Max Planck Institute

for Innovation and Competition

Max Planck Institute for Innovation and Competition Research Paper No. 19-03

Michael E. Rose and John R. Kitchin

SCOpUS:
Scriptable bibliometrics using a Python interface to Scopus

Max Planck Institute for Innovation and Competition Research Paper Series

scopus: Scriptable bibliometrics using
a Python interface to Scopus *

Michael E. Rose! and John R. Kitchin?

'Max Planck Institute for Innovation and Competition
2Carnegie Mellon University, Department of Chemical Engineering

We present a wrapper for the Scopus RESTful API written for Python 3. The wrapper
allows users to access the Scopus database via consistent and user-friendly interfaces and can
be used without prior knowledge of RESTful APIs. To each of the Scopus APIs accessible for
standard API keys there exists a class in scopus with consistent interfaces. Additionally, there is
a class to access restricted citation metadata. Files are cached to speed up subsequent analysis.
The package addresses all users of Scopus data, such as researchers working in Science of Science
or evaluators. It facilitates reproducibility of research projects and enhances data integrity for
researchers using Scopus data.

Keywords: Scopus, software, Python, bibliometrics, scientometrics

1 Introduction

Scopus is one of the citations, bibliometrics and abstracts databases that have become standard in
the field of scientometrics and bibliometrics." Users of Scopus data include researchers interested
in citation analysis, co-author networks and content analysis, as well as funders and institutions
interested in scientific evaluation. Scopus provides a RESTful Automated Programming Interface
(API) to access their data. We present scopus, a Python package to access this APT using consistent
interfaces currently available in version 1.4.1.”

Scopus enjoys widespread use in academia. A search on Google Scholar in January 2019 for "Scopus"
returned about 1,990,000 results, about 24,200 of which are since 2018 alone. Recent studies in
the field of Economics of Science alone, that have used data from Scopus (and would probably have
benefitted from scopus) include (but are not restricted to): Andrikopoulos et al. (2016); Thursby

* We thank the various contributors listed at https://github.com/scopus-api/scopus/graphs/contributors.
For comments regarding this paper we thank Felix Poge.

TCorresponding author: Michael.Rose@ip.mpg.de

1See Falagas et al. (2007), Zeng et al. (2017) and Harzing and Alakangas (2016) for examples of comparisons of
Scopus and its competitors.

2To avoid confusion, we refer to the database as Scopus with a capital S, and to the package as scopus, with a
lower-case s and in bold typewriter fontface.

https://github.com/scopus-api/scopus/graphs/contributors

et al. (2018); Catalini et al. (2018); Baruffaldi et al. (2016); Sauermann and Haeussler (2017); Gush
et al. (2018) and Heckman and Moktan (2018).

Access to Scopus is restricted to subscribers. Most of the time, subscribers are research institutions
which then provide access to the API for its members via IP range authentication. Using the
Scopus API requires the registration of an API key, which is free of charge.” A standard key allows
5000 requests per week, which is reset one week after the first usage.

2 Design of scopus

The Scopus database provides 12 RESTful APIs: Three search APIs to search for affiliations,
authors or documents, three retrieval APIs to retrieve information on single affiliations, author or
documents, five meta information API, and an author feedback API. Table 1 provides an overview
over APIs of Scopus and which of these are implemented in scopus.

2.1 scopus classes

To each of the three search APIs and to each of the three retrieval APIs, scopus provides a separate
class. Additionally, there is a class to access the Citation Overview API.

Each class is designed in a similar way to guarantee consistency across classes. The only required
parameter is a search query string (for search classes) or the identifier for entities (for retrieval
classes). Only the Citation Overview class needs an additional parameter, namely the start year.
The ID for the AbstractRetrieval can be the Scopus identifier, the Electronic ID (EID, similiar to
the Scopus identifier), the DOI, the PII or the PubMed ID.

Each class caches files for subsequent analysis in a folder specified in the configuration. The
filenames for cached results of AuthorRetrieval, AbstractRetrieval, CitationOverview and Con-
tentAffiliationRetrieval correspond to the provided ID of the entity. For all search classes, the
filename corresponds to the MD5-hashed version of the query string. Hashing ensures that file-
name can be saved and found again if the same query was to be performed, even when the search
query contains characters not allowed in filenames on some systems.” Each class has an optional
refresh paramater to refresh the cached file if it exists.

In general, information the user is interested in is stored in properties. Most properties are of object
type string or list of namedtuples (e.g. in case multiple results with multiple fields of information
are returned). namedtuples allow fast integration with other common packages, such as pandas
(McKinney, 2010).

2.2 scopus exceptions

scopus defines a number of exceptions depending on the type of error received. Though they all

3The key will be saved in a configuration file for subsequent use. Authentication via InstTokens is possible as well.
4For example, the query string "EXACTSRCTITLE(Journal of Statistical Software) AND PUBYEAR = 2017"
would become b04a0cbc2bc7al7ac7ca65770ee759d7.

Table 1: Overview of Scopus APIs

API Type Restricted Class in scopus Purpose

Affiliation Search Search AffiliationSearch Search for affiliation
entities

Author Search Search AuthorSearch Search for authors

Scopus Search Search ScopusSearch Search for
documents

Abstract Retrieval | Retrieval AbstractRetrieval Retrieve information
on documents

Affiliation Retrieval ContentAffiliationRetrieval Retrieve information

Retrieval on affiliations

Author Retrieval Retrieval AuthorRetrieval Retrieve information
on authors

Citations Count Metadata X Retrieve document

Metadata citation counts

Citations Overview | Metadata X CitationsOverview Retrieve document
citation counts by
year

PlumX Metrics Metadata PlumX metrics

(social media
mentions) for

documents
Serial Title Metadata X Search for serial
Metadata titles
Subject Metadata Search for and
Classifications retrieve Subject
Classifications
Author Feedback Other X Provide author
feedback (i.e.
corrections)

Notes: Table lists currently (January 2019) available RESTful APIs of the Scopus database. "Re-
stricted" indicates that the subscriber either needs additional permission from Elsevier for this API
(i.e. the used key needs more privileges) or all views of the API are restricted.

inherit from exceptions provided by the requests package (Reitz and Requests developers, 2019),
they allow error-specific handling.

A "ScopusQueryError" is raised when a search query returns more results than allowed. Scopus
itself does not allow a search query with more than 5000 results. A "Scopus400Error" is raised
when the search query is invalid. Only search classes can raise this error. The "Scopus401Error" is
raised when access rights are not sufficient. The "Scopus404Error" is raised when a resource could
not be found. Only retrieval classes can raise this error. The "Scopus429Error" is raised when the
quota of the currently used API key is exceeded. The "Scopus500Error" is raised if the server does
not respond, for various reasons. Often retrying later solves this issue.

2.3 Configuration

There is a configuration file for scopus that stores two important pieces of information: The au-
thentication credentials and the paths to cache files. Upon first usage, if the configuration file
does not exist, scopus guides through the process of creating the configuration. It is stored in a
hidden folder named ".scopus" in the user’s home directory (~/). By default, the folders to cache
information are stored here as well.

The configuration can be changed manually. This is necessary for example to change the API key
or to change directories to cache files. Changes will take effect the next time scopus is imported.

2.4 Documentation

The official documentation is maintained by the authors at https://scopus.readthedocs.io/.
Documentation includes references to individual classes, examples, and a change log. The package
is maintained on GitHub at https://github.com/scopus-api/scopus.

3 Usage and Examples

3.1 Installation and Import

scopus is available in the Python Project Inventory (PyPI) at https://pypi.org/project/scopus/.
It can be installed in the traditional way

$ pip install scopus

Once in Python, you can either import all of scopus

>>> import scopus

or individual classes only:

>>> from scopus import AffiliationSearch , AbstractRetrieval

3.2 Affiliation Search

The AffiliationSearch class is initiated with a valid query striing to search for affiliation profiles. It
raises a ScopusQueryError if the query returns more than 5000 results. Only a change of the query
term such that the query returns 5000 results or fewer helps in this case.

>>> from scopus import AffiliationSearch
>>> query = "AFFIL(Max Planck Institute for Innovation and Competition Munich)"
>>> s = AffiliationSearch (query)

It only has one property named "affiliations". This is a list of namedtuples, one namedtuple for
each matching result, with information on the match:

https://scopus.readthedocs.io/
https://github.com/scopus-api/scopus
https://pypi.org/project/scopus/

[Affiliation (eid="10—s2.0—-60105007 ",

name='Max Planck Institute for Innovation and Competition’,
variant="Max Planck Institute For Innovation And Competition’,
documents=’376", city='Munich’, country='Germany’, parent="0")]

3.3 Author Search

The AuthorSearch class is initiated with a valid query to search for an author profile. It raises a
ScopusQueryError if the query returns more than 5000 results. Only a change of the query term
such that the query returns 5000 results or fewer helps in this case.

>>> from scopus import AuthorSearch
>>> query = 'AUTHLAST(Reinhard) and AUTHFIRST(Selten)’
>>> s = AuthorSearch(query)

Its only property authors is also a list of namedtuples representing matches:

>>> s.authors

[Author (eid='9-s2.0—-6602907525", surname=’Selten’, initials="R.’,
givenname="Reinhard’, affiliation="Universitat Bonn’, documents=’73",
affiliation_id='60007493", city=’Bonn’, country=’Germany’,
areas="ECON (71); MATH (19); BUSI (15)’)]

3.4 Scopus Search

The ScopusSearch class is initiated with a query term. It raises a ScopusQueryError if the query
returns more than 5000 results. Only a change of the query term such that the query returns 5000
results or fewer helps in this case.

>>> from scopus import ScopusSearch
>>> s = ScopusSearch ('FIRSTAUTH (kitchin j.r.)’, refresh=True)

The class’ only attribute results returns a list of namedtuples. Each namedtuple contains 33 fields:

>>> s.results [0]. _fields

(’eid’, ’doi’, ’pii’, ’pubmed_id’, ’title’, ’subtype’, ’creator’, ’afid’,

) :)) B : :)) 21 :)))
affilname’, ’affiliation_city’, ’affiliation_country’, ’author_count’,
"author_names’, ’author_ids’, ’author_afids’, ’'coverDate’, ’coverDisplayDate’,
"publicationName’, ’issn’, ’source_id’, ’elssn’, ’aggregationType’, ’volume’,
"issueldentifier ’, ’article_number’, ’'pageRange’, ’description’, ’authkeywords’,
"citedby__count’, ’openaccess’, ’fund_acr’, ’fund_no’, ’fund_sponsor’)

Fields afid, affilname, affiliation_ city, affiliation_ country are strings that contain the affiliation
ID, the affiliation name, the city of the affiliation and the country of the affiliation of all authors
separated by semicolons. Fields author names, author_ ids and author_ afids are the names of the
authors, the author IDs and the affiliation IDs of all authors, also separated by semicolons. In case

an author has multiple affiliations, the entries in author afids are separated by a hyphen.” Field
description contains the abstract, if provided.

For convenience, method s.get__eids() returns the list of EIDs:

>>> s.get_eids ()

['2—s2.0—-85019169906°, ’2—s2.0—84971324241°, ’2—s2.0-84930349644 ",
'2—52.0-84930616647°, '2—s2.0—-67449106405°, '2—s2.0—-40949100780" ,
'2—s2.0-37349101648 ", '2—s2.0—-20544467859°, '2—s2.0—-13444307808 ",
'2—52.0-2942640180", ’2—s2.0—-0141924604°, ’2—s2.0—-0037368024 " |

3.5 Abstract Retrieval

The AbstractRetrieval class is initiated with an identifier. The identifier can be one of DOI, EID,
Scopus 1D, PII, or PubMed ID. Optionally, to speed up detection of the ID type, a string variable
indicating the type of the ID can be provided. Another optional parameter concerns the view the
API provides: The default view is META__ABS. The FULL view is restricted due to entitlements,
but includes more information (e.g. on references).

>>> from scopus import AbstractRetrieval
>>> ab = AbstractRetrieval ("2—s2.0—-84930616647", view='FULL’)

The object has 48 attributes and 4 methods to interact with. For example, information on biblio-
graphic information:

>>> ab.publicationName
"ACS Catalysis’

>>> ab.aggregationType
"Journal’

>>> ab.coverDate
’2015—-06—05"

>>> ab.volume

757

>>> ab.issueldentifier
767

>>> ab.pageRange

73894 —-3899”°

>>> ab.doi
’10.1021/acscatal .5b00538"’
>>> ab.citedby_ count

7

Attributes idxterms, subject__areas and authkeywords (if provided) provide an idea on the content
of a document:

>>> ab.idxterms
["Authoring tool’, ’'Data generation’, ’Data Sharing’, ’Human-readable’,

5 Thus fields afid and author afids are redundant only for results where no author has mutliple affiliations.

"Scientific publications’, ’Traditional publishing’]

>>> ab.subject__areas
[Area(area=’Catalysis’, abbreviation="CENG’, code=’1503")]

Properties authors, affiliation and authorgroup store information on the authors, the affiliations,
and the authors by affiliations.” They are a list of namedtuples, too:

>>> ab.authors
[Author (auid='7004212771", indexed name=’Kitchin J.R.’, surname='Kitchin’,

given_name="John R.’, affiliation=["60027950"])]

>>> ab. affiliation
[Affiliation (id="60027950", name=’Carnegie Mellon University’,

city="Pittsburgh’, country='United States’)]

>>> ab.authorgroup
[Author (affiliation i1d=’60027950",
organization="Department of Chemical Engineering , Carnegie Mellon University’,

city__group=None, country=’United States’, auid=’7004212771",
indexed_name=’'Kitchin J.’, surname=’Kitchin’, given_ name=’John R.’)]

The references of an article (useful to build citation networks) are only available from the ‘FULL’
view:

>>> ab.ref count

7227

>>> refs = ab.references
>>> len(refs)

22

>>> refs [0]

Reference (position="1", id="84881394200", title=None,

authors=’"Hallenbeck , A.P.; Kitchin, J.R.’,

sourcetitle="Ind. Eng. Chem. Res.’, publicationyear=’2013", volume=’52",
issue=None, first="10788"’, last="10794", text=None,

fulltext="Hallenbeck , A. P.; Kitchin, J. R. Ind. Eng. Chem. Res. 2013, 52,

10788 —-10794 10.1021/ie400582a ")

For conference proceedings, information on the conference and the conference sponsor is available
through properties confname, confcode, confdate, conflocation and confsponsor:

>>> cp = AbstractRetrieval ("2—s2.0-0029486824" , view="FULL")

>>> c¢p.confname

"Proceedings of the 1995 34th IEEE Conference on Decision and Control.
Part 1 (of 4)’

>>> cp.confcode

744367

>>> cp.confdate

((1995, 12, 13), (1995, 12, 15))

>>> cp.conflocation

6Note that Scopus might not perfectly /correctly pair authors and affiliations as per the original document (Aman,
2018).

'New Orleans, LA, USA’
>>> cp.confsponsor
'IEEE’

Information on funding, chemicals and biological entities are available via properties funding, fund-
ing_ text, chemicals and sequencebank:

>>> fund = AbstractRetrieval ("2—s2.0—-85053478849", view="FULL")

>>> fund. funding

[Funding (agency=None, string='CNRT “Nickel et son Environnement’, id=None,
acronym=None, country=None)]

>> fund.funding text

"The authors gratefully acknowledge CNRT “Nickel et son "Environnement for
providing the financial support. The results reported in this publication
are gathered from the CNRT report “Ecomine "BioTop. Appendix A’

>>> fund.chemicals

[Chemical (source="esbd’, chemical name=’calcium’,
cas_registry_number='7440—-70-2;14092—-94-5") ,
Chemical (source=’"esbd’, chemical_name=’magnesium’,

cas_registry_number='7439—-95-4")]

>>> fund.sequencebank

[Sequencebank (name="GENBANK’ , sequence_number="MH150839: MH150870 " ,
type="submitted)]

Finally there are four getter methods that transform the abstract into machine-readable formats
available like bibtex, html, latex and RIS.

3.6 Affiliation Retrieval

The ContentAffiliationRetrieval class is initiated with either the Scopus Affiliation ID or the EID
of the affiliation profile ("10-s2.0-" preceding the Scopus ID makes the EID).

>>> from scopus import ContentAffiliationRetrieval
>>> aff = ContentAffiliationRetrieval ("60000356")

There are properties storing dynamic and static information. Dynamic information include the
number of documents and the number of author profiles associated with the affiliation. A list of
name variants with the number of associated documents informs about other versions of this name
used on papers:

>>> aff.author count

10951

>>> aff.document count

’53312°

>>> aff.name variants

[Variant (name="University Of Cape Town’, doc_count='60095"),
Variant (name=’Univ. Cape Town’, doc_count="1659"),

Variant (name='Univ Of Cape Town’, doc_count="772"),

Variant (name=’Univ. Of Cape Town’, doc_ count="392")]

Static information refer to the address, the type, and associated presence in the WWW:

>>> aff.affiliation name
"University of Cape Town’
>>> aff.sort name

"Cape Town, University of’
>>> aff.org_ type

"univ’

>>> aff.postal_ code
7701’

>>> aff.city

"Cape Town’

>>> aff.state

"Western Cape’

>>> aff.country

"South Africa’

>>> aff.org domain
"uct.ac.za’

>>> aff.org URL
"http://www. uct.ac.za’

3.7 Author Retrieval

The AuthorRetrieval class class is initiated with either the Scopus Author ID or the EID of the
author profile ("9-s2.0-" preceding the Scopus ID makes the EID).

>>> from scopus import AuthorRetrieval
>>> au = AuthorRetrieval (7004212771)

There are both static and dynamic information as well. Static information relate to the name:

>>> au.indexed name

"Kitchin J.~’

>>> au.surname

"Kitchin’

>>> au.given_ name

"John R.’

>>> au.initials

"J.R.’

>>> au.name_variants

[Variant (indexed__name='Kitchin J.’, initials=’J.R.’, surname=’Kitchin’,
given_name="John R.’, doc_count="81"),

Variant (indexed name=’Kitchin J.’, initials="J.
given_name="John’, doc_count="10"),

Variant (indexed__name=’Kitchin J.’, initials="J.R.’, surname=’Kitchin’,
given_name="J. R.’, doc_count="8")]

’, surname=’Kitchin ’,

>>> au.eid
'9—s2.0—-7004212771"°

Dynamic information include the citation and document count, the corresponding H-index, the
years of first and last recorded publication, the current affiliation, a list of past affiliations, a list
of tuples representing classified subject areas, a list of namedtuples with full information on the
subject areas as well as a list of namedtuples representing the journals the author published in:

>>> au.citation count

"T5877

>>> au.document count

7997

>>> au.h index

197

>>> au.publication_range

(719957, ’2018")

>>> au. affiliation current

"110785688"’

>>> au.affiliation_ history

[760026531°, 60030926, ’60090776°, 60027757, 60008644]
>>> au.journal_ history

Journal (sourcetitle="Journal of Physical Chemistry B’,
abbreviation="J Phys Chem B’, type=’j’, issn="15206106")
>>> au. classificationgroup [:5]

[(71906°, ’17), (16027, ’17), (’2611’, ’57), (’33117, ’27), (713057, ’47)]

Finally there are a number of getter methods for convenience and interoperability with other classes.
This includes information on coauthors and documents:

>>> coauthors = au.get_coauthors()

>>> coauthors [:2]

[Coauthor (surname="Ngrskov ’, given_name=’Jens Kehlet’, id="7007042214",
areas='Chemistry (all); Physics and Astronomy (all); Chemical Engineering (all)’,
affiliation_id="60025590", name=’Stanford Linear Accelerator Center’,
city="Menlo Park’, country='United States’),

Coauthor (surname=’"Gates’, given_name=’Bruce C.’, id=’7102128797",
areas='Chemical Engineering (all); Chemistry (all); Materials Science (all)’,
affiliation__id="60014439°, name=’University of California , Davis’, city="Davis’,
country="United States’),

>>> eids = au.get document eids()

>>> eids [:3]

['2—s82.0—-85044777111°, ’2—s2.0-85041118154", ’2—s2.0—-85040934644 "]

3.8 Citations Overview

The CitationsOverview implements the Citation Overview API which returns yearly citation counts
for a specified range of years. Hence this class is initiated with two mandatory parameters: The

10

EID of the abstract and the first year for the range of years. The end year is by default the current
year, but can be set manually, too.

>>> from scopus import CitationOverview
>>> co = CitationOverview ("2—s2.0—-84930616647", start=2015, end=2017)

The class has properties for the citation counts: cc is a list of (year, citation count)-tuples, pcc
is the number of citations received before the specified start year, and lcc is the citation count
received after the specified start year:

>>> C0.ccC

[(2015, ’07), (2016, ’4’), (2017, ’27)]
>>> co.pcc

0

>>> co.lcc

0

Attributes rangeCount and rowTotal give summaries. rangeCount is the number of citations re-
ceived within the specified years, while rowTotal additionally includes omitted years (hence it is
the total number of citations).

>>> co.rangeCount
767

>>> co.rowTotal
767

4 Discussion

scopus has several features that make it optimal for scientists interested in using Scopus data.
No knowledge of accessing RESTful APIs or of parsing xml or json is required. The project is
completely open-source and its inner workings are publicly visible.

Due to its availability on PyPI, scopus is widely available. Scientists working in the field of Sci-
ence/Economics/Sociology of Science’ thus can increase both the reproducibility and exactness
of their projects. Reproducibility increases because users obtain data in the same way from the
same source and it becomes transparent where the data originates from and how it was obtained.”
Exactness increases because it becomes very easy to integrate updated data into the analysis.

References

Aman, V. (2018), ‘Does the Scopus author ID suffice to track scientific international mobility 7 A
case study based on Leibniz laureates’, Scientometrics 117(2), 705-720.

"See Stephan (2010) and Fortunato et al. (2018) for a clarification of these fields.
81t should be noted though that using data from a database where additions, deletions and corrections are frequent,
reduce reproducibility per se.

11

Andrikopoulos, A., Samitas, A. and Kostaris, K. (2016), ‘Four decades of the Journal of Econo-
metrics: Coauthorship patterns and networks’, Journal of Econometrics 195(1), 23-32.

Baruffaldi, S. H., Visentin, F. and Conti, A. (2016), ‘The productivity of science & engineering
PhD students hired from supervisors’ networks’, Research Policy 45(4), 785-796.

Catalini, C., Fons-Fosen, C. and Gaulé, P. (2018), ‘How Do Travel Costs Shape Collaboration?’,
NBER Working Paper Series 24780.

Falagas, M. E., Pitsouni, E. I., Malietzis, G. A. and Pappas, G. (2007), ‘Comparison of PubMed,
Scopus, Web of Science, and Google Scholar: strengths and weaknesses’, The FASEB Journal
22(2), 338-342.

Fortunato, S., Bergstrom, C. T., Borner, K., Evans, J. A., Helbing, D., Milojevié¢, S., Petersen,
A. M., Radicchi, F., Sinatra, R., Uzzi, B., Vespignani, A., Waltman, L., Wang, D. and Barabasi,
A.-L. (2018), ‘Science of science’, Science 359(6379), eaao0185.

Gush, J., Jaffe, A., Larsen, V. and Laws, A. (2018), ‘The effect of public funding on research
output: the New Zealand Marsden Fund’, New Zealand Economic Papers 52(2), 227-248.

Harzing, A.-W. and Alakangas, S. (2016), ‘Google Scholar, Scopus and the Web of Science: a
longitudinal and cross-disciplinary comparison’, Scientometrics 106(2), 787-804.

Heckman, J. and Moktan, S. (2018), ‘Publishing and Promotion in Economics: The Tyranny of
the Top Five’, NBER Working Paper Series 25093.

McKinney, W. (2010), Data Structures for Statistical Computing in Python, in S. van der Walt
and J. Millman, eds, ‘Proceedings of the 9th Python in Science Conference’, pp. 51-56.

Reitz, K. and Requests developers (2019), Requests: HTTP for Humans, Cary, NC.
URL: hitp://docs.python-requests.org/en/master/

Sauermann, H. and Haeussler, C. (2017), ‘Authorship and contribution disclosures’, Science Ad-
vances 3(11), e1700404.

Stephan, P. E. (2010), ‘The Economics of Science’, Journal of Economic Literature 34(3), 217-273.

Thursby, J. G., Haeussler, C., Thursby, M. C. and Jiang, L. (2018), ‘Prepublication disclo-
sure of scientific results: Norms, competition, and commercial orientation’, Science Advances
4(5), eaar2133.

Zeng, A., Shen, Z., Zhou, J., Wu, J., Fan, Y., Wang, Y. and Stanley, H. E. (2017), ‘The science of
science: From the perspective of complex systems’, Physics Reports 714-715, 1-73.

12

	Introduction
	Design of scopus
	scopus classes
	scopus exceptions
	Configuration
	Documentation

	Usage and Examples
	Installation and Import
	Affiliation Search
	Author Search
	Scopus Search
	Abstract Retrieval
	Affiliation Retrieval
	Author Retrieval
	Citations Overview

	Discussion

