-05 0.03 a° done in Cubas et al. [2008]. Note
2 04t | that the gravitational collapse acti-
& 0.02 'QF vates the section JB of the décollement
S O.ZA— B—_fm/m_/ymal)o.m ‘5: resulting in an upward motion of
: : ¢, =10 = the frontal part of the wedge. The
0 ' : ‘ ' 0 material property values or ranges

0 0.1 02 03 04 0.3 are summarized in the fifth column

of Table 1. The bulk friction angle ¢; is
C) . - - . 27.9°° (tan @z = 0.51 in von Huene and
| pe Ranero [2003]) and is equal to the friction
angle of the normal fault and shear plane
(@ne = @sp = @p). These equalities would
be typical of faults at their onset prior
to the development of any damage.
The décollement friction angles is set
to either 10° or 15°. The décollement
cohesion is assumed to be zero and the

: bulk cohesion is set to 0, 5, or 10 MPa.
0 0.1 02 03 04 0.5 The material and fluid volumetric masses
AXB are 2400 and 1030 kg/m?3, respectively
[Adam and Reuther, 2000; Sallarés and
Ranero, 2005].

A
Antofagasta
prism

Figure 13. (a) The stability conditions map for the Antofagasta prism in
the space spanned by the bulk and décollement overpressure ratios. (b)
The position of the root of the dominant mechanism for equal pressure
ratios and the lower bound to the acceleration power. (c) The sensitivity
of the stability transition (s = stable; du = dynamically unstable) to the
bulk cohesion and to the décollement friction angle. sure ratios in the décollement and in the
bulk material. Material and interfaces are

assumed cohesionless. The resulting
stability map has three regions. The first region, for low values of both pressure ratios, corresponds to stable
conditions. The collapse mechanism cannot be activated. The second region is central within the stability
map and is bounded on top by the grey curve. An instability mode occurs for these pressure conditions
resulting in a gravitational collapse which is found at the front of the wedge. The third region corresponds
to large values of the two pressure ratios. The mode of instability is then found more to the back of
the structure.

Results are presented in Figure 13ain
a plane spanned by the fluid overpres-

von Huene and Ranero [2003] employed the CCW theory to study this erosional margin assuming the aver-
age friction coefficient and pore fluid pressure proposed by Lallemand et al. [1994]. We deduce from their
data using the relation u} = pup(1 — Ap)/(1 — 45) = 0.24, assuming @, = 10°, that the pressure ratios are
Ap = 0.837 and A4, = p¢/p = 0.42in our analysis. Consequently, the pressure ratio differences should be
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Alp = 0.41 and A4z = 0.46. These pressure conditions correspond to the blue triangle in our stability map
in Figure 13a which is in the dynamically unstable domain with a dominant collapse at the back.

The position of the dominant collapse mechanism as well as the lower bound to the acceleration power
provided by the maximum difference in P, — P! are now discussed to illustrate the transition between the
three stability regions defined above, Figure 13b. For the sake of simplicity, the horizontal axis corresponds
to the diagonal ABCD in the pressure map of Figure 13a. The normalized length is defined between points B
and D only since the segment AB is stable. The normalized, activated décollement length is small compared
to one between B and C and large between C and D, the two main jumps corresponding to the stability tran-
sitions discussed above. The minor jumps between B and C and between C and D are controlled by the local
accidents in the topography and are reminiscent of the findings of Pons and Leroy [2012]. More interesting is
the variation in the lower bound to the acceleration power. This bound is negative between A and B (stable
conditions) and increases approximately linearly between C and D independently of the jumps in position
of the collapse mechanism. Consequently, it appears that the pressure conditions of von Huene and Ranero
[2003] correspond to a dynamically unstable mode which is not sustainable. The pressure conditions and
the material properties should be such that the blue triangle in Figure 13a is close to point B at the critical
stability threshold.

To assess the role of the material properties in setting these stability predictions, it is now proposed to vary
the bulk cohesion and the décollement friction angle, Figure 13c. The stability transitions are presented as
solid and dashed curves for ¢ equal to 10° and 15°, respectively. Three sets of these two curves are pre-
sented corresponding to a cohesion of 0, 5, and 10 MPa. Increasing those two material properties reduces
the domain of instability in that map. Furthermore, we observe that the set (¢, = 10°, C; = 5 MPa) leads to
a stability transition close to the field conditions considered by von Huene and Ranero [2003].

6. Conclusion

This contribution proposes a mechanical analysis of two types of extensional deformations. First, gravita-
tional collapse of a wedge of frictional material resting on a low friction inclined base (décollement), and
second, tectonic collapse triggered by downdip slip on the décollement, following the retreat of the back
wall. In the CCW theory the first case corresponds to compressive wedges at their maximum taper, i.e.,

on the verge of failure by instability of the topography, while the second case corresponds to extensional
wedges, also at their maximum taper. The perfect match observed between the limit analysis and the CCW
solutions, once properly amended, for various overpressures and friction angles completes the validation of
our approach that was started in the classical compressive tectonic setting, without overpressures [Cubas et
al., 2008] and with overpressures [Pons and Leroy, 2012]. In all cases, the kinematic approach of limit analy-
sis (referred to here as the maximum strength theorem or MST) generalizes the results of the CCW theory by
including a wedge of finite size, limited by a back wall, and material with cohesion, thus providing a length
scale in the solution. It also includes two important features for application to real experimental or natural
cases: an arbitrary topography and preexisting faults as true discontinuities. The method remains, however,
semianalytical, requiring only a discretization of the topography and moderate numerical implementation.

The study of the gravitational collapse for a triangular wedge of finite extent has lead to the conclusion that
the maximum possible length of décollement is activated at the stability transition despite the introduction
of a characteristic length in the problem via the material cohesion. The conclusion is not the same once the
same gravitational mode is applied at the field scale for the North Chile margin considering the overpres-
sured detachment studied by von Huene and Ranero [2003] and Sallarés and Ranero [2005]. The stability
transition, if the bulk and décollement pressure ratios were equal and increased, is marked by a frontal
collapse controlled by the specifics of the topography. It is only for large values of these pressure ratios,
corresponding to dynamically unstable equilibrium states, that the collapse activates the maximum pos-
sible detachment length. These results obtained for zero cohesion indicates that the pressure conditions
proposed by von Huene and Ranero [2003] would correspond to dynamic conditions. The introduction of
bulk cohesion (order of 5 MPa) is found to be sufficient to reconcile our stability transition predictions with
the proposed pressure conditions. The gravitational collapse is then frontal, consistent with the idea that
erosion above the detachment is bringing material to the wedge toe.

The proposed methodology is now ready for use for field cases. It could be used, for example, to test the idea
that the Tohoku-Oki earthquake corresponds indeed to a gravitational collapse of the wedge front updip the
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décollement [Cubas et al., 2013a]. The analysis could be semianalytical as proposed here or rely on numerical
implementation of the MST [OptumG2, 2014] as proposed in Cubas et al. [2013b] to capture the activation
of major splay faults in the Maule earthquake area. The advantage of the numerical approach is that a stress
field can be obtained, either as a dual field to the velocity field for the MST or as a statically admissible field
if the static approach of limit analysis is considered.

There are several potential extensions to the present work. The analysis of Xiao et al. [1991] with the tec-
tonic collapse mode gave a glimpse at one of them. In this analysis, the geometry of the sand body was
modified once the collapse mechanism was optimized based on simple rules close to the ones adopted by
Groshong [1989]. After each geometry modification a new search for the collapse mechanism is conducted
until a rear collapse is detected. This staggered scheme, optimization followed by geometrical evolution is
at the basis of the sequential limit analysis considered for kink folds by Maillot and Leroy [2006] and Kampfer
and Leroy [2009, 2012] and for accretionary wedges on the large scale by Cubas et al. [2008] for a single
sequence of fault-related folds and by Mary [2012] and Mary et al. [2013a, 2013b] for an arbitrary number of
sequences resulting in a large amount of shortening. It is clear that such evolution could also be constructed
for extensional collapse. Furthermore, one could imagine to combine the frontal, compressional, and the
rear extensional collapses to produce the deformation styles of many sedimentary basins as the Niger Delta
[Kostenko et al., 2008] while accounting for overpressures. The question of lateral compaction which can

be important in such settings [Butler and Paton, 2010] will require not only to add a finite resistance to
compression in the Coulomb criterion (as done by Maillot and Leroy [2006], for the hinge in kink folds)

but also to keep memory of the compacted regions in the sequential limit analysis process, an opened
technical question.

Some theoretical questions specific to gravitational collapse remain, however, to be clarified before
proceeding. The present approach does not allow us to determine the power of acceleration, and therefore,
we have no time scale to follow the evolution of a gravitational collapse. A proposition could be to use the
lower bound to the acceleration powers and to use a classical Newmark’s scheme following the geometry
evolution which defines the displacement field. Any tentative algorithm will need to be compared to a full
numerical solution for a sand body undertaking arbitrary large deformation and the recent developments
of the particle finite-element method [Zhang et al., 2013] is certainly a good candidate.

Appendix A: Different Fluid Pressure Parametrizations

The definition of the pressure ratio, introduced by Hubbert and Rubey [1959], requires a parametrization of
the path from the free surface to the point of interest. Various authors have introduced their parametriza-
tions leading to different definitions of the fluid pressure ratio. These differences are minor in compression
because the taper angle remains small. However, in extension, this angle is sufficiently large to exacerbate
these differences and the stability verdict becomes sensitive to the exact definition. The objective of this
appendix is to compare the various parametrizations found in the literature.

The parametrization of Hubbert and Rubey [1959] for A" (the first author name will be attached in
superscript to the ratio) relies on a vertical path from the free surface to the point of interest. This path
corresponds to the black line in Figure A1 and was used also by Pons and Leroy [2012] since it is the most
natural parametrization for an irregular topography. Davis et al. [1983] and Dahlen [1984] used different
parametrization corresponding to the red A®V and blue path A%, respectively, in Figure A1. The method
to derive the relation between these different pressure ratios is that the pressure at any point P in the bulk
should be uniquely defined.

The three definitions introduced so far and applied at the same point P are

(H) (H)
p;” — pegD )
/1(H) - _ @ - with GEH) — —pg(z("’) _ D(H)) _ png(H) ,
o, + prgDH)
(D1) (D1)
p; " — pegD .
AN = — with o)) = pgD® + pg(H®V - 22V,
0z - png( )
02) _ (D2)
p prgD
102 — —';Dz)—m with ¢P? = —pgz®? cosa — p;gD®? (A1)
o, + psgD®?
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o) () complemented by the following geometric
— P > relations
~D(P1) p®2 _ p®Y = (HOY _ 7Oy sin(a + f)sina,
£ DP» — p" = " — pHysin’a,
2P = (H®Y — 2PV cos(a + p),
HO_0D 2% = (2" - D™)cosa. (A2)
The system of three equations in (A1) and (A2) has
four unknowns, the pressure ratios and the actual

pressure at point P: p;H) = p;D” = pf(Dz). Eliminate

the latter and obtain

Figure A1. The definition of the fluid pressure ratio 4 is sen- APV = 1®? cos(a + p) cos a + o sin(a + f)sina,
sitive to the path used from the free surface to the point of P

interest where the pressure is estimated. The black segment A = 102 o052 o + P sina. (A3)
was proposed by Hubbert and Rubey [1959] and considered P

by Pons and Leroy [2012]. The red path was used by Davis

et al. [1983], and the blue path was employed by Dahlen The trigonometric dependence is such that A

[1984]. The three different paths lead to the same fluid and A2 are rather different if the topographic
pressure at point P but to different pressure ratios. slope a is large, as for the gravitational collapses

of interest here.

Appendix B: Exact Critical Coulomb Wedge (ECCW) Theory

The classical CCW theory is now modified to account properly for the overpressure within the décollement.
It complements the derivation found in Wang et al. [2006] and Mourgues et al. [2014], by providing the
complete expression of the implicit solution in terms of the critical taper &« + g as function of the fluid
overpressures and friction angles. This expression is valid for any permissible value of the slopes a and 8,
thus the proposed name ECCW theory. We furthermore calculate and illustrate the solution in both gravi-
tational and tectonic extensional cases. This ECCW theory is derived following exactly the steps of Dahlen
[1984] and Lehner [1986] up to the condition of the décollement slip activation.

The tangential stress 7, Figure A1, to activate the décollement is given by

7p = tan(gp)(e, + Pp) (B1)

in which @y, 0, and p;, are the friction angle, the normal stress, and the fluid pressure in the décollement,
respectively. The fluid pressure within the décollement is parametrized following Dahlen’s choice as
described in Appendix A:

Pp = -6, +(1 = 452)p,gD?.. (B2)

The décollement tractions are now expressed in the (x, z) coordinate system also adopted in Dahlen’s [1984]
(the blue coordinate in Figure A1)

6, =0,—T,5in2(a+pf)— %(O’Z — o)1 —cos2(a+ p)l,
Tp = %(az —o0,)sin2(a + f) + 1,,cos 2(a + f), (B3)

in terms of the stress components within the cohesionless wedge. This state of stress is on the verge of
Coulomb failure and satisfies the local conditions

1 -0,
5(62 —00)= csc(gg) sec2¥,) — 1
—tan(2¥,) 6
7, (2%¥0) 0, (B4)

- csc(qpg) secR¥y) — 17
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Figure B1. (a) Comparison of the ECCW theory and the solution of
Wang et al. [2006] with the original theory of Dahlen [1984] for grav-
itational collapse. (b) Same comparison of the ECCW theory and the
original extensional CCW theory of Xiao et al. [1991]. The bulk and
décollement pressure ratios are defined in the Dahlen’s fluid ratio 02, ~ definition is the only different term from
the CCW theory, recalling the defini-

tion (13) and (19) in the contribution of

(D2)

] - %(p’D with @}, = arctan T(DDZ, tan(gp)|. Obviously, the formu-

The quantity ¥, is the angle between o,
and the décollement, and this implicit

Donin (15841, = L arcsin [ 22
B

lations of Dahlen [1984] is also the exact solutions if the bulk material, and décollement have the same fluid
pressure ratio, /1%32) = igm), or if they are both dry and subaerial.

The ECCW theory is now compared with the CCW theory using the coordinate definition considered by
Dahlen [1984] in Figures B1a and B1b, corresponding to the gravitational collapse and the tectonic collapse
modes, respectively. The material properties are summarized in the third column of Table 1. For overpres-
sured décollement, the ECCW results do not differ significantly from the solutions of Dahlen [1984] and Xiao
et al. [1991] in region | of Figures B1a and B1b. However, the differences are significant for region Il (gravi-
tational collapse or tectonic extension) of interest to this contribution. The critical slope a, predicted from
ECCW theory in region Il, Figure B1a, is greater than the value of CCW theory. The ECCW theory produces a
lower critical slope compared to the extensional CCW theory (region Il in Figure B1b).
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