
Ethereum SLIP-39 Account Generation

Perry Kundert

2021-12-20 10:55:00

Creating Ethereum, Bitcoin and other accounts is complex and fraught with potential for loss
of funds.

A BIP-39 seed recovery phrase helps, but a single lapse in security dooms the account (and
all derived accounts, in fact). If someone finds your recovery phrase (or you lose it), the accounts
derived from that seed are gone.

The SLIP-39 standard allows you to split the seed between 1, 2, or more groups of several
mnemonic recovery phrases. This is better, but creating such accounts is difficult; presently, only
the Trezor supports these, and they can only be created "manually". Writing down 5 or more sets
of 20 words is difficult, error-prone and time consuming.

The python-slip39 project exists to assist in the safe creation and documentation of Ethereum
HD Wallet seeds and derived accounts, with various SLIP-39 sharing parameters. It generates the
new random wallet seed, and generates the expected standard Ethereum account(s) (at derivation
path m/44’/60’/0’/0/0 by default) and Bitcoin accounts (at derivation path m/84’/0’/0’/0/0 by
default), with wallet address and QR code (compatible with Trezor derivations). It produces the
required SLIP-39 phrases, and outputs a single PDF containing all the required printable cards to
document the seed (and the specified derived accounts).

Output of BIP-38 or JSON encrypted paper wallets is supported, to support software cryptocur-
rency wallets.

On an secure (ideally air-gapped) computer, new seeds can safely be generated and the PDF
saved to a USB drive for printing (or directly printed without the file being saved to disk.). Presently,
slip39 can output example ETH, BTC, LTC and DOGE addresses derived from the seed, to
illustrate what accounts are associated with the backed-up seed. Recovery of the seed to a Trezor
is simple, by entering the mnemonics right on the device.

Contents

1 Security with Availability 2
1.1 Shamir’s Secret Sharing System (SSSS) . 2

2 SLIP-39 Account Creation, Recovery and Address Generation 3
2.1 Creating New SLIP-39 Recoverable Seeds . 3
2.2 The macOS SLIP-39.app GUI App . 4
2.3 The Python slip39 CLI . 5
2.4 Recovery & Re-Creation . 6
2.5 Generation of Addresses . 8
2.6 The slip39 module API . 10

1

https://github.com/pjkundert/python-slip39.git
https://wolovim.medium.com/ethereum-201-hd-wallets-11d0c93c87
https://wolovim.medium.com/ethereum-201-hd-wallets-11d0c93c87
https://medium.com/myetherwallet/hd-wallets-and-derivation-paths-explained-865a643c7bf2
https://medium.com/myetherwallet/hd-wallets-and-derivation-paths-explained-865a643c7bf2

3 Conversion from BIP-39 to SLIP-39 13
3.1 BIP-39 vs. SLIP-39 Incompatibility . 13
3.2 BIP-39 vs SLIP-39 Key Derivation Summary . 16

4 Building & Installing 16
4.1 The slip39 Module . 17
4.2 The slip39 GUI . 17

5 Dependencies 17
5.1 The python-shamir-mnemonic API . 17

1 Security with Availability

For both BIP-39 and SLIP-39, a 128-bit random "seed" is the source of an unlimited sequence of
Ethereum HD Wallet accounts. Anyone who can obtain this seed gains control of all Ethereum,
Bitcoin (and other) accounts derived from it, so it must be securely stored.

Losing this seed means that all of the HD Wallet accounts are permanently lost. Therefore, it
must be backed up reliably, and be readily accessible.

Therefore, we must:

• Ensure that nobody untrustworthy can recover the seed, but

• Store the seed in many places with several (some perhaps untrustworthy) people.

How can we address these conflicting requirements?

1.1 Shamir’s Secret Sharing System (SSSS)

Satoshi Lab’s (Trezor) SLIP-39 uses SSSS to distribute the ability to recover the key to 1 or more
"groups". Collecting the mnemonics from the required number of groups allows recovery of the
seed. For BIP-39, the number of groups is always 1, and the number of mnemonics required for
that group is always 1.

For SLIP-39, a "group_threshold" of how many groups must bet successfully collected to recover
the key. Then key is (conceptually) split between 1 or more groups (not really; each group’s data
alone gives away no information about the key).

For example, you might have First, Second, Fam and Frens groups, and decide that any 2
groups can be combined to recover the key. Each group has members with varying levels of trust
and persistence, so have different number of Members, and differing numbers Required to recover
that group’s data:

Group Required Members Description
First 1 / 1 Stored at home
Second 1 / 1 Stored in office safe
Fam 2 / 4 Distributed to family members
Frens 3 / 6 Distributed to friends and associates

The account owner might store their First and Second group data in their home and office safes.
These are 1/1 groups (1 required, and only 1 member, so each of these are3 1-card groups.)

If the account needs to be recovered, collecting the First and Second cards from the home and
office safe is sufficient to recover the seed, and re-generate the HD Wallet accounts.

Only 2 Fam member’s cards must be collected to recover the Fam group’s data. So, if the HD
Wallet owner loses their home and First group card in a fire, they could get the Second group card
from the office safe, and 2 cards from Fam group members, and recover the wallet.

2

https://github.com/satoshilabs/slips/blob/master/slip-0039.md

If catastrophe strikes and the owner dies, and the heirs don’t have access to either the First (at
home) or Second (at the office), they can collect 2 Fam cards and 3 Frens cards (at the funeral, for
example), completing the Fam and Frens groups’ data, and recover the HD Wallet account. Since
Frens are less likely to persist long term (and are also less likely to know each-other), we’ll require
a lower proportion of them to be collected.

2 SLIP-39 Account Creation, Recovery and Address Generation

Generating a new SLIP-39 encoded seed is easy, with results available as PDF and text. Any number
of accounts can be generated from this seed, and it can be recovered by collecting the desired groups
of recover card phrases. The default recovery groups are as described above.

2.1 Creating New SLIP-39 Recoverable Seeds

This is what the first page of the output SLIP-39 mnemonic cards PDF looks like:

Figure 1: SLIP-39 Cards PDF (from --secret ffff...)

Run the following to obtain a PDF file containing index cards with the default SLIP-39 groups
for a new account seed named "Personal"; insert a USB drive to collect the output, and run:

$ python3 -m pip install slip39 # Install slip39 in Python3
$ cd /Volumes/USBDRIVE/ # Change current directory to USB
$ python3 -m slip39 Personal # Or just run "slip39 Personal"
2021-12-25 11:10:38 slip39 ETH m/44’/60’/0’/0/0 : 0xb44A2011A99596671d5952CdC22816089f142FB3
2021-12-25 11:10:38 slip39 Wrote SLIP-39-encoded wallet for ’Personal’ to:\

Personal-2021-12-22+15.45.36-0xb44A2011A99596671d5952CdC22816089f142FB3.pdf

The resultant PDF will be output into the designated file.

3

This PDF file can be printed on 3x5 index cards, or on regular paper or card stock and the
cards can be cut out (--card credit , business, half (page) and third (page) are also available,
as well as custom "(<h>,<w>),<margin>").

To get the data printed on the terminal as in this example (so you could write it down on cards
instead), add a -v (to see it logged in a tabular format), or --text to have it printed to stdout in
full lines (ie. for pipelining to other programs).

2.1.1 Paper Wallets

The Trezor hardware wallet natively supports the input of SLIP-39 Mnemonics. However, most
software wallets do not (yet) support SLIP-39. So, how do we load the Crypto wallets produced
from our Seed into software wallets such as the Metamask plugin or the Brave browser, for example?

The slip39.gui (and the macOS SLIP-39.App) support output of standard BIP-38 encrypted
wallets for Bitcoin-like cryptocurrencies such as BTC, LTC and DOGE. It also outputs encrypted
Ethereum JSON wallets for ETH. Here is how to produce them (from a test secret Seed; exclude
--secret ffff... for yours!):

$ slip39 -c ETH -c BTC -c DOGE -c LTC --secret ffffffffffffffffffffffffffffffff \
--wallet password --wallet-hint ’bad:pass...’

And what they look like:

Figure 2: Paper Wallets (from --secret ffff...)

2.2 The macOS SLIP-39.app GUI App

If you prefer a graphical user-interface, try the macOS SLIP-39.App. You can run it directly if you
install Python 3.9+ from python.org/downlaods or using homebrew brew install python-tk@3.9

4

https://python.org/downloads

(or higher, eg. @3.10). Then, start the GUI in a variety of ways:

slip39-gui
python3 -m slip39.gui

Alternatively, download and install the macOS GUI App .zip, .pkg or .dmg installer from
github.com/pjkundert/python-slip-39/releases.

2.3 The Python slip39 CLI

From the command line, you can create SLIP-39 seed Mnemonic card PDFs.

2.3.1 slip39 Synopsis

The full command-line argument synopsis for slip39 is:

slip39 --help | sed ’s/^/: /’ # (just for output formatting)

usage: slip39 [-h] [-v] [-q] [-o OUTPUT] [-t THRESHOLD] [-g GROUP] [-f FORMAT]
[-c CRYPTOCURRENCY] [-p PATH] [-j JSON] [-w WALLET]
[--wallet-hint WALLET_HINT] [--wallet-format WALLET_FORMAT]
[-s SECRET] [--bits BITS] [--passphrase PASSPHRASE] [-C CARD]
[--paper PAPER] [--no-card] [--text]
[names ...]

Create and output SLIP-39 encoded Seeds and Paper Wallets to a PDF file.

positional arguments:
names Account names to produce

options:
-h, --help show this help message and exit
-v, --verbose Display logging information.
-q, --quiet Reduce logging output.
-o OUTPUT, --output OUTPUT

Output PDF to file or ’-’ (stdout); formatting w/
name, date, time, crypto, path, address allowed

-t THRESHOLD, --threshold THRESHOLD
Number of groups required for recovery (default: half
of groups, rounded up)

-g GROUP, --group GROUP
A group name[[<require>/]<size>] (default: <size> = 1,
<require> = half of <size>, rounded up, eg.
’Frens(3/5)’).

-f FORMAT, --format FORMAT
Specify crypto address formats: legacy, segwit,
bech32; default BTC:bech32, DOGE:legacy, ETH:legacy,
LTC:bech32

-c CRYPTOCURRENCY, --cryptocurrency CRYPTOCURRENCY
A crypto name and optional derivation path (eg.
’../<range>/<range>’); defaults: BTC:m/84’/0’/0’/0/0,
DOGE:m/44’/3’/0’/0/0, ETH:m/44’/60’/0’/0/0,
LTC:m/84’/2’/0’/0/0

-p PATH, --path PATH Modify all derivation paths by replacing the final
segment(s) w/ the supplied range(s), eg. ’.../1/-’
means .../1/[0,...)

-j JSON, --json JSON Save an encrypted JSON wallet for each Ethereum
address w/ this password, ’-’ reads it from stdin
(default: None)

-w WALLET, --wallet WALLET
Produce paper wallets in output PDF; each wallet
private key is encrypted this password

--wallet-hint WALLET_HINT
Paper wallets password hint

5

https://github.com/pjkundert/python-slip39/releases/latest

--wallet-format WALLET_FORMAT
Paper wallet size; third or ’(<h>,<w>),<margin>’
(default: third)

-s SECRET, --secret SECRET
Use the supplied 128-, 256- or 512-bit hex value as
the secret seed; ’-’ reads it from stdin (eg. output
from slip39.recover)

--bits BITS Ensure that the seed is of the specified bit length;
128, 256, 512 supported.

--passphrase PASSPHRASE
Encrypt the master secret w/ this passphrase, ’-’
reads it from stdin (default: None/’’)

-C CARD, --card CARD Card size; index, credit, business, half, third or
’(<h>,<w>),<margin>’ (default: index)

--paper PAPER Paper size (default: Letter)
--no-card Disable PDF SLIP-39 mnemonic card output
--text Enable textual SLIP-39 mnemonic output to stdout

2.4 Recovery & Re-Creation

Later, if you need to recover the wallet seed, keep entering SLIP-39 mnemonics into slip39-recovery
until the secret is recovered (invalid/duplicate mnemonics will be ignored):

$ python3 -m slip39.recovery # (or just "slip39-recovery")
Enter 1st SLIP-39 mnemonic: ab c
Enter 2nd SLIP-39 mnemonic: veteran guilt acrobat romp burden campus purple webcam uncover ...
Enter 3rd SLIP-39 mnemonic: veteran guilt acrobat romp burden campus purple webcam uncover ...
Enter 4th SLIP-39 mnemonic: veteran guilt beard romp dragon island merit burden aluminum worthy ...
2021-12-25 11:03:33 slip39.recovery Recovered SLIP-39 secret; Use: python3 -m slip39 --secret ...
383597fd63547e7c9525575decd413f7

Finally, re-create the wallet seed, perhaps including an encrypted JSON wallet file for import of
some accounts into a software wallet:

slip39 --secret 383597fd63547e7c9525575decd413f7 --json password 2>&1

2022-02-21 13:11:27 slip39 It is recommended to not use ’-s|--secret <hex>’; specify ’-’ to read from input
2022-02-21 13:11:27 slip39.layout ETH m/44’/60’/0’/0/0 : 0xb44A2011A99596671d5952CdC22816089f142FB3
2022-02-21 13:11:27 slip39.layout BTC m/84’/0’/0’/0/0 : bc1qcupw7k8enymvvsa7w35j5hq4ergtvus3zk8a8s
2022-02-21 13:11:27 slip39.layout It is recommended to not use ’-j|--json <password>’; specify ’-’ to read from input
2022-02-21 13:11:28 slip39.layout Wrote JSON SLIP39’s encrypted ETH wallet 0xb44A2011A99596671d5952CdC22816089f142FB3 derived at m/44’/60’/0’/0/0 to: SLIP39-2022-02-21+13.11.27-ETH-0xb44A2011A99596671d5952CdC22816089f142FB3.json
2022-02-21 13:11:28 slip39.layout Wrote SLIP39-encoded wallet for ’SLIP39’ to: SLIP39-2022-02-21+13.11.27-ETH-0xb44A2011A99596671d5952CdC22816089f142FB3.pdf

2.4.1 slip39.recovery Synopsis
slip39-recovery --help | sed ’s/^/: /’ # (just for output formatting)

usage: slip39-recovery [-h] [-v] [-q] [-b] [-m MNEMONIC] [-p PASSPHRASE]

Recover and output secret seed from SLIP39 or BIP39 mnemonics

options:
-h, --help show this help message and exit
-v, --verbose Display logging information.
-q, --quiet Reduce logging output.
-b, --bip39 Recover 512-bit secret seed from BIP-39 mnemonics
-m MNEMONIC, --mnemonic MNEMONIC

Supply another SLIP-39 (or a BIP-39) mnemonic phrase
-p PASSPHRASE, --passphrase PASSPHRASE

Decrypt the master secret w/ this passphrase, ’-’
reads it from stdin (default: None/’’)

If you obtain a threshold number of SLIP-39 mnemonics, you can recover the original
secret seed, and re-generate one or more Ethereum wallets from it.

6

Enter the mnemonics when prompted and/or via the command line with -m |--mnemonic "...".

The master secret seed can then be used to generate a new SLIP-39 encoded wallet:

python3 -m slip39 --secret = "ab04...7f"

BIP-39 wallets can be backed up as SLIP-39 wallets, but only at the cost of 59-word SLIP-39
mnemonics. This is because the *output* 512-bit BIP-39 seed must be stored in SLIP-39 -- not the
input 128-, 160-, 192-, 224-, or 256-bit entropy used to create the original BIP-39 mnemonic
phrase.

2.4.2 Pipelining slip39.recovery | slip39 --secret -
The tools can be used in a pipeline to avoid printing the secret. Here we generate some mnemonics, sorting them in reverse
order so we need more than just the first couple to recover. Observe the Ethereum wallet address generated.

Then, we recover the master secret seed in hex with slip39-recovery, and finally send it to slip39 --secret - to re-
generate the same wallet as we originally created.

(python3 -m slip39 --text --no-card -v \
| sort -r \
| python3 -m slip39.recovery \
| python3 -m slip39 --secret - --no-card -q) 2>&1

2022-02-21 13:11:29 slip39 First(1/1): Recover w/ 2 of 4 groups First(1), Second(1), Fam(2/4), Frens(3/6)
2022-02-21 13:11:29 slip39 1st 1 disaster 8 owner 15 syndrome
2022-02-21 13:11:29 slip39 2 always 9 shaped 16 flexible
2022-02-21 13:11:29 slip39 3 acrobat 10 shrimp 17 fused
2022-02-21 13:11:29 slip39 4 romp 11 decent 18 airport
2022-02-21 13:11:29 slip39 5 admit 12 entrance 19 engage
2022-02-21 13:11:29 slip39 6 ladybug 13 greatest 20 jerky
2022-02-21 13:11:29 slip39 7 infant 14 level
2022-02-21 13:11:29 slip39 Second(1/1): Recover w/ 2 of 4 groups First(1), Second(1), Fam(2/4), Frens(3/6)
2022-02-21 13:11:29 slip39 1st 1 disaster 8 mayor 15 problem
2022-02-21 13:11:29 slip39 2 always 9 already 16 fiscal
2022-02-21 13:11:29 slip39 3 beard 10 boundary 17 package
2022-02-21 13:11:29 slip39 4 romp 11 rebuild 18 episode
2022-02-21 13:11:29 slip39 5 carbon 12 blanket 19 romantic
2022-02-21 13:11:29 slip39 6 benefit 13 blessing 20 corner
2022-02-21 13:11:29 slip39 7 large 14 document
2022-02-21 13:11:29 slip39 Fam(2/4): Recover w/ 2 of 4 groups First(1), Second(1), Fam(2/4), Frens(3/6)
2022-02-21 13:11:29 slip39 1st 1 disaster 8 garlic 15 group
2022-02-21 13:11:29 slip39 2 always 9 liberty 16 airport
2022-02-21 13:11:29 slip39 3 ceramic 10 station 17 employer
2022-02-21 13:11:29 slip39 4 roster 11 medical 18 artist
2022-02-21 13:11:29 slip39 5 company 12 enemy 19 timely
2022-02-21 13:11:29 slip39 6 sheriff 13 involve 20 piece
2022-02-21 13:11:29 slip39 7 dominant 14 museum
2022-02-21 13:11:29 slip39 2nd 1 disaster 8 leaf 15 flea
2022-02-21 13:11:29 slip39 2 always 9 spirit 16 bracelet
2022-02-21 13:11:29 slip39 3 ceramic 10 quiet 17 mortgage
2022-02-21 13:11:29 slip39 4 scared 11 anatomy 18 endless
2022-02-21 13:11:29 slip39 5 decision 12 eyebrow 19 findings
2022-02-21 13:11:29 slip39 6 plastic 13 that 20 tenant
2022-02-21 13:11:29 slip39 7 anxiety 14 blimp
2022-02-21 13:11:29 slip39 3rd 1 disaster 8 pajamas 15 campus
2022-02-21 13:11:29 slip39 2 always 9 custody 16 mild
2022-02-21 13:11:29 slip39 3 ceramic 10 carpet 17 toxic
2022-02-21 13:11:29 slip39 4 shadow 11 losing 18 inherit
2022-02-21 13:11:29 slip39 5 ancient 12 style 19 airline
2022-02-21 13:11:29 slip39 6 amuse 13 galaxy 20 cylinder
2022-02-21 13:11:29 slip39 7 formal 14 manager
2022-02-21 13:11:29 slip39 4th 1 disaster 8 echo 15 chemical
2022-02-21 13:11:29 slip39 2 always 9 jump 16 library
2022-02-21 13:11:29 slip39 3 ceramic 10 justice 17 dictate
2022-02-21 13:11:29 slip39 4 sister 11 academic 18 dwarf
2022-02-21 13:11:29 slip39 5 cage 12 sister 19 realize
2022-02-21 13:11:29 slip39 6 hairy 13 silver 20 guest

7

2022-02-21 13:11:29 slip39 7 harvest 14 aluminum
2022-02-21 13:11:29 slip39 Frens(3/6): Recover w/ 2 of 4 groups First(1), Second(1), Fam(2/4), Frens(3/6)
2022-02-21 13:11:29 slip39 1st 1 disaster 8 infant 15 reject
2022-02-21 13:11:29 slip39 2 always 9 helpful 16 review
2022-02-21 13:11:29 slip39 3 decision 10 lecture 17 desert
2022-02-21 13:11:29 slip39 4 round 11 predator 18 evil
2022-02-21 13:11:29 slip39 5 browser 12 painting 19 staff
2022-02-21 13:11:29 slip39 6 slap 13 ticket 20 carve
2022-02-21 13:11:29 slip39 7 golden 14 cricket
2022-02-21 13:11:29 slip39 2nd 1 disaster 8 emphasis 15 party
2022-02-21 13:11:29 slip39 2 always 9 result 16 jury
2022-02-21 13:11:29 slip39 3 decision 10 mama 17 branch
2022-02-21 13:11:29 slip39 4 scatter 11 sharp 18 pistol
2022-02-21 13:11:29 slip39 5 anxiety 12 should 19 unknown
2022-02-21 13:11:29 slip39 6 peaceful 13 year 20 inside
2022-02-21 13:11:29 slip39 7 antenna 14 talent
2022-02-21 13:11:29 slip39 3rd 1 disaster 8 density 15 short
2022-02-21 13:11:29 slip39 2 always 9 tadpole 16 engage
2022-02-21 13:11:29 slip39 3 decision 10 diminish 17 mortgage
2022-02-21 13:11:29 slip39 4 shaft 11 clinic 18 endorse
2022-02-21 13:11:29 slip39 5 blue 12 broken 19 scholar
2022-02-21 13:11:29 slip39 6 ticket 13 cultural 20 viral
2022-02-21 13:11:29 slip39 7 tofu 14 regret
2022-02-21 13:11:29 slip39 4th 1 disaster 8 advance 15 snapshot
2022-02-21 13:11:29 slip39 2 always 9 average 16 legal
2022-02-21 13:11:29 slip39 3 decision 10 drove 17 reject
2022-02-21 13:11:29 slip39 4 skin 11 engage 18 party
2022-02-21 13:11:29 slip39 5 agency 12 income 19 work
2022-02-21 13:11:29 slip39 6 mama 13 dictate 20 olympic
2022-02-21 13:11:29 slip39 7 lyrics 14 exclude
2022-02-21 13:11:29 slip39 5th 1 disaster 8 rhythm 15 traffic
2022-02-21 13:11:29 slip39 2 always 9 lunar 16 diminish
2022-02-21 13:11:29 slip39 3 decision 10 envelope 17 adjust
2022-02-21 13:11:29 slip39 4 snake 11 type 18 duckling
2022-02-21 13:11:29 slip39 5 coastal 12 papa 19 single
2022-02-21 13:11:29 slip39 6 gasoline 13 saver 20 large
2022-02-21 13:11:29 slip39 7 purple 14 lend
2022-02-21 13:11:29 slip39 6th 1 disaster 8 memory 15 velvet
2022-02-21 13:11:29 slip39 2 always 9 flavor 16 valuable
2022-02-21 13:11:29 slip39 3 decision 10 election 17 cylinder
2022-02-21 13:11:29 slip39 4 spider 11 meaning 18 submit
2022-02-21 13:11:29 slip39 5 detailed 12 silver 19 vexed
2022-02-21 13:11:29 slip39 6 aunt 13 stay 20 boring
2022-02-21 13:11:29 slip39 7 swing 14 island
2022-02-21 13:11:29 slip39.layout ETH m/44’/60’/0’/0/0 : 0x2Ceb7c68fc09a39B31F0fF6b45256C01D8C86AF7
2022-02-21 13:11:29 slip39.layout BTC m/84’/0’/0’/0/0 : bc1qvg402zmxlw3lwanz7rxr30kpzf6hu38euxep7v
2022-02-21 13:11:29 slip39.recovery Recovered 128-bit SLIP-39 secret with 5 (1st, 2nd, 3rd, 7th, 8th) of 8 supplied mnemonics

2.5 Generation of Addresses
For systems that require a stream of groups of wallet Addresses (eg. for preparing invoices for clients, with a choice of
cryptocurrency payment options), slip-generator can produce a stream of groups of addresses.

2.5.1 slip39-generator Synopsis
slip39-generator --help --version | sed ’s/^/: /’ # (just for output formatting)

usage: slip39-generator [-h] [-v] [-q] [-s SECRET] [-f FORMAT]
[-c CRYPTOCURRENCY] [-p PATH] [-d DEVICE]
[-b BAUDRATE] [-e ENCRYPT] [--decrypt ENCRYPT]
[--enumerated] [--no-enumerate] [--receive]
[--corrupt CORRUPT]

Generate public wallet address(es) from a secret seed

options:
-h, --help show this help message and exit
-v, --verbose Display logging information.

8

-q, --quiet Reduce logging output.
-s SECRET, --secret SECRET

Use the supplied 128-, 256- or 512-bit hex value as
the secret seed; ’-’ (default) reads it from stdin
(eg. output from slip39.recover)

-f FORMAT, --format FORMAT
Specify crypto address formats: legacy, segwit,
bech32; default BTC:bech32, DOGE:legacy, ETH:legacy,
LTC:bech32

-c CRYPTOCURRENCY, --cryptocurrency CRYPTOCURRENCY
A crypto name and optional derivation path (default:
"ETH:{Account.path_default(’ETH’)}"), optionally w/
ranges, eg: ETH:../0/-

-p PATH, --path PATH Modify all derivation paths by replacing the final
segment(s) w/ the supplied range(s), eg. ’.../1/-’
means .../1/[0,...)

-d DEVICE, --device DEVICE
Use this serial device to transmit (or --receive)
records

-b BAUDRATE, --baudrate BAUDRATE
Set the baud rate of the serial device (default:
115200)

-e ENCRYPT, --encrypt ENCRYPT
Secure the channel from errors and/or prying eyes with
ChaCha20Poly1305 encryption w/ this password; ’-’
reads from stdin

--decrypt ENCRYPT
--enumerated Include an enumeration in each record output (required

for --encrypt)
--no-enumerate Disable enumeration of output records
--receive Receive a stream of slip.generator output
--corrupt CORRUPT Corrupt a percentage of output symbols

Once you have a secret seed (eg. from slip39.recovery), you can generate a sequence
of HD wallet addresses from it. Emits rows in the form:

<enumeration> [<address group(s)>]

If the output is to be transmitted by an insecure channel (eg. a serial port), which may insert
errors or allow leakage, it is recommended that the records be encrypted with a cryptographic
function that includes a message authentication code. We use ChaCha20Poly1305 with a password and a
random nonce generated at program start time. This nonce is incremented for each record output.

Since the receiver requires the nonce to decrypt, and we do not want to separately transmit the
nonce and supply it to the receiver, the first record emitted when --encrypt is specified is the
random nonce, encrypted with the password, itself with a known nonce of all 0 bytes. The plaintext
data is random, while the nonce is not, but since this construction is only used once, it should be
satisfactory. This first nonce record is transmitted with an enumeration prefix of "nonce".

2.5.2 Producing Addresses
Addresses can be produced in plaintext or encrypted, and output to stdout or to a serial port.

slip39-generator --secret ffffffffffffffffffffffffffffffff --path ’../-3’ | sed ’s/^/: /’ # (just for output formatting)

0: [["ETH", "m/44’/60’/0’/0/0", "0x824b174803e688dE39aF5B3D7Cd39bE6515A19a1"], ["BTC", "m/84’/0’/0’/0/0", "bc1q9yscq3l2yfxlvnlk3cszpqefparrv7tk24u6pl"]]
1: [["ETH", "m/44’/60’/0’/0/1", "0x8D342083549C635C0494d3c77567860ee7456963"], ["BTC", "m/84’/0’/0’/0/1", "bc1qnec684yvuhfrmy3q856gydllsc54p2tx9w955c"]]
2: [["ETH", "m/44’/60’/0’/0/2", "0x52787E24965E1aBd691df77827A3CfA90f0166AA"], ["BTC", "m/84’/0’/0’/0/2", "bc1q2snj0zcg23dvjpw7m9lxtu0ap0hfl5tlddq07j"]]
3: [["ETH", "m/44’/60’/0’/0/3", "0xc2442382Ae70c77d6B6840EC6637dB2422E1D44e"], ["BTC", "m/84’/0’/0’/0/3", "bc1qxwekjd46aa5n0s3dtsynvtsjwsne7c5f5w5dsd"]]

To produce accounts from a BIP-39 or SLIP-39 seed, recover it using slip39-recovery.
Here’s an example of recovering a test BIP-39 seed; note that it yields the well-known ETH 0xfc20...1B5E and BTC

bc1qk0...gnn2 accounts associated with this test Mnemonic:

slip39-recovery --bip39 --mnemonic ’zoo zoo zoo zoo zoo zoo zoo zoo zoo zoo zoo wrong’ \
| slip39-generator --secret - --path ’../-3’ | sed ’s/^/: /’ # (just for output formatting)

9

0: [["ETH", "m/44’/60’/0’/0/0", "0xfc2077CA7F403cBECA41B1B0F62D91B5EA631B5E"], ["BTC", "m/84’/0’/0’/0/0", "bc1qk0a9hr7wjfxeenz9nwenw9flhq0tmsf6vsgnn2"]]
1: [["ETH", "m/44’/60’/0’/0/1", "0xd1a7451beB6FE0326b4B78e3909310880B781d66"], ["BTC", "m/84’/0’/0’/0/1", "bc1qkd33yck74lg0kaq4tdcmu3hk4yruhjayxpe9ug"]]
2: [["ETH", "m/44’/60’/0’/0/2", "0x578270B5E5B53336baC354756b763b309eCA90Ef"], ["BTC", "m/84’/0’/0’/0/2", "bc1qvr7e5aytd0hpmtaz2d443k364hprvqpm3lxr8w"]]
3: [["ETH", "m/44’/60’/0’/0/3", "0x909f59835A5a120EafE1c60742485b7ff0e305da"], ["BTC", "m/84’/0’/0’/0/3", "bc1q6t9vhestkcfgw4nutnm8y2z49n30uhc0kyjl0d"]]

We can encrypt the output, to secure the sequence (and due to integrated MACs, ensures no errors occur over an insecure
channel like a serial cable):

slip39-recovery --bip39 --mnemonic ’zoo zoo zoo zoo zoo zoo zoo zoo zoo zoo zoo wrong’ \
| slip39-generator --secret - --path ’../-3’ --encrypt ’password’ | sed ’s/^/: /’ # (just for output formatting)

nonce: 1deba41201cbf8caad1080f3f282ab0afb1094bf3c214b68a4c4656e
0: 09072356091517e2d46530ba8734ad4efafc7375e0fc107ae81faaf70c7ff572bb64e0a1df038d4648738a09859b01b1cc3b69de58e5de0239d4c87011f2f95119cd4cdac9062e4c306ed9fdea1267e55adc199d6977cd809fc1c6997b7e54329e72436e936e957861d2fb024cdea273af96134e36b013fa6ef7455ffd050b2358b752a1169af66f4ffd54563276dba71731defd38e0183c33c9f2fea8dec534058fad7af9
1: 9c10cd5a6089ba284a45b46bb86f545461d96df6eaf8c4fa01aa436ed038a51f279d6549fd57be60f1d24832796f13da46fa7e4821e61d57ea95358ff5ca37e58ded514ecb06b72ff67e448eb0007677ac033d94e06e1b4db275b9268cece03b5443284ef47f4648400a5b20681223e06ff1e0e1d1a31bb533e1df0dc082f220e0f5676b4795507194650698fa17e18808580db1bed5b78d8b5d973e81e0e5baac5abdb952
2: 9299f0c66c745a22c18a8bf702cc623057bb6a42bfb7e2a0f6df3daddf30158e3a30c84bd39850f29005b9b8e24451d75d0478dea5df00398ea0ad0123541b60dd2f95e3786bc36ec1b372ee8fdad660f1d71f6836b788841f6ce4c91129aafbb28ecf118c8d312c243d63fd19f1d3fc7661054d60392e8d088600f77d47e749727fd6565345c0f2b347ec13cf0130aa33704a789320360a60cb039d57865f7bbe38a158d2
3: 19e763bf409ec01a2e1fec4bbdd9d30ee27052445275c9431c429f3998aa957fcc0bc86cb03609cf1161dd5bf50d65b8266eba4b8b859f727a57663b9b320b6597b44dfa94d23623581348fe8b362c1ac095ec6de9efb1bc9509f39ceea47299021e626238beb944157030698c6ce5e136335e2f92e0a45ec4fa0bb0d11bf7ee2b01e147a5387a80cb7660aa19dd42fa2bb64a347bc4af9fefaff03bd8fe26589a34d453fb

On the receiving computer, we can decrypt and recover the stream of accounts from the wallet seed; any rows with errors
are ignored:

slip39-recovery --bip39 --mnemonic ’zoo zoo zoo zoo zoo zoo zoo zoo zoo zoo zoo wrong’ \
| slip39-generator --secret - --path ’../-3’ --encrypt ’password’ \
| slip39-generator --receive --decrypt ’password’ | sed ’s/^/: /’ # (just for output formatting)

0: [["ETH", "m/44’/60’/0’/0/0", "0xfc2077CA7F403cBECA41B1B0F62D91B5EA631B5E"], ["BTC", "m/84’/0’/0’/0/0", "bc1qk0a9hr7wjfxeenz9nwenw9flhq0tmsf6vsgnn2"]]
1: [["ETH", "m/44’/60’/0’/0/1", "0xd1a7451beB6FE0326b4B78e3909310880B781d66"], ["BTC", "m/84’/0’/0’/0/1", "bc1qkd33yck74lg0kaq4tdcmu3hk4yruhjayxpe9ug"]]
2: [["ETH", "m/44’/60’/0’/0/2", "0x578270B5E5B53336baC354756b763b309eCA90Ef"], ["BTC", "m/84’/0’/0’/0/2", "bc1qvr7e5aytd0hpmtaz2d443k364hprvqpm3lxr8w"]]
3: [["ETH", "m/44’/60’/0’/0/3", "0x909f59835A5a120EafE1c60742485b7ff0e305da"], ["BTC", "m/84’/0’/0’/0/3", "bc1q6t9vhestkcfgw4nutnm8y2z49n30uhc0kyjl0d"]]

2.6 The slip39 module API
Provide SLIP-39 Mnemonic set creation from a 128-bit master secret, and recovery of the secret from a subset of the provided
Mnemonic set.

2.6.1 slip39.create
Creates a set of SLIP-39 groups and their mnemonics.

Key Description
name Who/what the account is for
group_threshold How many groups’ data is required to recover the account(s)
groups Each group’s description, as {"<group>":(<required>, <members>), . . . }
master_secret 128-bit secret (default: from secrets.token_bytes)
passphrase An optional additional passphrase required to recover secret (default: "")
iteration_exponent For encrypted secret, exponentially increase PBKDF2 rounds (default: 1)
cryptopaths A number of crypto names, and their derivation paths]
strength Desired master_secret strength, in bits (default: 128)

Outputs a slip39.Details namedtuple containing:
Key Description
name (same)
group_threshold (same)
groups Like groups, w/ <members> = ["<mnemonics>", . . .]
accounts Resultant list of groups of accounts

This is immediately usable to pass to slip39.output.

import codecs
import random

#
NOTE:
#
We turn off randomness here during SLIP-39 generation to get deterministic phrases;
during normal operation, secure entropy is used during mnemonic generation, yielding
random phrases, even when the same seed is used multiple times.
#
import shamir_mnemonic

10

shamir_mnemonic.shamir.RANDOM_BYTES = lambda n: b’\00’ * n

import slip39

cryptopaths = [("ETH","m/44’/60’/0’/0/-2"), ("BTC","m/44’/0’/0’/0/-2")]
master_secret = b’\xFF’ * 16
passphrase = b""
create_details = slip39.create(

"Test", 2, { "Mine": (1,1), "Fam": (2,3) },
master_secret=master_secret, passphrase=passphrase, cryptopaths=cryptopaths)

[
[

f"{g_name}({g_of}/{len(g_mnems)}) #{g_n+1}:" if l_n == 0 else ""
] + words
for g_name,(g_of,g_mnems) in create_details.groups.items()
for g_n,mnem in enumerate(g_mnems)
for l_n,(line,words) in enumerate(slip39.organize_mnemonic(

mnem, label=f"{g_name}({g_of}/{len(g_mnems)}) #{g_n+1}:"))
]

0 1 2 3
Mine(1/1) #1: 1 academic 8 safari 15 standard

2 acid 9 drug 16 angry
3 acrobat 10 browser 17 similar
4 easy 11 trash 18 aspect
5 change 12 fridge 19 smug
6 injury 13 busy 20 violence
7 painting 14 finger

Fam(2/3) #1: 1 academic 8 prevent 15 dwarf
2 acid 9 mouse 16 dream
3 beard 10 daughter 17 flavor
4 echo 11 ancient 18 oral
5 crystal 12 fortune 19 chest
6 machine 13 ruin 20 marathon
7 bolt 14 warmth

Fam(2/3) #2: 1 academic 8 prune 15 briefing
2 acid 9 pickup 16 often
3 beard 10 device 17 escape
4 email 11 device 18 sprinkle
5 dive 12 peanut 19 segment
6 warn 13 enemy 20 devote
7 ranked 14 graduate

Fam(2/3) #3: 1 academic 8 dining 15 intimate
2 acid 9 invasion 16 satoshi
3 beard 10 bumpy 17 hobo
4 entrance 11 identify 18 ounce
5 alarm 12 anxiety 19 both
6 health 13 august 20 award
7 discuss 14 sunlight

Add the resultant HD Wallet addresses:

[
[account.path, account.address]
for group in create_details.accounts
for account in group

]

0 1
m/44’/60’/0’/0/0 0x824b174803e688dE39aF5B3D7Cd39bE6515A19a1
m/44’/0’/0’/0/0 bc1qm5ua96hx30snwrwsfnv97q96h53l86ded7wmjl
m/44’/60’/0’/0/1 0x8D342083549C635C0494d3c77567860ee7456963
m/44’/0’/0’/0/1 bc1qwz6v9z49z8mk5ughj7r78hjsp45jsxgzh29lnh
m/44’/60’/0’/0/2 0x52787E24965E1aBd691df77827A3CfA90f0166AA
m/44’/0’/0’/0/2 bc1q690m430qu29auyefarwfrvfumncunvyw6v53n9

11

2.6.2 slip39.output_pdf
Key Description
name (same as slip39.create)
group_threshold (same as slip39.create)
groups Like groups, w/ <members> = ["<mnemonics>", . . .]
accounts Resultant { "path": Account, . . . }
card_format ’index’, ’(<h>,<w>),<margin>’, . . .
paper_format ’Letter’, . . .

Produce a PDF containing all the SLIP-39 details for the account.

pdf,accounts = slip39.output_pdf(*create_details)

2.6.3 slip39.write_pdfs
Key Description
names A sequence of Seed names, or a dict of { name: <details> } (from slip39.create)
master_secret A Seed secret (only appropriate if exactly one name supplied)
passphrase A SLIP-39 passphrase (not Trezor compatible; use "hidden wallet" phrase on device instead)
group A dict of {"<group>":(<required>, <members>), . . . }
group_threshold How many groups are required to recover the Seed
cryptocurrency A sequence of ["<crypto>", "<crypto>:<derivation>", . . .] w/ optional ranges
edit Derivation range(s) for each cryptocurrency, eg. "../0-4/-9" is 9 accounts first 5 change addresses
card_format Card size (eg. "credit"); False specifies no SLIP-39 cards (ie. only BIP-39 or JSON paper wallets)
paper_format Paper size (eg. "letter")
filename A filename; may contain ". . . {name}. . . " formatting, for name, date, time, crypto path and address
json_pwd If passphrase supplied, Ethereum JSON wallet files will be saved, and produced into PDF
text If True, outputs SLIP-39 phrases to stdout
wallet_pwd If passphrase supplied, produces encrypted BIP-38 or JSON paper wallets to PDF
wallet_pwd_hint An optional passphrase hint, printed on paper wallet
wallet_format Paper wallet size, (eg. "third"); the default is 1/3 letter size

For each of the names provided, produces a separate PDF containing all the SLIP-39 details and optionally encrypted
BIP-38 paper wallets and Ethereum JSON wallets for the specified cryptocurrency accounts derived from the seed, and writes
the PDF and JSON wallets to the specified file name(s).

slip39.write_pdfs(...)

2.6.4 slip39.recover
Takes a number of SLIP-39 mnemonics, and if sufficient group_threshold groups’ mnemonics are present (and the options
passphrase is supplied), the master_secret is recovered. This can be used with slip39.accounts to directly obtain any
Account data.

Note that the passphrase is not checked; entering a different passphrase for the same set of mnemonics will recover a
different wallet! This is by design; it allows the holder of the SLIP-39 mnemonic phrases to recover a "decoy" wallet by
supplying a specific passphrase, while protecting the "primary" wallet.

Therefore, it is essential to remember any non-default (empty) passphrase used, separately and securely. Take great care
in deciding if you wish to use a passphrase with your SLIP-39 wallet!

Key Description
mnemonics ["<mnemonics>", . . .]
passphrase Optional passphrase to decrypt secret

recoverydecoy = slip39.recover(
create_details.groups[’Mine’][1][:] + create_details.groups[’Fam’][1][:2],
passphrase=b"wrong!"

)
recoverydecoyhex = codecs.encode(recoverydecoy, ’hex_codec’).decode(’ascii’)

recoveryvalid = slip39.recover(
create_details.groups[’Mine’][1][:] + create_details.groups[’Fam’][1][:2],
passphrase=passphrase

)
recoveryvalidhex = codecs.encode(recoveryvalid, ’hex_codec’).decode(’ascii’)

[[f"{len(recoverydecoy)*8}-bit secret w/ decoy password recovered:"]] + [
[f"{recoverydecoyhex[b*32:b*32+32]}"]

for b in range(len(recoverydecoyhex) // 32)
] + [[f"{len(recoveryvalid)*8}-bit secret recovered:"]] + [

12

[f"{recoveryvalidhex[b*32:b*32+32]}"]
for b in range(len(recoveryvalidhex) // 32)

]

0
128-bit secret w/ decoy password recovered:
2e522cea2b566840495c220cf79c756e
128-bit secret recovered:
ffffffffffffffffffffffffffffffff

3 Conversion from BIP-39 to SLIP-39
If we already have a BIP-39 wallet, it would certainly be nice to be able to create nice, safe SLIP-39 mnemonics for it, and discard
the unsafe BIP-39 mnemonics we have lying around, just waiting to be accidentally discovered and the account compromised!

3.1 BIP-39 vs. SLIP-39 Incompatibility
Unfortunately, it is not possible to cleanly convert a BIP-39 derived wallet into a SLIP-39 wallet. Both of these techniques
preserve "entropy" (random) bits, but these bits are used differently – and incompatibly – to derive the resultant Ethereum
wallets.

The best we can do is to preserve the 512-bit output of the BIP-39 mnemonic phrase as a set of 512-bit SLIP-39 mnemonics.

3.1.1 BIP-39 Entropy to Mnemonic
BIP-39 uses a single set of 12, 15, 18, 21 or 24 BIP-39 words to carefully preserve a specific 128 to 256 bits of initial entropy.
Here’s a 128-bit (12-word) example using some fixed "entropy" 0xFFFF..FFFF:

from mnemonic import Mnemonic
bip39_english = Mnemonic("english")
entropy = b’\xFF’ * 16
entropy_mnemonic = bip39_english.to_mnemonic(entropy)
[
[entropy_mnemonic]

]

0
zoo zoo zoo zoo zoo zoo zoo zoo zoo zoo zoo wrong

Each word is one of a corpus of 2048 words; therefore, each word encodes 11 bits (2048 = 2**11) of entropy. So, we
provided 128 bits, but 12*11 = 132. So where does the extra 4 bits of data come from?

It comes from the first few bits of a SHA256 hash of the entropy, which is added to the end of the supplied 128 bits, to
reach the required 132 bits: 132 / 11 == 12 words.

This last 4 bits (up to 8 bits, for a 256-bit 24-word BIP-39) is checked, when validating the BIP-39 mnemonic. Therefore,
making up a random BIP-39 mnemonic will succeed only 1 / 16 times on average, due to an incorrect checksum 4-bit (16 ==
2**4) . Lets check:

def random_words(n, count=100):
for _ in range(count):

yield ’ ’.join(random.choice(bip39_english.wordlist) for _ in range(n))

successes = sum(
bip39_english.check(m)
for i,m in enumerate(random_words(12, 10000))) / 100

[[f"Valid random 12-word mnemonics:"]] + [
[f"{successes}%"]] + [
[f"~ 1/{100/successes:.3}"]]

0
Valid random 12-word mnemonics:
6.15%
~ 1/16.3

Sure enough, about 1/16 random 12-word phrases are valid BIP-39 mnemonics. OK, we’ve got the contents of the BIP-39
phrase dialed in. How is it used to generate accounts?

13

3.1.2 BIP-39 Mnemonic to Seed
Unfortunately, we do not use the carefully preserved 128-bit entropy to generate the wallet! Nope, it is stretched to a 512-bit
seed using PBKDF2 HMAC SHA512. The normalized text (not the entropy bytes) of the 12-word mnemonic is then used (with
a salt of "mnemonic" plus an optional passphrase, "" by default), to obtain the seed:

seed = bip39_english.to_seed(entropy_mnemonic)
seedhex = codecs.encode(seed, ’hex_codec’).decode(’ascii’)
[
[f"{len(seed)*8}-bit seed:"]] + [
[f"{seedhex[b*32:b*32+32]}"]
for b in range(len(seedhex) // 32)

]

0
512-bit seed:
b6a6d8921942dd9806607ebc2750416b
289adea669198769f2e15ed926c3aa92
bf88ece232317b4ea463e84b0fcd3b53
577812ee449ccc448eb45e6f544e25b6

3.1.3 BIP-39 Seed to Address
Finally, this 512-bit seed is used to derive HD wallet(s). The HD Wallet key derivation process consumes whatever seed entropy
is provided (512 bits in the case of BIP-39), and uses HMAC SHA512 with a prefix of b"Bitcoin seed" to stretch the supplied
seed entropy to 64 bytes (512 bits). Then, the HD Wallet path segments are iterated through, permuting the first 32 bytes of
this material as the key with the second 32 bytes of material as the chain node, until finally the 32-byte (256-bit) Ethereum
account private key is produced. We then use this private key to compute the rest of the Ethereum account details, such as its
public address.

path = "m/44’/60’/0’/0/0"
eth_hd = slip39.account(seed, ’ETH’, path)
[
[f"{len(eth_hd.key)*4}-bit derived key at path {path!r}:"]] + [
[f"{eth_hd.key}"]] + [
["... yields ..."]] + [
[f"Ethereum address: {eth_hd.address}"]

]

0
256-bit derived key at path "m/44’/60’/0’/0/0":
7af65ba4dd53f23495dcb04995e96f47c243217fc279f10795871b725cd009ae
. . . yields . . .
Ethereum address: 0xfc2077CA7F403cBECA41B1B0F62D91B5EA631B5E

Thus, we see that while the 12-word BIP-39 mnemonic careful preserves the original 128-bit entropy, this data is not
directly used to derive the wallet private key and address. Also, since an irreversible hash is used to derive the seed from the
mnemonic, we can’t reverse the process on the seed to arrive back at the BIP-39 mnemonic phrase.

3.1.4 SLIP-39 Entropy to Mnemonic
Just like BIP-39 carefully preserves the original 128-bit entropy bytes in a single 12-word mnemonic phrase, SLIP-39 preserves
the original 128-bit entropy in a set of 30-word mnemonic phrases.

name,thrs,grps,acct = slip39.create(
"Test", 2, { "Mine": (1,1), "Fam": (2,3) }, entropy)

[
[f"{g_name}({g_of}/{len(g_mnems)}) #{g_n+1}:" if l_n == 0 else ""] + words
for g_name,(g_of,g_mnems) in grps.items()
for g_n,mnem in enumerate(g_mnems)
for l_n,(line,words) in enumerate(slip39.organize_mnemonic(

mnem, rows=7, cols=3, label=f"{g_name}({g_of}/{len(g_mnems)}) #{g_n+1}:"))
]

14

0 1 2 3
Mine(1/1) #1: 1 academic 8 safari 15 standard

2 acid 9 drug 16 angry
3 acrobat 10 browser 17 similar
4 easy 11 trash 18 aspect
5 change 12 fridge 19 smug
6 injury 13 busy 20 violence
7 painting 14 finger

Fam(2/3) #1: 1 academic 8 prevent 15 dwarf
2 acid 9 mouse 16 dream
3 beard 10 daughter 17 flavor
4 echo 11 ancient 18 oral
5 crystal 12 fortune 19 chest
6 machine 13 ruin 20 marathon
7 bolt 14 warmth

Fam(2/3) #2: 1 academic 8 prune 15 briefing
2 acid 9 pickup 16 often
3 beard 10 device 17 escape
4 email 11 device 18 sprinkle
5 dive 12 peanut 19 segment
6 warn 13 enemy 20 devote
7 ranked 14 graduate

Fam(2/3) #3: 1 academic 8 dining 15 intimate
2 acid 9 invasion 16 satoshi
3 beard 10 bumpy 17 hobo
4 entrance 11 identify 18 ounce
5 alarm 12 anxiety 19 both
6 health 13 august 20 award
7 discuss 14 sunlight

Since there is some randomness used in the SLIP-39 mnemonics generation process, we would get a different set of words
each time for the fixed "entropy" 0xFFFF..FF used in this example (if we hadn’t manually disabled entropy for shamir_mnemonic,
above), but we will always derive the same Ethereum account 0x824b..19a1 at the specified HD Wallet derivation path.

[
["Crypto", "HD Wallet Path:", "Ethereum Address:"]

] + [
[account.crypto, account.path, account.address]
for group in create_details.accounts
for account in group

]

0 1 2
Crypto HD Wallet Path: Ethereum Address:
ETH m/44’/60’/0’/0/0 0x824b174803e688dE39aF5B3D7Cd39bE6515A19a1
BTC m/44’/0’/0’/0/0 bc1qm5ua96hx30snwrwsfnv97q96h53l86ded7wmjl
ETH m/44’/60’/0’/0/1 0x8D342083549C635C0494d3c77567860ee7456963
BTC m/44’/0’/0’/0/1 bc1qwz6v9z49z8mk5ughj7r78hjsp45jsxgzh29lnh
ETH m/44’/60’/0’/0/2 0x52787E24965E1aBd691df77827A3CfA90f0166AA
BTC m/44’/0’/0’/0/2 bc1q690m430qu29auyefarwfrvfumncunvyw6v53n9

3.1.5 SLIP-39 Mnemonic to Seed
Lets prove that we can actually recover the original entropy from the SLIP-39 recovery mnemonics; in this case, we’ve specified
a SLIP-39 group_threshold of 2 groups, so we’ll use 1 mnemonic from Mine, and 2 from Fam:

_,mnem_mine = grps[’Mine’]
_,mnem_fam = grps[’Fam’]
recseed = slip39.recover(mnem_mine + mnem_fam[:2])
recseedhex = codecs.encode(recseed, ’hex_codec’).decode(’ascii’)
[
[f"{len(recseed)*8}-bit seed:"]

] + [
[f"{recseedhex[b*32:b*32+32]}"]

for b in range(len(recseedhex) // 32)
]

0
128-bit seed:
ffffffffffffffffffffffffffffffff

15

3.1.6 SLIP-39 Seed to Address
And we’ll use the same style of code as for the BIP-39 example above, to derive the Ethereum address directly from this
recovered 128-bit seed:

receth = slip39.account(recseed, ’ETH’, path)
[
[f"{len(receth.key)*4}-bit derived key at path {path!r}:"]] + [
[f"{receth.key}"]] + [
["... yields ..."]] + [
[f"Ethereum address: {receth.address}"]

]

0
256-bit derived key at path "m/44’/60’/0’/0/0":
6a2ec39aab88ec0937b79c8af6aaf2fd3c909e9a56c3ddd32ab5354a06a21a2b
. . . yields . . .
Ethereum address: 0x824b174803e688dE39aF5B3D7Cd39bE6515A19a1

And we see that we obtain the same Ethereum address 0x824b..1a2b as we originally got from slip39.create above.
However, this is not the Ethereum wallet address obtained from BIP-39 with exactly the same 0xFFFF...FF entropy, which was
0xfc20..1B5E. This is due to the fact that BIP-39 does not use the recovered entropy to produce the seed like SLIP-39 does,
but applies additional one-way hashing of the mnemonic to produce the seed.

3.2 BIP-39 vs SLIP-39 Key Derivation Summary
At no time in BIP-39 account derivation is the original 128-bit mnemonic entropy used directly in the derivation of the wallet
key. This differs from SLIP-39, which directly uses the 128-bit mnemonic entropy recovered from the SLIP-39 Shamir’s Secret
Sharing System recovery process to generate each HD Wallet account’s private key.

Furthermore, there is no point in the BIP-39 entropy to account generation where we could introduce a known 128-bit
seed and produce a known Ethereum wallet from it, other than as the very beginning.

3.2.1 BIP-39 Backup via SLIP-39
There is one approach which can preserve an original BIP-39 wallet address, using SLIP-39 mnemonics.

It is clumsy, as it preserves the BIP-39 output 512-bit stretched seed, and the resultant 59-word SLIP-39 mnemonics
cannot be used (at present) with the Trezor hardware wallet. They can, however, be used to recover the HD wallet private
keys without access to the original BIP-39 mnemonic phrase – you could generate and distribute a set of more secure SLIP-39
mnemonic phrases, instead of trying to secure the original BIP-39 mnemonic.

We’ll use slip39.recovery --bip39 ... to recover the 512-bit stretched seed from BIP-39:

(python3 -m slip39.recovery --bip39 \
--mnemonic "zoo zoo zoo zoo zoo zoo zoo zoo zoo zoo zoo wrong"

) 2>&1

2022-02-21 13:11:41 slip39.recovery Recovered 512-bit BIP-39 secret from english mnemonic
b6a6d8921942dd9806607ebc2750416b289adea669198769f2e15ed926c3aa92bf88ece232317b4ea463e84b0fcd3b53577812ee449ccc448eb45e6f544e25b6

Then we can generate a 59-word SLIP-39 mnemonic set from the 512-bit secret:

(python3 -m slip39.recovery --bip39 \
--mnemonic "zoo zoo zoo zoo zoo zoo zoo zoo zoo zoo zoo wrong" \

| python3 -m slip39 --secret - --no-card
) 2>&1

2022-02-21 13:11:41 slip39.recovery Recovered 512-bit BIP-39 secret from english mnemonic
2022-02-21 13:11:41 slip39.layout ETH m/44’/60’/0’/0/0 : 0xfc2077CA7F403cBECA41B1B0F62D91B5EA631B5E
2022-02-21 13:11:41 slip39.layout BTC m/84’/0’/0’/0/0 : bc1qk0a9hr7wjfxeenz9nwenw9flhq0tmsf6vsgnn2

This 0xfc20..1B5E address is the same Ethereum address as is recovered on a Trezor using this BIP-39 mnemonic phrase.

4 Building & Installing
The python-slip39 project is tested under both homebrew:

$ brew install python-tk@3.9

and using the official python.org/downloads installer.
Either of these methods will get you a python3 executable running version 3.9+, usable for running the slip39 module,

and the slip39.gui GUI.

16

https://www.python.org/downloads/

4.1 The slip39 Module
To build the wheel and install slip39 manually:

$ git clone git@github.com:pjkundert/python-slip39.git
$ make -C python-slip39 install

To install from Pypi, including the optional requirements to run the PySimpleGUI/tkinter GUI, support serial I/O, and
to support creating encrypted Ethereum JSON wallets:

$ python3 -m pip install slip39[gui,serial,json]

4.2 The slip39 GUI
To install from Pypi, including the optional requirements to run the PySimpleGUI/tkinter GUI:

$ python3 -m pip install slip39[gui]

Then, there are several ways to run the GUI:

$ python3 -m slip39.gui # Execute the python slip39.gui module main method
$ slip39-gui # Run the main function provided by the slip39.gui module

4.2.1 The macOS SLIP-39.app GUI
You can build the native macOS SLIP-39.app App.

This requires the official python.org/downloads installer; the homebrew python-tk@3.9 will not work for building the native
app using either PyInstaller. (The py2app approach doesn’t work in either version of Python).

$ git clone git@github.com:pjkundert/python-slip39.git
$ make -C python-slip39 app

5 Dependencies
Internally, python-slip39 project uses Trezor’s python-shamir-mnemonic to encode the seed data to SLIP-39 phrases, python-
hdwallet to convert seeds to ETH, BTC, LTC and DOGE wallets, and the Ethereum project’s eth-account to produce encrypted
JSON wallets for specified Ethereum accounts.

5.1 The python-shamir-mnemonic API
To use it directly, obtain , and install it, or run python3 -m pip install shamir-mnemonic.

$ shamir create custom --group-threshold 2 --group 1 1 --group 1 1 --group 2 5 --group 3 6
Using master secret: 87e39270d1d1976e9ade9cc15a084c62
Group 1 of 4 - 1 of 1 shares required:
merit aluminum acrobat romp capacity leader gray dining thank rhyme escape genre havoc furl breathe class pitch location render beard
Group 2 of 4 - 1 of 1 shares required:
merit aluminum beard romp briefing email member flavor disaster exercise cinema subject perfect facility genius bike include says ugly package
Group 3 of 4 - 2 of 5 shares required:
merit aluminum ceramic roster already cinema knit cultural agency intimate result ivory makeup lobe jerky theory garlic ending symbolic endorse
merit aluminum ceramic scared beam findings expand broken smear cleanup enlarge coding says destroy agency emperor hairy device rhythm reunion
merit aluminum ceramic shadow cover smith idle vintage mixture source dish squeeze stay wireless likely privacy impulse toxic mountain medal
merit aluminum ceramic sister duke relate elite ruler focus leader skin machine mild envelope wrote amazing justice morning vocal injury
merit aluminum ceramic smug buyer taxi amazing marathon treat clinic rainbow destroy unusual keyboard thumb story literary weapon away move
Group 4 of 4 - 3 of 6 shares required:
merit aluminum decision round bishop wrote belong anatomy spew hour index fishing lecture disease cage thank fantasy extra often nail
merit aluminum decision scatter carpet spine ruin location forward priest cage security careful emerald screw adult jerky flame blanket plot
merit aluminum decision shaft arcade infant argue elevator imply obesity oral venture afraid slice raisin born nervous universe usual racism
merit aluminum decision skin already fused tactics skunk work floral very gesture organize puny hunting voice python trial lawsuit machine
merit aluminum decision snake cage premium aide wealthy viral chemical pharmacy smoking inform work cubic ancestor clay genius forward exotic
merit aluminum decision spider boundary lunar staff inside junior tendency sharp editor trouble legal visual tricycle auction grin spit index

17

https://python.org/downloads
https://gihub.com/trezor/python-shamir-mnemonic.git
https://github.com/meherett/python-hdwallet.git
https://github.com/meherett/python-hdwallet.git
https://github.com/ethereum/eth-account

	Security with Availability
	Shamir's Secret Sharing System (SSSS)

	SLIP-39 Account Creation, Recovery and Address Generation
	Creating New SLIP-39 Recoverable Seeds
	The macOS SLIP-39.app GUI App
	The Python slip39 CLI
	Recovery & Re-Creation
	Generation of Addresses
	The slip39 module API

	Conversion from BIP-39 to SLIP-39
	BIP-39 vs. SLIP-39 Incompatibility
	BIP-39 vs SLIP-39 Key Derivation Summary

	Building & Installing
	The slip39 Module
	The slip39 GUI

	Dependencies
	The python-shamir-mnemonic API

