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                Materials Science and Engineering 

122 S. Central Campus Drive, Salt Lake City, Utah 84112 (801) 581-8632 

January 7, 2023 

Dear Editor: 

We are very pleased to submit this data article to Data in Brief. Our manuscript, titled Materials Science 

Optimization Benchmark Dataset for Multi-fidelity Hard-sphere Packing Simulations provides important 

research from my research group at the University of Utah. This work presents a benchmark dataset for 

materials science optimization tasks that incorporates both simulation failure and heteroskedastic noise in 

a realistically complex setting. 

The dataset represents 279 days’ worth of CPU computation time and contains over 400,000 datapoints. 

The two datasets presented in this work can be used to create a surrogate model as close as possible to 

running the actual simulations. This will help form part of a larger suite of experimentally and 

computationally derived benchmarks. Additionally, this dataset can serve as an optimization task for 

advanced Bayesian optimization topics including multi-fidelity and linearly constrained optimization. 

Sincerely,  

 

 

 

Dr. Taylor Sparks 

Associate Professor & Associate Chair 

Materials Science and Engineering Department 

University of Utah 

Salt Lake City, Utah 84112 
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Abstract 

 

Benchmarks are an essential driver of progress in scientific disciplines. Ideal benchmarks mimic 

real-world tasks as closely as possible, where insufficient difficulty or applicability can stunt 

growth in the field. Benchmarks should also have sufficiently low computational overhead to 

promote accessibility and repeatability. The goal is then to win a “Turing test” of sorts by 

creating a surrogate model that is indistinguishable from the ground truth observation (at least 

within the dataset bounds that were explored), necessitating a large amount of data. In 

materials science and chemistry, industry-relevant optimization tasks are often hierarchical, 

noisy, multi-fidelity, multi-objective, high-dimensional, and non-linearly correlated while 

exhibiting mixed numerical and categorical variables subject to linear and non-linear constraints. 

To complicate matters, unexpected, failed simulation or experimental regions may be present in 

the search space. In this study, 438371 random hard-sphere packing simulations representing 

279 CPU days’ worth of computational overhead were performed across nine input parameters 

with linear constraints and two discrete fidelities each with continuous fidelity parameters and 

results were logged to a free-tier shared MongoDB Atlas database. Two core tabular datasets 

resulted from this study: 1. a failure probability dataset containing unique input parameter sets 

and the estimated probabilities that the simulation will fail at each of the two steps, and 2. a 

regression dataset mapping input parameter sets (including repeats) to particle packing 

fractions and computational runtimes for each of the two steps. These two datasets can be used 

to create a surrogate model as close as possible to running the actual simulations by 
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incorporating simulation failure and heteroskedastic noise. For the regression dataset, 

percentile ranks were computed within each of the groups of identical parameter sets to enable 

capturing heteroskedastic noise. This contrasts with a more traditional approach that imposes a-

priori assumptions such as Gaussian noise, e.g., by providing a mean and standard deviation. A 

similar approach can be applied to other benchmark datasets to bridge the gap between 

optimization benchmarks with low computational overhead and realistically complex, real-world 

optimization scenarios. 

Specifications table 

 

Subject 
Computational materials science 

Specific subject area 
Physics-based geometric packing 

Type of data 
Table 
Figure 

How the data were 

acquired 

Data was acquired by running compiled C software hosted at 

https://github.com/VasiliBaranov/packing-generation in a two-step 

process orchestrated using Python in https://github.com/sparks-

baird/matsci-opt-

benchmarks/blob/3c0a74b1a594d5628bde232062e55804590c4e1f/

src/matsci_opt_benchmarks/particle_packing/utils/packing_generati

on.py#L61-L181. The Python code called the compiled packing 

generation executable and was run using the University of Utah’s 

Center for High-performance Computing (CHPC) resources. 

https://github.com/facebookincubator/submitit was used to send jobs 

to the SLURM scheduler and the MongoDB Data API was used to 

log results in JSON format. For a snapshot of the matsci-opt-

benchmarks code used, see https://github.com/sparks-baird/matsci-

opt-benchmarks v0.1.0 

(https://zenodo.org/badge/latestdoi/577963870). 

Data format 
Analyzed 
Filtered 

Description of data 

collection 

Seven irreducible parameters plus number of particles and initial 

scaling factor were varied in a quasi-random Sobol sampling of 

65536 parameter combinations using a constrained search space 

via the Ax Platform, with 15 repeats (total: 983040 simulations). Of 

these, 438371 ran to completion (279 CPU days) with 41228 unique 

sets. Repeat simulations were grouped and ranked by percentile 

https://github.com/VasiliBaranov/packing-generation
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https://github.com/sparks-baird/matsci-opt-benchmarks/blob/3c0a74b1a594d5628bde232062e55804590c4e1f/src/matsci_opt_benchmarks/particle_packing/utils/packing_generation.py#L61-L181
https://github.com/sparks-baird/matsci-opt-benchmarks%20v0.1.0
https://github.com/sparks-baird/matsci-opt-benchmarks%20v0.1.0
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using the “dense” method with pct=True in 

pandas.core.groupby.GroupBy.rank.  

Data source location 
Free-tier Shared Cluster MongoDB Atlas Database 

Data accessibility Repository name: Zenodo 

Data identification number: 7513019 

Direct URL to data: https://doi.org/10.5281/zenodo.7513019 

  

Value of the data 

- The data is useful for adaptive design benchmarking of a constrained, multi-fidelity task 

- Optimization practitioners in the physical sciences can benefit from the data 

- The data can be used to understand packing with different particle types in powder-bed 

additive manufacturing experiments and could be complemented with experimental data 

Objective 

 

In the fields of materials science and chemistry, industry-relevant optimization tasks are often 

hierarchical, noisy, multi-fidelity1,2, multi-objective3,4, high-dimensional5,6, and non-linearly 

correlated while exhibiting mixed numerical and categorical variables subject to linear7 and non-

linear constraints. Existing benchmark datasets8–13, while very useful, typically ignore or simplify 

the influence of noise and ignore the fact that certain parameter combinations will result in 

failure. By incorporating simulation failure and heteroskedastic noise, we create a “Turing test” 

of sorts with a surrogate model that is indistinguishable from the ground truth simulation. This 

bridges the gap between cheap-to-evaluate surrogate functions based on benchmark datasets 

and high-cost, real-world objective function evaluations. 

Data description 

 

The failure probability dataset contains unique input parameter sets (nine variables) and the 

estimated probabilities that the simulation will fail at each of the two steps (force-biased algorithm 

and Lubachevsky–Stillinger). 

 



4 

The regression dataset contains input parameter (including repeats) spanning nine variables and 

corresponding particle packing fractions and computational runtimes for each of the two steps 

(force-biased algorithm and Lubachevsky–Stillinger). 

 

For histogram data summarizing characteristics of the two datasets, see Figure 1, Figure 2, and 

Figure 3. 

 
Figure 1. Histogram of number of parameter groups vs. number of successful repeats within a given group. The 
lowest number of repeats for a parameter set is 3, with approximately 10 repeats on average. 
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Figure 2. Histogram of normalized simulation counts vs. the probability of a simulation failing for a given parameter 
set. On average, the force-biased algorithm or fba (blue) is more likely to succeed than the Lubachevsky–Stillinger or 
ls (red) algorithm. 
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Figure 3. Histogram of number of simulations vs. packing fraction for the force-biased algorithm or fba (blue) and 
Lubachevsky–Stillinger or ls algorithm (red). On average, the ls algorithm tends to have higher packing fractions with 
a more Gaussian-like distribution than fba. 

Experimental design, materials and methods 

 

Hundreds of thousands (438371 in total) random hard-sphere packing simulations were 

performed using a two-step process: a force-biased algorithm14,15 followed by the Lubachevsky–

Stillinger algorithm16–18. Three truncated log-normal distributions were used to approximate 

realistic mixtures of three different particle types: i.e., if you were to separately weigh out three 

different powders and mix them together. Two parameters (scale and shape) describe each of 

the three distributions, and three additional composition parameters describe the fractional 

share (e.g., in terms of volume) of each of the particle types. Additionally, the number of 

particles (100-1000) and an initial scaling factor were allowed to vary. With a greater number of 

particles, denser and more realistic packs can be generated at the expense of computational 

cost (i.e., the fidelity parameter). The initial scaling factor affects the computational stability of 

the simulation; with an adequate scaling factor, the simulation is more likely to complete 

successfully. Quasi-random Sobol sampling was used to generate parameter combinations to 

obtain a more uniform sampling of the allowable parameter space. While there can be other 

uses, this dataset is primarily intended as a multi-fidelity benchmark dataset for constrained 

adaptive design scenarios. To realistically capture the noise for this benchmark dataset, 

simulations were repeated for each of the quasi-random parameter combinations. To maximize 

throughput and reduce latency, simulation parameters (including repeats) were shuffled and 

divided into batches and sent to a high-performance computing environment for asynchronous 
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evaluation. Some results did not complete due to either timeout or preemption, which is seen as 

a reasonable trade-off for the gains in efficiency of implementation and completion. Most 

parameter combinations had at least 8 repeats. Results were logged to a free-tier MongoDB 

Atlas database and then aggregated and prepared as machine-learning-ready datasets via 

Python in Jupyter notebooks. For implementation details, see https://github.com/sparks-

baird/matsci-opt-benchmarks/tree/main/scripts/particle_packing and https://github.com/sparks-

baird/matsci-opt-benchmarks/tree/main/notebooks/particle_packing. 
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