
Adadmire installation and users guide for windows

General remarks
Adadmire or short Admire tries to find a generalized model that establishes relationships between
continuous and discrete data. After training Admire predicts a certain value e.g. metabolite
concentration based on all other values of this sample, therefore, Admire is only as good as the used
training data. Furthermore, if you have a single specimen where for example the citrate concentration
is extremely high, while all other concentrations of this specimen are within their normal ranges
observed across the whole data set Admire will detect this citrate value as an outlier and will try to
correct it. However, this outlier may still be correct for example due to a specific treatment of the
corresponding proband. Therefore, when Admire detects an outlier it is a good idea to go back to your
original data for verification.

This guide will help you test Admire on your data, even if you have little to no coding experience. The
whole process would take around 10 minutes, given you have a good internet connection and a PC
with average specs.

Installing Python:
If Python is not already installed, download it from
https://www.python.org/downloads/
On the first setup window (see screenshot), make
sure to activate the “Add python.exe to PATH”
checkbox below (Python 3.11.5 installation). This
ensures that PowerShell will recognize the relevant
command lines later on.
Python should be found on a path similar to:

C:\Users\Username\AppData\Local\Programs\Python\Python3xx

In PowerShell:
Installation of required packages for Python (In the search field in the Start menu, search for
Windows PowerShell).
In Windows PowerShell paste the following code and press Enter:
pip install numpy # matrices
pip install -U adadmire # ADMIRE
pip install pandas # data reading and writing

Admire will be installed in
C:\Users\Username\AppData\Local\Programs\Python\Python311\Lib\site-packages\adadmire
This takes around one minute.
Note, you have to install these packages only once.

Downloading the Test Data from GitHub:
Data available at https://github.com/spang-lab/adadmire
Click on the green “Code” button and choose “Download ZIP”
Unzip the data to an easily reachable path (for convenience
purpose only) such as ('D:/adadmire-main/') for instance.

In the test data three different test sets including required code
are included:
Test set 1: standard application of ADMIRE

https://www.python.org/downloads/
https://github.com/spang-lab/adadmire

Test set 2: introduction of artificial anomalies to check the performance of ADMIRE
Test set 3: application of ADMIRE on a data set containing missing values.

Now in Python run ADMIRE:
We will use Test set 1 in this example
Start Python by typing python in a powershell. Alternatively you can also run Python from R-Studio
Alter the path of the input/output data files (shown in bold) in the following code, and paste it into
Python:
from adadmire import loo_cv_cor, get_threshold_continuous, get_threshold_discrete
import numpy as np
X = np.load('D:/adadmire-main/data/Feist_et_al/scaled_data_raw.npy') # continuous data
D = np.load('D:/adadmire-main/data/Feist_et_al/pheno.npy') # discrete data
levels = np.load('D:/adadmire-main/data/Feist_et_al/levels.npy') # levels of discrete variables
define lambda sequence
lam_zero = np.sqrt(np.log(X.shape[1] + D.shape[1]/2)/X.shape[0])
lam_seq = np.array([-1.75,-2.0,-2.25])
lam = [pow(2, x) for x in lam_seq]
lam = np.array(lam)
lam = lam_zero * lam
perform cross validation
prob_hat, B_m, lam_opt, x_hat, d_hat = loo_cv_cor(X,D,levels,lam)
determine continuous threshold
X_cor, threshold_cont, n_ano_cont, position_cont = get_threshold_continuous(X, x_hat, B_m)
returns: X corrected for detected anomalies, threshold, number of detected anomalies (n_ano_cont)
and position
np.savetxt("D:/adadmire-main/X_cor.csv",X_cor,delimiter=";") # export X_cor as csv
print(n_ano_cont) # 46 detected continuous anomalies
n_ano_disc, threshold_cont, position_disc = get_threshold_discrete(D, levels, d_hat)
returns: number of detected anomalies (n_ano_disc), threshold and position
print(n_ano_disc)
0 detected discrete anomalies
print(position_cont) # shows positions of the anomalies

Applying adadmire (ADMIRE) on your own Data

General remarks
In the following, we assume that continous and discrete data are combined in one .csv file (e.g. by
saving .xlsx file to .csv) looking like this:

Note it is also possible to keep continuous and discrete variables separated in two files.

Start python
From here everything in python, start Python by typing ‘python’, all comments marked by #
python

Load required functions
from adadmire import loo_cv_cor, get_threshold_continuous, get_threshold_discrete, impute
import numpy as np

discrete continuous

missing value

from sklearn import preprocessing #for preprocessing
import pandas as pd # to read.csv files

Read data
GCKD = pd.read_csv('C:/Users/Username/own_test.csv', delimiter=',',dtype='float',index_col=0)
Note, row and column numbers start with 0 in Python. Show data with e.g.: ‘Name.iloc[0:3,0:3]
Result looks like this:

Separate continuous and discrete data
Get continuous data, note column zero now contains discrete data as content of column zero was
shifted to row names
GCKD_con=np.copy(GCKD.iloc[:,1:GCKD.shape[1]]) # continuous data, omit discrete data here

Replace zeros
In this example missing data are represented by zeros, for ADMIRE these zeros have to be replaced
by 'nan'
GCKD_con[GCKD_con == 0] = float("nan")
print(np.sum(np.isnan(GCKD_con))) # count nans

Standardize
ADMIRE requires standardized data (mean = 0 and variance =1).
GCKD_con_s = preprocessing.scale(GCKD_con)
note it is now an np array access with e.g. 'GCKDs[0:3,0:3]'. Note row and col names are gone but
can be added later.with 'np.nansum(GCKD_con_s, axis=0)' shows column sums should be all close #
to zero after standardization. With axis=1 you get sum of rows. np.nansum treats nans as zeros here.

Discrete pheno data
Here, sex (m/f) coded as 1 and 0, ADMIRE requires here array of 2 columns, one column codes
whether a subject is male and the other whether a subject is female i.e. when we have in one
column a 1 we need a 0 in the other one. For each group one column required.

pheno = np.array([[0 for x in range(2)] for y in range(GCKD_con.shape[0])],dtype='int') # empty array
pheno[:,0]=np.copy(GCKD.iloc[:,0]) # copy pheno data and swap data in next column
for i in range(pheno.shape[0]) :
 if (pheno[i,0] == 0) :
 pheno[i,1] = 1
 else :
 pheno[i,1] = 0

When we have in addition 5 batches as additional discrete variables 5 additional columns required.
See also example test set 1.
Also, compare to Limma design matrix

Levels for discrete data
We have only sex with male = 1 and female = 0, therefore, levels = 2
GCKD_levels=np.array([2])

When we have in addition 5 batches as additional discrete variables array should look like this: [2,5]
See also example test set 1.

Lambda
For the actual calculations using lasso regression we have to define a sequence of possible
lambdas. Here we follow the description given in Altenbuchinger et al., Sci. Rep. 2019, 9:13954 |
https://doi.org/10.1038/s41598-019-50346-2, supplement 1.4 ‘Calibration of the penalty
parameter lambda’. Note with the following code we do # not set a specific lambda we only
provide a set of possible values which will be tried in the next
steps to select the optimal value amongst them. Lam-zero depends on both the number of
continuous and discrete features and the number of samples.
as described below you may have to adept this sequence to your data. Note, in Altenbuchinger et
al. 2019 the following sequence (lam_seq) was swept 2; 1:75; 1:5; 1:25; . . . ; -4:5; -4:75; -5.
However, more values in the sequence may cause considerably longer computation times in the
leave one out cross validation, where each lambda value is tried separately. Note, that for data
imputation and following cross validation different lambda values may be optimal which may
require an adaption of lam_seq to find in each case the optimal lambda.

lam_zero = np.sqrt(np.log(GCKD_con_s.shape[1] + pheno.shape[1]/2)/GCKD_con_s.shape[0])
lam_seq = np.array([-1.75,-2.0,-2.25]) # may need adaption
lam = [pow(2, x) for x in lam_seq]
lam = np.array(lam)
lam = lam_zero * lam
With ‘print(lam)’ you display the sequence of possible lambda values

Impute missing values with ADMIRE
Both continuous and discrete variables will be imputed, in this example we have only missing
continuous data
GCKD_con_s_imp, pheno_imp,lam_o = impute(GCKD_con_s,pheno,GCKD_levels,lam)
print(np.sum(np.isnan(GCKD_con_s_imp))) # 0 to check if all continuous missing values have been
successfully imputed
‘print(lam_o)’ displays the optimal lamda, it should be in the middle of your possible lambda values

Perform cross validation in ADMIRE to determine optimal lambda and build MGMs
prob_hat, B_m, lam_opt, GCKD_con_s_imp_hat, pheno_imp_hat =
loo_cv_cor(GCKD_con_s_imp,pheno_imp,GCKD_levels,lam)
in this routine the lambda value is independently optimized.
‘print(lam_opt)’ shows this value again it should be in the middle of the possible lambda values
If this is not the case change and/or increase the sequence of possible lambda values so that both
optimal values are not at the border of the sequences. For example if the optimal lambda
corresponds to the first value of your sequence the optimal value has not been reached.

Determine continuous threshold and perform correction in ADMIRE accordingly
Return: continuous data corrected for detected anomalies, threshold, number of detected
anomalies (n_ano_cont) and position
GCKD_con_s_imp_cor, threshold_cont, n_ano_cont, position_cont =
get_threshold_continuous(GCKD_con_s_imp, GCKD_con_s_imp_hat, B_m)
print(n_ano_cont) # 726 detected continuous anomalies
print(threshold_cont) # threshold for detected anomalies e.g. 1.95
print(position_cont)

https://doi.org/10.1038/s41598-019-50346-2

gives positions of all detected continuous anomalies. eg. '6, 0'. Note, row, column, numbering #
starts with zero. This is important when you display your corrected data in e.g. Excel

e.g. 'GCKD_con_s_imp[6,0]'=6.97; 'GCKD_con_s_imp_cor[6,0]'=1.69; in case of no anomaly no
correction e.g. 'GCKD_con_s_imp[0,0]'=0.119, GCKD_con_s_imp_cor[0,0]'=0.119

Format back conversion
Note at this point corrected continuous data are in standardized format often you would like to
revert back to original non-standardized format for example to manually check for measurement
errors
GCKD_con_imp_cor= np.array([[0 for x in range(GCKD_con_s_imp_cor.shape[1])] for y in
range(GCKD_con_s_imp_cor.shape[0])],dtype='float') # create array for back transformed data
remember each metabolite is one column, loop through all metabolites
for i in range(GCKD_con.shape[1]) :
 mean = np.nanmean(GCKD_con[:,i])
 var = np.nanvar(GCKD_con[:,i])
 std = var ** 0.5
 real_val = GCKD_con_s_imp_cor[:,i] * std + mean
 GCKD_con_imp_cor[:,i] = real_val

Negative predictions
In some cases, negative predictions occur (mostly values very close to zero) this clearly must be
wrong set all negative values to 'nan'
GCKD_con_imp_cor[GCKD_con_imp_cor < 0] = float("nan")

Add row- and col-names
GCKD_con_imp_cor =
pd.DataFrame(GCKD_con_imp_cor,list(GCKD.index),columns=list(GCKD.columns[1:GCKD.shape[1]]))
'GCKD_con_imp_cor' now contains the non-standardized corrected values. Note all values with
more than 4 decimals were either corrected or imputed by ADMIRE

Write to .csv
GCKD_con_imp_cor.to_csv('C:/Users/Username/Metabolomics/Statistics/Outlier_MGM/Test_data/G
CKD/GCKD_con_imp_cor.csv',decimal=',',sep=';')

Discrete anomalies
Discrete anomalies would correspond here to wrongly labeled sex identifiers
n_ano_disc, threshold_cont, position_disc = get_threshold_discrete(pheno, GCKD_levels,
pheno_imp_hat)
returns: number of detected anomalies (n_ano_disc), threshold and position
print(n_ano_disc)
0 detected discrete anomalies in this example. In case of discrete anomalies their positions will be
stored in ‘position_disc’

**

Note of caution when working with Python

Copying of data arrays
The command ‘tt=t’ does not copy the data of the array ‘t’ but it
copies only the address of the array ‘t’. So now we have two
addresses that point to the same data. The data itself are only stored
once on your computer. To copy the data use for example ‘np.copy’

