
Adadmire installation and users guide for windows 
 
General remarks 
Adadmire or short Admire tries to find a generalized model that establishes relationships between 
continuous and discrete data. After training Admire predicts a certain value e.g. metabolite 
concentration based on all other values of this sample, therefore, Admire is only as good as the used 
training data. Furthermore, if you have a single specimen where for example the citrate concentration 
is extremely high, while all other concentrations of this specimen are within their normal ranges 
observed across the whole data set Admire will detect this citrate value as an outlier and will try to 
correct it. However, this outlier may still be correct for example due to a specific treatment of the 
corresponding proband. Therefore, when Admire detects an outlier it is a good idea to go back to your 
original data for verification. 
 
This guide will help you test Admire on your data, even if you have little to no coding experience. The 
whole process would take around 10 minutes, given you have a good internet connection and a PC 
with average specs.  
 
Installing Python: 
If Python is not already installed, download it from 
https://www.python.org/downloads/ 
On the first setup window (see screenshot), make 
sure to activate the “Add python.exe to PATH” 
checkbox below (Python 3.11.5 installation). This 
ensures that PowerShell will recognize the relevant 
command lines later on.  
Python should be found on a path similar to:  

C:\Users\Username\AppData\Local\Programs\Python\Python3xx 
 
In PowerShell: 
Installation of required packages for Python (In the search field in the Start menu, search for 
Windows PowerShell). 
In Windows PowerShell paste the following code and press Enter: 
pip install numpy # matrices 
pip install -U adadmire # ADMIRE 
pip install pandas  # data reading and writing  
 
Admire will be installed in 
C:\Users\Username\AppData\Local\Programs\Python\Python311\Lib\site-packages\adadmire 
This takes around one minute. 
Note, you have to install these packages only once. 
 
Downloading the Test Data from GitHub: 
Data available at  https://github.com/spang-lab/adadmire 
Click on the green “Code” button and choose “Download ZIP” 
Unzip the data to an easily reachable path (for convenience 
purpose only) such as ('D:/adadmire-main/') for instance. 
 
In the test data three different test sets including required code 
are included: 
Test set 1: standard application of ADMIRE 

https://www.python.org/downloads/
https://github.com/spang-lab/adadmire


Test set 2: introduction of artificial anomalies to check the performance of ADMIRE 
Test set 3: application of ADMIRE on a data set containing missing values. 
 
Now in Python run ADMIRE: 
We will use Test set 1 in this example 
Start Python by typing python in a powershell. Alternatively you can also run Python from R-Studio 
Alter the path of the input/output data files (shown in bold) in the following code, and paste it into 
Python: 
from adadmire import loo_cv_cor, get_threshold_continuous, get_threshold_discrete 
import numpy as np 
X = np.load('D:/adadmire-main/data/Feist_et_al/scaled_data_raw.npy') # continuous data 
D = np.load('D:/adadmire-main/data/Feist_et_al/pheno.npy') # discrete data 
levels = np.load('D:/adadmire-main/data/Feist_et_al/levels.npy') # levels of discrete variables 
# define lambda sequence 
lam_zero = np.sqrt(np.log(X.shape[1] + D.shape[1]/2)/X.shape[0]) 
lam_seq = np.array([-1.75,-2.0,-2.25]) 
lam = [pow(2, x) for x in lam_seq] 
lam = np.array(lam) 
lam = lam_zero * lam 
# perform cross validation 
prob_hat, B_m, lam_opt,  x_hat, d_hat = loo_cv_cor(X,D,levels,lam) 
# determine continuous threshold 
X_cor, threshold_cont, n_ano_cont,  position_cont = get_threshold_continuous(X, x_hat, B_m) 
# returns: X corrected for detected anomalies, threshold, number of detected anomalies (n_ano_cont) 
and position 
np.savetxt("D:/adadmire-main/X_cor.csv",X_cor,delimiter=";") # export X_cor as csv 
print(n_ano_cont) # 46 detected continuous anomalies 
n_ano_disc, threshold_cont, position_disc = get_threshold_discrete(D, levels, d_hat) 
# returns:  number of detected anomalies (n_ano_disc), threshold and position 
print(n_ano_disc) 
# 0 detected discrete anomalies 
print(position_cont) # shows positions of the anomalies 
 
 
 



 
 
 
Applying adadmire (ADMIRE) on your own Data 
 
 
# General remarks 
# In the following, we assume that continous and discrete data are combined in one .csv file ( e.g. by 
# saving .xlsx file to .csv) looking like this: 

 
# Note it is also possible to keep continuous and discrete variables separated in two files. 
 
# Start python 
# From here everything in python, start Python by typing ‘python’, all comments marked by # 
python 
 
# Load required functions 
from adadmire import loo_cv_cor, get_threshold_continuous, get_threshold_discrete, impute 
import numpy as np 

discrete continuous

missing value



from sklearn import preprocessing #for preprocessing 
import pandas as pd # to read.csv files 
 
# Read data 
GCKD = pd.read_csv('C:/Users/Username/own_test.csv', delimiter=',',dtype='float',index_col=0) 
# Note, row and column numbers start with 0 in Python. Show data with e.g.: ‘Name.iloc[0:3,0:3]       
# Result looks like this: 

 
 
 
# Separate continuous and discrete data 
# Get continuous data, note column zero now contains discrete data as content of column zero was  
# shifted to row names  
GCKD_con=np.copy(GCKD.iloc[:,1:GCKD.shape[1]]) # continuous data, omit discrete data here 
 
# Replace zeros 
# In this example missing data are represented by zeros, for ADMIRE these zeros have to be replaced 
# by 'nan' 
GCKD_con[GCKD_con == 0] = float("nan") 
print(np.sum(np.isnan(GCKD_con))) # count nans 
 
# Standardize 
# ADMIRE requires standardized data (mean = 0 and variance =1).  
GCKD_con_s = preprocessing.scale(GCKD_con)  
# note it is now an np array access with e.g. 'GCKDs[0:3,0:3]'. Note row and col names are gone but   
# can be added later.with 'np.nansum(GCKD_con_s, axis=0)' shows column sums should be all close # 
to zero after standardization. With axis=1 you get sum of rows. np.nansum treats nans as zeros here. 
 
# Discrete pheno data  
# Here, sex (m/f) coded as 1 and 0, ADMIRE requires here array of 2 columns, one column codes  
# whether a subject is male and the other whether a subject is female i.e. when we have in one  
# column a 1 we need a 0 in the other one. For each group one column required.  
 
pheno = np.array([[0 for x in range(2)] for y in range(GCKD_con.shape[0])],dtype='int') # empty array  
pheno[:,0]=np.copy(GCKD.iloc[:,0]) # copy pheno data and swap data in next column 
for i in range(pheno.shape[0]) : 
      if (pheno[i,0] == 0) : 
          pheno[i,1] = 1 
      else : 
          pheno[i,1] = 0  
 
# When we have in addition 5 batches as additional discrete variables 5 additional columns required. 
# See also example test set 1.  
# Also, compare to Limma design matrix   
 
# Levels for discrete data 
# We have only sex with male = 1 and female = 0, therefore, levels = 2 
GCKD_levels=np.array([2]) 



 
# When we have in addition 5 batches as additional discrete variables array should look like this: [2,5] 
# See also example test set 1. 
 
# Lambda 
# For the actual calculations using lasso regression we have to define a sequence of possible  
# lambdas. Here we follow the description given in Altenbuchinger et al., Sci. Rep. 2019, 9:13954 |  
# https://doi.org/10.1038/s41598-019-50346-2, supplement 1.4 ‘Calibration of the penalty  
# parameter lambda’. Note with the following code we do # not set a specific lambda we only 
provide a set of possible values which will be tried in the next  
# steps to select the optimal value amongst them. Lam-zero depends on both the number of  
# continuous and discrete features and the number of samples. 
# as described below you may have to adept this sequence to your data. Note, in Altenbuchinger et  
# al. 2019 the following sequence (lam_seq) was swept 2; 1:75; 1:5; 1:25; . . . ; -4:5; -4:75; -5.  
# However, more values in the sequence may cause considerably longer computation times in the  
# leave one out cross validation, where each lambda value is tried separately. Note, that for data  
# imputation and following cross validation different lambda values may be optimal which may 
# require an adaption of lam_seq to find in each case the optimal lambda. 
  
lam_zero = np.sqrt(np.log(GCKD_con_s.shape[1] + pheno.shape[1]/2)/GCKD_con_s.shape[0]) 
lam_seq = np.array([-1.75,-2.0,-2.25]) # may need adaption 
lam = [pow(2, x) for x in lam_seq] 
lam = np.array(lam) 
lam = lam_zero * lam 
# With ‘print(lam)’ you display the sequence of possible lambda values 
 
# Impute missing values with ADMIRE 
# Both continuous and discrete variables will be imputed, in this example we have only missing  
# continuous data 
GCKD_con_s_imp, pheno_imp,lam_o = impute(GCKD_con_s,pheno,GCKD_levels,lam) 
print(np.sum(np.isnan(GCKD_con_s_imp))) # 0 to check if all continuous missing values have been  
# successfully imputed 
# ‘print(lam_o)’ displays the optimal lamda, it should be in the middle of your possible lambda values  
 
 
# Perform cross validation in ADMIRE to determine optimal lambda and build MGMs 
prob_hat, B_m, lam_opt,  GCKD_con_s_imp_hat, pheno_imp_hat = 
loo_cv_cor(GCKD_con_s_imp,pheno_imp,GCKD_levels,lam) 
# in this routine the lambda value is independently optimized.  
# ‘print(lam_opt)’ shows this value again it should be in the middle of the possible lambda values 
# If this is not the case change and/or increase the sequence of possible lambda values so that both  
# optimal values are not at the border of the sequences. For example if the optimal lambda  
# corresponds to the first value of your sequence the optimal value has not been reached.  
 
# Determine continuous threshold and perform correction in ADMIRE accordingly 
# Return: continuous data corrected for detected anomalies, threshold, number of detected 
anomalies (n_ano_cont) and position 
GCKD_con_s_imp_cor, threshold_cont, n_ano_cont, position_cont = 
get_threshold_continuous(GCKD_con_s_imp, GCKD_con_s_imp_hat, B_m) 
print(n_ano_cont) # 726 detected continuous anomalies 
print(threshold_cont) # threshold for detected anomalies e.g. 1.95 
print(position_cont)  

https://doi.org/10.1038/s41598-019-50346-2


# gives positions of all detected continuous anomalies. eg. '6, 0'. Note, row, column, numbering # 
starts with zero.  This is important when you display your corrected data in e.g. Excel 

 
# e.g. 'GCKD_con_s_imp[6,0]'=6.97; 'GCKD_con_s_imp_cor[6,0]'=1.69; in case of no anomaly no 
correction e.g. 'GCKD_con_s_imp[0,0]'=0.119, GCKD_con_s_imp_cor[0,0]'=0.119 
 
# Format back conversion 
# Note at this point corrected continuous data are in standardized format often you would like to  
# revert back to original non-standardized format for example to manually check for measurement  
# errors 
GCKD_con_imp_cor= np.array([[0 for x in range(GCKD_con_s_imp_cor.shape[1])] for y in 
range(GCKD_con_s_imp_cor.shape[0])],dtype='float') # create array for back transformed data 
# remember each metabolite is one column, loop through all metabolites 
for i in range(GCKD_con.shape[1]) : 
      mean = np.nanmean(GCKD_con[:,i]) 
      var = np.nanvar(GCKD_con[:,i]) 
      std = var ** 0.5 
      real_val = GCKD_con_s_imp_cor[:,i] * std + mean 
      GCKD_con_imp_cor[:,i] = real_val 
 
 
# Negative predictions 
# In some cases, negative predictions occur (mostly values very close to zero) this clearly must be  
# wrong set all negative values to 'nan' 
GCKD_con_imp_cor[GCKD_con_imp_cor < 0] = float("nan") 
 
# Add row- and col-names 
GCKD_con_imp_cor = 
pd.DataFrame(GCKD_con_imp_cor,list(GCKD.index),columns=list(GCKD.columns[1:GCKD.shape[1]])) 
# 'GCKD_con_imp_cor' now contains the non-standardized corrected values. Note all values with 
# more than 4 decimals were either corrected or imputed by ADMIRE 
 
# Write to .csv 
GCKD_con_imp_cor.to_csv('C:/Users/Username/Metabolomics/Statistics/Outlier_MGM/Test_data/G
CKD/GCKD_con_imp_cor.csv',decimal=',',sep=';') 
 
# Discrete anomalies 
# Discrete anomalies would correspond here to wrongly labeled sex identifiers 
n_ano_disc, threshold_cont, position_disc = get_threshold_discrete(pheno, GCKD_levels, 
pheno_imp_hat) 
# returns:  number of detected anomalies (n_ano_disc), threshold and position 
print(n_ano_disc) 
# 0 detected discrete anomalies in this example. In case of discrete anomalies their positions will be  
# stored in ‘position_disc’  
 
********************************************************************************** 
 
# Note of caution when working with Python 



# Copying of data arrays 
# The command ‘tt=t’ does not copy the data of the array ‘t’ but it   
# copies only the address of the array ‘t’. So now we have two  
# addresses that point to the same data. The data itself are only stored 
# once on your computer. To copy the data use for example ‘np.copy’ 
 
 
 
 
 


