Adadmire installation and users guide for windows

General remarks

Adadmire or short Admire tries to find a generalized model that establishes relationships between
continuous and discrete data. After training Admire predicts a certain value e.g. metabolite
concentration based on all other values of this sample, therefore, Admire is only as good as the used
training data. Furthermore, if you have a single specimen where for example the citrate concentration
is extremely high, while all other concentrations of this specimen are within their normal ranges
observed across the whole data set Admire will detect this citrate value as an outlier and will try to
correct it. However, this outlier may still be correct for example due to a specific treatment of the
corresponding proband. Therefore, when Admire detects an outlier it is a good idea to go back to your
original data for verification.

This guide will help you test Admire on your data, even if you have little to no coding experience. The
whole process would take around 10 minutes, given you have a good internet connection and a PC
with average specs.

Installing Python:

If Python is not already installed, download it from £ Python 315 (451) Seup - x
\ :
https://www.python.org/downloads/ J Install Python 3.11.5 (64-bit)
On the first setup window (see screenshot), make eect Instal Now t© Instal Pyinen with default settings, or chocse
sure to activate the “Add python.exe to PATH” ® il o
checkbox below (Python 3.11.5 installation). This ﬁ s messbalemice Apppems el Pregrame Bymen Bynendl
. . m ludes IDLE, rlrend doc mentetu:n
ensures that PowerShell will recognize the relevant eates shoteutsand il socizions
command lines later on. oo et
%Jstom\&. installation
Python should be found on a path similar to: Creeselaceionand feaures
puth'on Use admin privileges when installing py.exe
W-Iﬂd(l)WS [Add python.exe to PATH Cancel

C:\Users\Username\AppData\Local\Programs\Python\Python3xx

In PowerShell:

Installation of required packages for Python (In the search field in the Start menu, search for
Windows PowerShell).

In Windows PowerShell paste the following code and press Enter:

pip install numpy # matrices 5 C:\ \Gronwald: pip install numpy
pip install -U adadmire # ADMIRE . }ﬂ tall scipy

pip install pandas # data reading and writing LT TITIIETE

install scikit-learn
install pandas

Admire will be installed in
C:\Users\Username\AppData\Local\Programs\Python\Python311\Lib\site-packages\adadmire
This takes around one minute.

Note, you have to install these packages only once.

Downloading the Test Data from GitHub: — oo fle
Data available at https://github.com/spang-lab/adadmire - —
Click on the green “Code” button and choose “Download ZIP” o

Unzip the data to an easily reachable path (for convenience e 2 ©
purpose only) such as ('D:/adadmire-main/') for instance. doc TIPS bl

src/a https://github.com/spang-lab/adadmire.git [l

gitigl Use Git or checkout with SVN using the web URL.

In the test data three different test sets including required code
are included:
Test set 1: standard application of ADMIRE

LICER
Eé] Open with GitHub Desktop

REAC

ol [}) Download ZIP

[=l = Ry

https://www.python.org/downloads/
https://github.com/spang-lab/adadmire

Test set 2: introduction of artificial anomalies to check the performance of ADMIRE
Test set 3: application of ADMIRE on a data set containing missing values.

Now in Python run ADMIRE:

We will use Test set 1 in this example

Start Python by typing python in a powershell. Alternatively you can also run Python from R-Studio
Alter the path of the input/output data files (shown in bold) in the following code, and paste it into
Python:

from adadmire import loo_cv_cor, get_threshold _continuous, get_threshold_discrete

import numpy as np

X = np.load('D:/adadmire-main/data/Feist_et _al/scaled_data_raw.npy') # continuous data

D = np.load('D:/adadmire-main/data/Feist_et_al/pheno.npy') # discrete data

levels = np.load('D:/adadmire-main/data/Feist_et_al/levels.npy') # levels of discrete variables

define lambda sequence

lam_zero = np.sqrt(np.log(X.shape[1] + D.shape[1]/2)/X.shape[0])

lam_seq = np.array([-1.75,-2.0,-2.25])

lam = [pow(2, x) for x in lam_seq]

lam = np.array(lam)

lam =lam_zero * lam

perform cross validation

prob_hat, B_m, lam_opt, x_hat, d_hat = loo_cv_cor(X,D,levels,lam)

determine continuous threshold

X_cor, threshold_cont, n_ano_cont, position_cont = get_threshold _continuous(X, x_hat, B_m)

returns: X corrected for detected anomalies, threshold, number of detected anomalies (n_ano_cont)
and position

np.savetxt("D:/adadmire-main/X_cor.csv",X_cor,delimiter=";") # export X_cor as csv
print(n_ano_cont) # 46 detected continuous anomalies

n_ano_disc, threshold_cont, position_disc = get_threshold_discrete(D, levels, d_hat)

returns: number of detected anomalies (n_ano_disc), threshold and position

print(n_ano_disc)

0 detected discrete anomalies

print(position_cont) # shows positions of the anomalies

F® Auswihlen Python 3.11 (64-bit) — O X

4)] on win32

" for more informat

ous data

crete variable

at, d_hat = loo _cv_¢ ,levels,lam)

o fedn s el s s feln s el
B

Applying adadmire (ADMIRE) on your own Data

General remarks
In the following, we assume that continous and discrete data are combined in one .csv file (e.g. by
saving .xlsx file to .csv) looking like this:

discrete continuous
Sample NMR ID |dem_geschl Acetat Aceton Alanin Citrat Creatin Creatinin

7 10.1309 0.0308 0.3619 0.10750.0231 0.1041
25 00,1386 0.0231 0.5621 0.20020.0385 0.0635
30 100693 0.0462 0.2541 0.10010.0154 0.1192
35 101232 0.0462 0.4004 0.13860.0539 0.1133
46 100847 0.0231 0.3850 0.13090.0154 0.0897
49 001617 0.03585 0.4158 0.17710.0539 0.0904
b4 0/0.9240 0.0847 02616 0.20020.1232 |0.0671
56 101232 0.0231 |0.4389 0.20790.Q000 |0.1283
62 1/0.0847 0.0231 04620 0.16170.0831 |0.1349

missing value

Note it is also possible to keep continuous and discrete variables separated in two files.

Start python
From here everything in python, start Python by typing ‘python’, all comments marked by
python

Load required functions
from adadmire import loo_cv_cor, get_threshold _continuous, get_threshold_discrete, impute
import numpy as np

from sklearn import preprocessing #for preprocessing
import pandas as pd # to read.csv files

Read data

GCKD = pd.read_csv('C:/Users/Username/own_test.csv', delimiter=',',dtype='float',index_col=0)
Note, row and column numbers start with 0 in Python. Show data with e.g.: ‘Name.iloc[0:3,0:3]
Result looks like this:

=

8 @a. a
8 a. a
8 a. a

Separate continuous and discrete data

Get continuous data, note column zero now contains discrete data as content of column zero was
shifted to row names

GCKD_con=np.copy(GCKD.iloc[:,1:GCKD.shape[1]]) # continuous data, omit discrete data here

Replace zeros

In this example missing data are represented by zeros, for ADMIRE these zeros have to be replaced
by 'nan’

GCKD_con[GCKD_con == 0] = float("nan")

print(np.sum(np.isnan(GCKD_con))) # count nans

Standardize

ADMIRE requires standardized data (mean = 0 and variance =1).

GCKD_con_s = preprocessing.scale(GCKD_con)

note it is now an np array access with e.g. 'GCKDs[0:3,0:3]". Note row and col names are gone but

can be added later.with 'np.nansum(GCKD_con_s, axis=0)' shows column sums should be all close
to zero after standardization. With axis=1 you get sum of rows. np.nansum treats nans as zeros here.

Discrete pheno data

Here, sex (m/f) coded as 1 and 0, ADMIRE requires here array of 2 columns, one column codes
whether a subject is male and the other whether a subject is female i.e. when we have in one
column a 1 we need a 0 in the other one. For each group one column required.

pheno = np.array([[0 for x in range(2)] for y in range(GCKD_con.shape[0])],dtype="int') # empty array
pheno(:,0]=np.copy(GCKD.iloc[:,0]) # copy pheno data and swap data in next column
foriin range(pheno.shape[0]) :
if (ohenoli,0] ==0) : »»> pheno[@:3,:]
pheno[i,1] =1 array([[1, @]
7 Elj, E
else : El: }
phenoli,11=0

When we have in addition 5 batches as additional discrete variables 5 additional columns required.
See also example test set 1.
Also, compare to Limma design matrix

Levels for discrete data
We have only sex with male = 1 and female = 0, therefore, levels = 2
GCKD_levels=np.array([2])

When we have in addition 5 batches as additional discrete variables array should look like this: [2,5]
See also example test set 1.

Lambda

For the actual calculations using lasso regression we have to define a sequence of possible

lambdas. Here we follow the description given in Altenbuchinger et al., Sci. Rep. 2019, 9:13954 |
https://doi.org/10.1038/s41598-019-50346-2, supplement 1.4 ‘Calibration of the penalty

parameter lambda’. Note with the following code we do # not set a specific lambda we only
provide a set of possible values which will be tried in the next

steps to select the optimal value amongst them. Lam-zero depends on both the number of

continuous and discrete features and the number of samples.

as described below you may have to adept this sequence to your data. Note, in Altenbuchinger et
al. 2019 the following sequence (lam_seq) was swept 2; 1:75; 1:5; 1:25; . . . ; -4:5; -4.75; -5.

However, more values in the sequence may cause considerably longer computation times in the
leave one out cross validation, where each lambda value is tried separately. Note, that for data
imputation and following cross validation different lambda values may be optimal which may

require an adaption of lam_seq to find in each case the optimal lambda.

lam_zero = np.sqrt(np.log(GCKD_con_s.shape[1] + pheno.shape[1]/2)/GCKD_con_s.shape[0])
lam_seq = np.array([-1.75,-2.0,-2.25]) # may need adaption

lam = [pow(2, x) for x in lam_seq]

lam = np.array(lam)

lam =lam_zero * lam

With ‘print(lam)’ you display the sequence of possible lambda values

Impute missing values with ADMIRE

Both continuous and discrete variables will be imputed, in this example we have only missing

continuous data

GCKD_con_s_imp, pheno_imp,lam_o = impute(GCKD_con_s,pheno,GCKD_levels,lam)
print(np.sum(np.isnan(GCKD_con_s_imp))) # 0 to check if all continuous missing values have been

successfully imputed

‘print(lam_o)’ displays the optimal lamda, it should be in the middle of your possible lambda values

Perform cross validation in ADMIRE to determine optimal lambda and build MGMs

prob_hat, B_m, lam_opt, GCKD_con_s_imp_hat, pheno_imp_hat =
loo_cv_cor(GCKD_con_s_imp,pheno_imp,GCKD_levels,lam)

in this routine the lambda value is independently optimized.

‘print(lam_opt)’ shows this value again it should be in the middle of the possible lambda values

If this is not the case change and/or increase the sequence of possible lambda values so that both
optimal values are not at the border of the sequences. For example if the optimal lambda

corresponds to the first value of your sequence the optimal value has not been reached.

Determine continuous threshold and perform correction in ADMIRE accordingly

Return: continuous data corrected for detected anomalies, threshold, number of detected
anomalies (n_ano_cont) and position

GCKD_con_s_imp_cor, threshold _cont, n_ano_cont, position_cont =
get_threshold_continuous(GCKD_con_s_imp, GCKD_con_s_imp_hat, B_m)
print(n_ano_cont) # 726 detected continuous anomalies

print(threshold_cont) # threshold for detected anomalies e.g. 1.95

print(position_cont)

https://doi.org/10.1038/s41598-019-50346-2

gives positions of all detected continuous anomalies. eg. '6, 0'. Note, row, column, numbering
starts with zero. This is important when you display your corrected data in e.g. Excel

>»> position_cont[@:3,]

rray([[3

e.g. 'GCKD_con_s_imp[6,0]'=6.97; 'GCKD_con_s_imp_cor[6,0]'=1.69; in case of no anomaly no
correction e.g. 'GCKD_con_s_imp[0,0]'=0.119, GCKD_con_s_imp_cor[0,0]'=0.119

Format back conversion
Note at this point corrected continuous data are in standardized format often you would like to
revert back to original non-standardized format for example to manually check for measurement
errors
GCKD_con_imp_cor= np.array([[0 for x in range(GCKD_con_s_imp_cor.shape[1])] fory in
range(GCKD_con_s_imp_cor.shape[0])],dtype="float') # create array for back transformed data
remember each metabolite is one column, loop through all metabolites
foriin range(GCKD_con.shape[1]) :

mean = np.nanmean(GCKD_conl[:,i])

var = np.nanvar(GCKD_conl[:,i])

std=var **0.5

real_val = GCKD_con_s_imp_cor[;,i] * std + mean

GCKD_con_imp_corl[:,i] = real_val

Negative predictions

In some cases, negative predictions occur (mostly values very close to zero) this clearly must be
wrong set all negative values to 'nan’

GCKD_con_imp_cor[GCKD_con_imp_cor < 0] = float("nan")

Add row- and col-names

GCKD_con_imp_cor =
pd.DataFrame(GCKD_con_imp_cor,list(GCKD.index),columns=list(GCKD.columns[1:GCKD.shape[1]]))
'GCKD_con_imp_cor' now contains the non-standardized corrected values. Note all values with

more than 4 decimals were either corrected or imputed by ADMIRE

Write to .csv
GCKD_con_imp_cor.to_csv('C:/Users/Username/Metabolomics/Statistics/Outlier MGM/Test_data/G
CKD/GCKD_con_imp_cor.csv',decimal=',",sep=";')

Discrete anomalies

Discrete anomalies would correspond here to wrongly labeled sex identifiers

n_ano_disc, threshold_cont, position_disc = get_threshold_discrete(pheno, GCKD_levels,
pheno_imp_hat)

returns: number of detected anomalies (n_ano_disc), threshold and position

print(n_ano_disc)

0 detected discrete anomalies in this example. In case of discrete anomalies their positions will be
stored in ‘position_disc’

ok ok oK ok ok 3k o ok ok ok ok ok ok ok ok ok ok ok 3k ok ok ok ok ok 3k ok ok K ok ok ok ok ok K ok ok ok 3k ok ok oK ok ok 3k ok ok oK ok ok ok 3k 3k ok oK ok ok 3k ok ok ok ok ok 3k ok ok oK ok ok ok ok ok ok ok ok ok ok ok o K Kk

Note of caution when working with Python

Copying of data arrays
The command ‘tt=t’ does not copy the data of the array ‘t’ but it

copies only the address of the array ‘t’. So now we have two
addresses that point to the same data. The data itself are only stored
once on your computer. To copy the data use for example ‘np.copy’

—
]

o

& pa

t
v (
t
t
v (

—
(]

e
—

