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Zusammenfassung

Treatment Effect Estimation (TEE) ist nicht nur fiir Medizin und Politikwissenschaften
von grofler Wichtigkeit, sondern erhélt auch in Big Data Anwendungen immer
grofferen Zuspruch. Der sogenannte Treatment Effect ist definiert als die Differenz
zwischen dem Szenario, in dem eine Behandlung gegeben wurde und dem, in dem
keine Intervention erfolgt. Foglich ist diese Grofle kontrafaktisch. Das heifit, fiir
eine spezifische Instanz, zum Beispiel einen Patienten, kénnen wir niemals beide
Faille messen. In dieser Thesis stellen wir die zwei mathematischen Modelle vor, die
uns helfen, dieses zugrundeliegende Problem mit statistischen Methoden zu erfassen.
Wir nutzen diese Theorien, um eine Vielzahl moglicher Losungen vorzustellen und
diese zu kategorisieren.

Zuerst anaylsieren wir umfangreich, wie TEE-Methoden evaluiert werden und wer-
den konnen, was aufgrund mangelnder kontrafaktischer Realdaten nicht trivial ist.
Im Grunde muss fiir eine Evaluation auf synthetische Daten zuriickgegriffen wer-
den, deren Erzeugung groflen Einfluss auf die Ergebnisse des Vergleichs hat. Wir
stellen gingige Referenzdatensétze vor und zeigen wie diese oftmals mit mangelnder
Vorsicht verwendet werden. Aufgrund dieser mangelnden Klarheit bei der Diskus-
sion von Ergebnisse stellen wir die ersten Ziige einer ausfiihrlichen Taxonomie fiir
Datengenerierungsprozesse (DGP) vor.

Desweiteren nutzen wir unsere eigenen parametrischen DGPs, um eine zentrale Hy-
pothese zu untermauern: Die Evaluation von TEE-Methoden ist stark abhéngig
von den Parametern der zugrundeliegenden Daten. Somit ist eine allgemeingiiltige
Behauptung beziiglich der Qualitéit von Methoden nicht moéglich. Wir zeigen allerd-
ings, dass die Erkenntnisse aus der zugrundeliegenden Theorie helfen kénnen, um
die richtige Methode fiir einen Anwendungsfall zu wahlen.
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Abstract

The task of treatment effect estimation (TEE) is of great importance not only in
medical and social sciences, where policy decisions are concerned, but also in big
data applications. The Treatment Effect is defined as the difference in some outcome
between two cases: one where some abstract treatment was given and one where it
was not. Thus, TEE is a counterfactual task, because we only ever observe one
of the two possible outcomes for any unit. In this thesis, we introduce the two
mathematical frameworks that help us to formalise the underlying problem and we
use them to offer multiple solutions to the problem.

Our contribution is then twofold. First, we analyse how treatment effect estimation
methods can be evaluated, which is a non-trivial task because of missing counterfac-
tual data. Essentially, synthetically generated data is needed. We present various
reference datasets and uncover the inexpertly use of them by other researchers,
which leads us to propose a novel and clear taxonomy to describe the necessary data
generating processes (DGPs).

Second, we use our own parametric DGPs to validate one central hypothesis: eval-
uation of TEE methods is highly dependent on the setting of the underlying DGP.
Hence, a general claim of the best method, is not possible. However, we show that the
theory, on which the methods are based, helps to get an intuition of what method
to use where.
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1. Introduction

He who confronts the paradoxical
exposes himself to reality.

Friedrich Diirrenmatt

1.1 Motivation

Causal Effect Estimation is an essential task in many disciplines, ranging from
medicine over political sciences to artificial intelligence [63, 34, 5, 31]. The hu-
man mind is apt to think in terms of causation and its reasoning about the world
is similar to causal models [21]. These models allows us to ask questions like: What
would my headache feel like had I not taken the aspirin? Computers, on the other
hand, using the traditional framework of statistics, only consider correlation. In
order for machines to exceed the concepts of correlations, causal frameworks are
needed.

Since about 30 years there has been a growing interest in causal analysis. First,
social and political sciences came on board to give their studies a firm mathemat-
ical ground. For what is science concerned with if not the causal laws that govern
the world? In recent years, also the machine learning community seemed to grasp
the enormous potential of causal analysis. Treatment effect estimation (TEE), as a
causal discipline, is applied not only where the name implies it usage (such as the
analysis of drugs), but on a wide set of problems. Since the research in this field is
spread across many disjoint fields like bio-medicine and econometrics, a comprehen-
sive review of methods is lacking.

With this motivation in mind, we set out to study and compare a multitude of
methods. The focus shifted soon, however, because we encountered problems in the
way evaluations are done. To simplify the comparison of TEE methods for ourselves
as well as for other authors, we had to design a evaluation framework that allows a
just consideration of each method in varying settings.

What was meant to be a straightforward method survey turned out to be a survey
of data generating processes and evaluation procedures. What was meant to be a
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systematic review of estimators turned out to be a systematic review of how esti-
mators are evaluated. This, however, is not to be perceived as failing the objective.
Rather, elaborating on the latter is essentially required to be able to consider the
former. We must ensure the quality of our tools, before we can get to work.

1.2 What is Causation?

Before we start with the study of causal effect estimation methods, we want to use
the remainder of this chapter to discuss the conceptual distinction between causation
and correlation. We do this to allow the lay reader to grasp the importance of causal
methods and to remove misunderstandings of the term Causal Inference. At the very
start we should shortly consider a philosophical question that underlies all of the
following work: What is causation?

While it is neither in the scope nor in the interest of this work to elaborate on the
historical debate around causation, it is essential to note that there were and still
are different conceptions of causation. David Hume was the first to formulate what
would become the counterfactual theory of causation when he said, "We may define
a cause to be an object followed by another, and where all the objects, similar to the
first, are followed by objects similar to the second. Or, in other words, where, if the
first object had not been, the second never had existed.” [27]. Note however, that
the first part of the quote fundamentally differs from the second, because the first
formulation is vulnerable to spurious correlation. That is to say, only because event
A is and always has been followed by event B, does not mean that B is caused by
A. Tt might be, with decreasing probability, that the two just ‘happened’ to occur
in this order whenever we observed them. The second, counterfactual formulation,
however, plays on a wholly different field. It basically argues about causation using
a world that does not exist. A world that is counter-factual. David Lewis [,
Chapter 30] was the first to formalize this counterfactual theory on which most of
the following work will be based. The concept of counterfactuals is important to the
theoretic framework of Judea Pearl [43] as well as it is the fundamental groundwork
underlying the potential outcomes framework associated with Neyman and Rubin
[49].

In practical fields of study there exist various approaches to bridging the gap from
mere association to causality by defining what makes something causal. Essentially,
like the Bradford Hill Criteria [38] in Epidemiology, these definitions argue about
when an observed association can be considered causal. The counterfactual defini-
tion we use here, however, does not rely on such arguments. It is mathematically
and philosophically clean, while being practically impenetrable. Throughout this
introduction we will elaborate on the essential difficulty introduced by the coun-
terfactual definition and draw a clearer picture as to why causal inference is both
important and difficult.

1.3 Causal Inference in words

The aim of a disciplined pursuit of causality is to formalise the language around
causes. The broad field of causal inference can be subdivided into Causal Discov-
ery and Causal Effect Estimation. Causal Discovery is concerned with the retrieval
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of causal structure from data we collect from the world. The structured pursuit
of science is strongly related to Causal Discovery, for it amounts to understanding
the causal relationsships between things. For instance, if we are trying to deter-
mine whether there is a causal effect of smoking on lung cancer, we can use the
tools provided by the field of Causal Discovery to weed out possible pseudo-causal
relationships. Causal Effect Estimation, on the other hand, is concerned with the
estimation of the effect a specific action, often called treatment, will have on a so
called unit or a population. [28, 12]. After the action, we observe some outcome on
that unit, which we need to compare to the outcome had the unit not been treated.
This is the special setting we aim to study in this thesis.

1.3.1 Treatment Effect Estimation

Consider the example of a medical trial for aspirin. For any given unit (i.e. individ-
ual) we can choose whether we apply the treatment (aspirin) or a so called control
(placebo). After the administration of the treatment (e.g. one hour later), we mea-
sure the outcome (e.g. has headache, does not have headache). The causal effect of
the action (taking or not taking aspirin) on the individual is then formulated using
the counterfactual notion introduced before: ”"For a unit i that received treatment,
what would the outcome have been, had this unit not received treatment”.

Looking at this statement we see what is known as the Fundamental Problem of
Causal Inference (FPCI) [26]: For any unit ¢, we can only ever observe the outcome
either after treatment or after a placebo has been administered, but never both.
Note that a unit here refers to an individual in some specified time-frame. Thus,
applying a different treatment at a different time on the same individual is considered
a different unit j. Dealing with this problem is the core task of causal inference.
Essentially, we are trying to derive counterfactual conclusions, i.e. causes, from only
looking at factual data, the observations.[55, p. 478].

1.3.2 The Ladder of Causation

To better understand the use of causal inference as compared to statistical analysis,
we introduce the Ladder of Causation by Judea Pearl [46]. The basic premise is that
there are three conceptually different levels of thinking about events in the world.

First, there is observation, the realm of statistics. Suppose we go out and measure
data from a group of people that take aspirin. We collect, for example, their age,
gender, weight, whether or not they take aspirin and what the outcome (headache
or no headache) was. In other words, we go out and observe the world. Using
statistical learning we can now make predictions and analysis like: "Given a person
took aspirin, what is the probability of them still having a headache one hour later?”.
Note that the formulation “given that” is a statistical formulation, which we will
formalize in probability theory later on.

Now on the second rung of the ladder we are concerned with something different:
intervention. The related query could be: "Given a person (unit) i, what is the effect
on the headache of that person if we administer aspirin?”. This is totally different
from the statistical query, because it involves our active intervention in the process.
Instead of observing a person that takes aspirin, we make a person take aspirin.
To elucidate the difference, consider the following scenario. The people we observe
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taking aspirin are usually people who take good care of themselves. Thus they also
make sure to get rest and drink enough water, while the people who don’t take as-
pirin are, on average, less mindful or caring. What is now the effect of aspirin, if we
only consider observational data of the world? Hard to say, right? It could be that
the people who take aspirin only get better because they also rest and drink water.
This is because we introduced something called a confounder, a variable (mindful-
ness, in our case) that effects both the treatment (taking aspirin) and the outcome
(headache). In other words, mindfulness is a common cause of treatment and out-
come. We will discuss confounders more formally in Section 2.2. It’s important to
remark, however, that intervening in the world by forcefully applying treatment to
a unit, changes the rules completely. Now the degree of mindfulness of a person
does not affect treatment, because we set treatment. This idea of intervention is
the basic premise behind a Randomized Control Trial (RCT), the gold-standard of
experimental design [23]. We will refer to interventional data (i.e. data collected by
actively applying treatment) as experimental data.

On the third and last rung of the ladder, we are concerned with counterfactuals. This
is where things get tricky, because, as noted before, counterfactuals are essentially
fictional quantities. It amounts to asking: "Given a unit v that has received treatment,
what would the outcome have been, had it not received treatment?”. Or in our aspirin
example: “Person A took aspirin and does not have a headache now. How would
person A feel, had she not received treatment?”

Knowing these three rungs, we can again consider causal inference as the enterprise
of using observational or, at best, experimental data to derive conclusion about
counterfactuals.

1.3.3 Why do we need Causality?

While the concept of causation is very common in the human language [21, 28|,
there has been a considerable reluctance of the statistical sciences to introduce the
notion of cause and effect [31]. Now that we’ve understood the basic task of causal
inference we can also consider, why we need it in the first place.

In statistics we use observational data to reveal correlations between different vari-
ables. For example, we can find a correlation between the weather (e.g. rain) and
the barometer, if we were to measure the two over a period of time. Statistics how-
ever, does not tell us, whether there is a causal dependency. For another example,
namely that fire causes rags to burn, C.R. Shalizi [55] put it quite well: “For all my
data shows, all the rags I burn just so happened to be on the verge of spontaneously
bursting into flames anyway.”. This hints at a notion that has become prominent
in statistics: “Correlation does not imply causation” In fact, there are multiple

scenarios, where inferring causation from correlation is illogical. For example:

e The direction of causation is reversed, because from correlation we can never
know the direction of causation. For instance, the temperature and the ther-
mometer are directly correlated, but we cannot know the direction of causation
from looking at the two quantities.

e The causation is in both ways. Say we study the effect of health on happiness.
Studies show that happiness influences the health, while healthy people also
report being happy [24]. Two discern between the two directions is essential.
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3. COUNTERFACTUALS
ACTIVITY: Imagining, Retrospection, Understanding
QUESTIONS: What if I bad done ...7 Why?

(Was it X that caused Y? Wha if X had not
occurred? Whar if 1 had acred differently?)

EXAMPLES:  Was it the aspirin that stopped my headache?
Would Kennedy be alive if Oswald had not
killed him? What if I had not smoked for the
last 2 years?

[ 2. INTERVENTION
ACTIVITY: Doing, Intervening
QUESTIONS:  What i 1 do ...7 How?

(What would Y be if I do X?
How can I make Y happen?)

EXAMPLES:  If T take aspirin, will my headache be cured?
What if we ban cigarettes?

1. ASSOCIATION
ACTIVITY:  Seeing, Observing

QUESTIONS:  What if I see...?
(How are the vanables relared?
How would seeing X change my belief in Y?)

EXAMPLES:  Whar does a symptom tell me about a disease?
What does a survey tell us about the
election results?

Figure 1.1: Figure from the Book of Why [46], illustrated by Maayan Harel
(www.maayanillustration.com)
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e The correlation is spurious or coincidental. E.g. the number of Nobel price
laureates in a country correlates with the per capita consumption of chocolate.

e There is a common cause C of A and B. For example, the age a child causally
influences its reading ability and its shoe size thus creating a non-causal cor-
relation between shoe size and reading ability (see 2.2.2 for more).

What we mean to point at, is that the concept of correlation is insufficient to account
for our thinking about the world, which often includes a causal model. E.g., if I throw
a stone into the window, it will cause the window to break [12].

Machine learning as it is currently practised and applied is strongly based on statis-
tics. Often, machine learning approaches merely constitute a form statistical learn-
ing, where we aim to estimate the distribution of some unknown target from all the
data we have. The setting is observational and the language of causation is banned
as the concepts of statistics don’t allow for causal conclusions. Bernhard Schélkopf,
Professor at the Max Planck Institute, found a practical example where this point
of view on the world is insufficient. Namely, Amazon’s recommendation system.
When searching for a laptop rucksack the system recommends also buying a laptop
to go along with it. This is reasonable from a machine learning point of view, as the
two items are closely related and probably often bought together. Looking at the
recommendation from a causal point of view, however, we are tempted to say that
he who searches a laptop rucksack already has a laptop. Recommending a laptop
to everyone who buys a laptop rucksack is like recommending to buy a house to
everyone who buys a doormat.

Another requirement for the study of causal inference is related to the available data.
We’ve seen that data from RCTs is most meaningful, because it removes potential
bias through common causes of treatment and outcome. However, performing a
randomized control trial is not always feasible, for several reasons. First, it might be
too expensive to run a full-fledged RCT, because doing so requires significant effort
and human resources. Second, it might simply be unethical or immoral to do so.
"For example, it would be unethical to prevent potential students from attending
college in order to study the causal effect of college attendance on labor market
experiences.” [5]. Causal inference comes to help in such scenarios as it tries to
simulate the environment of a RCT only considering observational data. How this
can be done is the content of Section 2.1 and the main focus of this thesis.

1.3.4 Simpsons Paradox

Finally, we want to direct the attention to a well known paradox of statistics, that
can be better understood, using the language of causes: The Simpsons Paradox [8].

Consider the fictional data in Table 1.1 presented in [46, Chapter 6]; we follow Pearls
argument closely.

We see statistics on the effect of a drug given observational data. If we look at
the effect of the drug for women, we observe that the percentage of heart attacks
increases from 5 to 7.5 percent. The same effect occurs if we look at the data for
men, where 12 out of 40 in the control group have a heart attack (30 percent), and
8 out of 20 have a heart attack in the treatment group (40 percent). It seems to be
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Control Group Treatment Group

Heart attack No heart attack Heart attack No heart attack

Female 1 19 3 37
Male 12 28 8 12
Total 13 47 11 49

Table 1.2: Toy data to illustrate the effect of Simpsons Paradox [46, Chapter 6].

clear now that the drug must be bad. It has negative effects on women and negative
effects on men. Looking at the last row, however, we are surprised to see that when
we consider all patients, we observe less heart-attacks in the treatment group (18
percent) than in the control group (22 percent). In words, what this table is showing
us is that the drug is bad for women, bad for men but good for people.

Gender

Treatment > Heart attack

Figure 1.2: Graph G for the toy example

To solve the paradox, we can draw a causal diagram [42], where we depict our
causal knowledge about the world. We’ll introduce graphical models in more detail
in Section 2.2. For now it ought to be enough to say that a directed edge from
a node C to a node E, means there is a causal relationship from C' to E. Figure
1.2 depicts the causal relationships we can observe in case of the drug experiment.
Looking at the data, we can see that men in general are at greater risk of a heart
attack. Thus we draw an edge from gender to heart attack. Also, we can observe
that women are in general more likely to take the drug than men (e.g. stigma, ...).
Thus we also draw an arrow from gender to drug and complete the diagram with the
arrow form drug to heart attack, which represents the causal effect that we meant
to study in the first place.

What we see now is the visual representation of what we’ve above called a common
cause. The gender influences both the treatment and the outcome and thus intro-
duces a dangerous bias to the data. Statistics alone can never tell us whether the
drug is good or not, because we can never know whether to look at the data for
each gender separately or combined. Knowing, however, that gender is a common
cause, the theory of Pearl [42] tells us that we need to control for gender. That is to
say, in statistical parlance, we must look at both genders separately to retrieve the
causal effect of the drug on the outcome. Once we’ve observed the percentages of
heart attacks with and without the drug for both genders we take the average and



8 1. Introduction

retrieve the true causal result that the drug is bad for women, bad for men and bad
for people.

1.4 Goal & Outline

We used this first chapter to give a rough overview of the field of Causal Inference in
common language. In the remainder of the thesis, we will now focus on Causal Effect
Estimation. The goal is to compare a range of methods in a disjoint set of settings
in order to give a better overview of the field. To do so, an evaluation framework is
designed based on the problems that afflict previous evaluations.

With the foundations in place, we present a wide set of methods for treament effect
estimation in Chapter 3. In order to compare these, we shed light on the evalua-
tion procedure of other authors in Chapter 4. Also, we propose a novel evaluation
framework and a rough taxonomy for data generating processes used to evaluate the
methods. Subsequently, in Chapter 5, we discus the results of our experiments with
regard to one specific hypothesis. Using our own evaluation framework, we analyse
the methods introduced in Chapter 3 in a range of settings. Finally, Chapters 6 and
7 conclude the thesis and provide an outlook on promising research directions.



2. Foundations

...the most serious impediment, in
my opinion, has been the
fundamental gap between the
vocabulary in which we cast causal
questions and the traditional
vocabulary in which we
communicate scientific theories.

Judea Pearl [46]

The gentle introduction in the previous chapter makes the fundamental problem
obvious that comes with a philosophically clean definition of causality. Knowing
that words and examples aren’t enough, we here lay the formal foundations for
the thesis. Particularly, we consider the Potential Outcomes framework [49] with
its assumptions and its formalisation of the specific problem of treatment effect
estimation. For sake of completeness, we also introduce the Structural Theory by
Pearl[42], because this theory helps to comprehend Potential Outcomes within the
bigger terrain of causal inference.

In the remainder of the thesis we use the notation described in Table 2.1 if not
declared otherwise.

2.1 Potential Outcomes

When considering causal effect estimation methods, we are usually facing an exper-
imental setting where we have collected a sample of n instances S = {X;, T}, Y;}"
with all d measured covariates X; € R% X; = (X;1,..., X;q) of a unit i, its treat-
ment vector T; € {0, 1}* indicating which of the k treatments was given and its one
observed outcome Y; € R. Note that a unit may be an individual in a clinical trial
or a measurement of some process that is clearly distinguishable from other mea-
surements [12]. To retain generality, we continue to call these instances units. The
treatment variable T; defines what treatment has been applied to a given unit 7. It
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Syntax

Meaning

P(A[B)

Yebs or Y,

v

T, € {0,1}

X = (Xy1,... X»)
X; = (Xi, -, Xin)
X=x

X,y

{i]C}

Conditional probability of A given B

Joint probability of A and B

Potential outcomes of unit ¢

Observed outcome of unit ¢

Counterfactual outcome of unit ¢

Observed treatment indicator for unit ¢

Covariate vector as random variables

Specific covariate vector for unit ¢. Generally, X; alone
refers to a specific unit, while distinct numbers, e.g. X3
refer to specific features over all units.

Realisation of a vector-valued random variable

Space of all covariates, space of all outcomes

The propensity score

Estimator of a quantity y

For sets of instances, e.g. S ={X;,T;,Y;}?

Conditional independence (see Definition 2.8)

Draw from the Bernoulli distribution with probability p

1

The sigmoid function, 0 = =

For error or loss measures, see Section 4.4

Normal distribution, uniform distribution

The exponential function, e*, for longer expressions
Indicator function; 1 exactly if condition C' is true

Set of elements ¢ that fulfill condition C'

Table 2.1: Notation and syntax used throughout the thesis.
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is a unit vector where precisely one element is 1, for only one of multiple treatments
is possible. Following the majority of the literature, we assume treatment to be
binary, T; € {0,1} and we refer to units ¢ with 7; = 0 and T; = 1 as being in the
control and treatment group respectively. That is to say, the control group does not
receive treatment (e.g. a medication, a special ad, etc.). The outcome Y; then is the
measurement of some effect quantity after a treatment has been applied.

2.1.1 Formulating a Super Distribution

An essential step in the pursuit to formalize causal effects is to make room for
counterfactuals. That is to say, we must somehow capture the fact, that there are
two counterfactual worlds. One in which unit ¢ did receive the treatment and one
in which it did not. The so called Neyman-Rubin potential outcomes framework
(sometimes also Rubin-Neyman causal model) [49], [28] does exactly that. It is
the most widely used framework in various fields ranging from social sciences over
medicine to economics [9]. It is strongly based on the setting of an RCT [42] and
has helped to justify and formalize causal claims in studies.

Mapping this notation on our example from Section 1.3.2 we observe a vector of
covariates X; of each individual (e.g. age, gender, ...), the treatment 7T; (received
aspirin vs. placebo) and the potential outcomes Y;(0), Y;(1) if unit ¢ had / had not
received treatment. Of the two potential outcomes Y;(7;),T; € {0,1}, we observe
only one, which we denote by Y; instead of Y;°** [28] for simplicity.

An important characteristic of the potential outcomes framework is that "the analy-
sis itself is conducted almost entirely within the axiomatic framework of probability
theory” [42, p. 127]. To do so, a so called "super” distribution P* is introduced
that contains both the factual as well as the counterfactual events. Formally we
write P*(X,T,Y(0),Y (1)) for the super ditribution, while the observed distribution
P(X,T,Y), from which the sample S is assumed to be drawn, is seen as the marginal
distribution over the missing outcomes, the counterfactuals. To make this formally
viable, at least one consistency constrained is introduced that ensures the correct
"behaviour” of the fictional random variables Y'(1) and Y (0):

T=t=Yit) =Y, (2.1)
which, in the binary treatment case we consider, is equivalent to

Y; = TYi(1) + (1 = T3)(Yi(0).

We will see this assumption again in Section 2.1.5 as the Stable Unit Treatment Value
Assumption (SUTVA). It requires the observed outcome for a given treatment is the
same as the potential outcome for the treatment from the super distribution.

2.1.2 Targeting Treatment Effects

Having set the foundations we can now consider the task of treatment effect esti-
mation again. This time from a more formal point of view. We are aiming to find
causal effects for either a unit, a subgroup or the whole population. Statistically, we
assume all the experimental data S we collect to stem from the, usually unknown,
distribution S ~ P(X,T,Y’). We can then define different causal effects depending
on the population we are interested in either on the distribution or empirically based
on the finite sample.
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Definition 2.1 (Individual Treatment Effect (ITE) [28]). For a given unit i in a
population, we define the individual treatment effect (ITE) as

7 = Y;(0) = Yi(1)

Definition 2.2 (Average Treatment Effect (ATE) [33]). The average treatment
effect over a distribution is defined as

T:=E[Y (1) —Y(0)]

and for a finite sample population of n units as

o % D (¥i(1) = ¥i(0).

Another formulation that is useful to consider the treatment effect of a subpopulation
(e.g. only females, only people of age 34, ...) is the Conditional Average Treatment
Effect (CATE).

Definition 2.3 (Conditional Average Treatment Effect (CATE) [33]). The condi-
tional average treatment effect of a subsample {(Y;(1),Y:(0), X;,T;) | X; = «} or the
corresponding distribution P(Y (0),Y (1),T|X = x) is defined as

7(z) == E[r|X = 2] = E[Y(1) - Y(0)| X = z].

Note that = does not have to specify all covariates in X € R?. If X = z; identifies
one unit, then 7, = 7(x;). In [33, 32] the finest conditioning level using all available
covariates is called individualized average treatment effect (IATE).

Notice first, that essentially none of these definitions is graspable given only the
observable distribution P(X,T,Y’), but rather using the super-distribution P*. No-
tice also, the significant difference between considering average treatment effects or
individual treatment effects. This is so, because of a concept called treatment effect
heterogeneity. Treatment heterogeneity is the presence of subgroups in the popula-
tion that react differently to the same treatment [44]. For example, for some patients
a given drug might be more effective due to genetic effects. Especially in social-, po-
litical sciences and econometrics we can rarely assume treatment effect homogeneity
[5]. Choosing to consider the Average Treatment Effect (ATE) amounts to ignoring
the presence of varying subgroups. More importantly though, it might lead to in-
conclusive or plain wrong results. Consider a drug that is wildly effective for some
individuals, but in general has small negative effects on the desired outcome (e.g.
health). Considering the ATE would yield a positive causal effect and would thus
result in the recommendation to prescribe the drug as often as possible. It becomes
clear, that for an individual medical recommendation it is reasonable to consider In-
dividual Treatment Effect (ITE) or at least a Conditional Average Treatment Effect
(CATE) on a specific stratum.
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2.1.3 Assignment Mechanisms

An essential factor in determining whether or not a treatment effect is tractable
given data is the assignment mechanism [28, Chapter 3|. The assignment mecha-
nism is a function of the covariates X; and the potential outcomes Y;(1), Y;(0) and
determines the probability of treatment. We quickly define the terms in order to
discern between different use-cases later on. Beware that we introduce the same
concepts with different names, picking up the terminology in the literature. We
then clarify the terminology used throughout the thesis in Section 2.1.5.

Definition 2.4 (Assignment Mechanism). An assignment mechanism is a function
P(T; | X;,Y;(0),Yi(1)) mapping features and potential outcomes to the probability
of treatment [0, 1]

Definition 2.5 (Individualistic Assignment). An assignment mechanism is indi-
vidualistic if the probability that a unit is assigned treatment does not depend on
the covariates or potential outcomes of other units.

Definition 2.6 (Probabilistic Assignment). An assignment mechanism is proba-
bilistic if the probability that a unit ¢ is assigned treatment is strictly between zero
and one:

0< P(T;| X;,Yi(0),Yi(1)) <1, foralli=1,....n

Definition 2.7 (Unconfounded Assignment). An assignment mechanism is un-
confounded if it does not depend on the potential outcomes. That is to say, P(T; |
X, Yi(0),Y:(1)) = P(T3 | X)

2.1.4 Different Experimental Settings

Roughly, we can discern between the different settings for causal effect estimation
using two dimensions. The underlying assumption and the goal of estimation. The
underlying assumptions are broadly split into Unconfoundedness and Hidden Con-
founders. When assuming Unconfoundedness, our belief in the property either stems
from the way the experiment was designed (e.g. RCT or experimental data in gen-
eral) or from the underlying distribution of the data we observed by using expert
knowledge about the domain.

The goal of causal effect estimation can be subdivided into average treatment effects
over a population and individual or conditional treatment effects of sub-populations.
The Individual treatment effect can be understood as a conditional treatment effect
where the condition directly identifies one individual.

Knowing these properties we can discern between randomised data (from a RCT)
and observational data. As Rosenbaum and Rubin [48] assert, randomised trials
differ from non-randomised ones in two ways:

e First, the assignment mechanism is known, because it is usually chosen by the
researcher and the treatment assignment is probabilistic (as in Definition 2.6).
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e Second, the treatment assignment and the potential outcomes are conditionally
independent given the covariates. Formally, (Y (1),Y(0)) .L 7" | X. In other
words, the assignment of treatment only depends on observed covariates. We
say, treatment assignment is ignorable (as in Definition 2.7).

For completeness, let us define the conditional independence used above.

Definition 2.8. Conditional Independence. Given random variables X,Y, 7, we
say 'Y is independent of X conditioned on Z’, written X 1LY | Z when

PX=x,Y=y|Z=z2)=PX=z|Z=2)-PY=y|Z=2)
or equivalently:

PY=y|X=x,Z=2)=PY =y|Z=2orP(X|Z)=1

Following Rosenbaum and Rubin [48], treatment assignment is strongly ignorable,
if it is probabilistic and ignorable.

Definition 2.9 (Strong Ignorability [48]). Treatment Assignment is strongly ig-
norable if

(V(1),Y(0) LT | X and0< P(T=1]X) < 1.

Under these assumptions treatment effects can be identified. That is to say, we can
use the presence of multiple units to make up for the missing information about the
unobserved potential outcome.

In the following we will continue to use the assumptions defined in the next sec-
tion to refer to the various treatment assignment mechanisms and corresponding
assumptions underlying the data.

2.1.5 Assumptions to identify causes

As we’ve elaborated in the introduction, individual causal effects cannot be observed.
It is the task of causal inference to estimate these and to do so, we have to resort
to some simplifying assumptions. The task of estimating the ITE from data is often
preceded by the task of identification [42, Section 3]. Identification asserts whether
a given counterfactual quantity (e.g. a treatment effect) can be calculated given
only factual data.

In the simplified setting of the potential outcome framework, assumptions are made
to enable identification. These assumptions are reasonable in RCT, but remain ques-
tionable in observational settings. However, most of the methods we will consider
in Chapter 3 require the following three.
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Assumption 2.1 (Stable Unit Treatment Value Assumption (SUTVA)). The SUTVA
combines two aspect together, that make working with causal data easier. Namely,

e no interference between units (Similar to Definition 2.5),

e well defined treatment levels (i.e. there is no half-treatment or treatment with
decreased efficacy).

Formally, we can write Y; = T;Y;(1) + (1 — T;)Y;(0) to capture these assumptions.

Assumption 2.2 (Unconfoundedness). Unconfoundedness is identical to ignora-
bility: (Y(1),Y(0)) 1L T'| X.

In words, the potential outcomes are independent of the treatment given the covari-
ates.

Assumption 2.3 (Overlap). The overlap assumption makes up the second part
of strong ignorability. It states that for all instances the probability of treatment
must be strictly between zero and one. Formally, 0 < P(T'=1|X) < 1.

This is equivalent to the assignment mechanism in Definition 2.6.

2.1.5.1 Discussion of Assumptions

When is the Unconfoundedness Assumption questionable? Consider an example
where the data is collected in a hospital setting. We are considering the administra-
tion of a given treatment, but the treatment assignment to individuals is not random
(i.e. we are merely observing the operational processes in the hospital). Thus the
assignment of the treatment on a patient might depend on some insight or knowledge
the doctor has about the patient, which we do not observe in the covariate vector
X;. In this case, the treatment assignment is confounded and our methods will not
work properly. If, however, we were to measure whatever feature the doctor was
considering for his decision, then the treatment would be unconfounded conditional
on the covariate vector.

When is the Stable Unit Treatment Value Assumption questionable? Consider for
example a setting in which the individuals in both treatment and control group are
in contact with each other. In this case the positive effect of treatment might spill
over to other individuals in the control group (e.g. the improved mood of the treated
affects the mood of the control group).

When is the Overlap Assumption questionable? In a case where there is a pro-
hibitive factor for receiving a treatment, the overlap assumption is questionable.
For example, if pregnant women are not allowed to take a drug, the probability of
assignment is strictly zero and the overlap assumption does not hold. In such a case,
given the prohibitive factors are known, the data can be trimmed in order to enforce
the overlap assumption. That would mean we do not consider pregnant women at
all in our study.
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2.1.6 Causal Inference as a Missing Data Problem

We have so far introduced causal effect estimation in the common setting of treat-
ment on a given unit. This is rightly so for its origin in this domain. However,
through a more abstract consideration we can also see the problem we aim to solve
as one of missing data. Peng Ding and Fan Li [13] discuss how the formalisation of
missing data problems and the corresponding inference methods closely match the
causal inference notation and methods introduced in the Potential Outcomes frame-
work. Specifically, we are looking to reconstruct two distributions from incomplete
data. The goal is to know the distribution of Y (1) and Y (0) over all covariates
that describe a unit. The Fundamental Problem of Causal Inference now makes
this problem essentially a missing data problem. For any individual, we only ever
observe either Y;(1) or Y;(0), thus missing the respective counterpart. The treat-
ment indicator in the treatment effect case tells us which of the two distributions we
observe. Analogously it tells us, which data is missing. And the distribution of this
missingness is what we aim to constrain with our assumptions. Having ignorable
treatment assignment (Assumption 2.2) means that the distribution of the missing-
ness does not depend on outcomes when we know all the covariates. Without the
Unconfoundedness Assumptions, the missingness might be dependent on the value
of the outcome such that higher outcomes are more likely to be missing.

2.2 Structural Models

Closely following the elaborations and notation in [7, 42, 43, 58] we shortly intro-
duce Structural Causal Models (SCMs) in order to extend our understanding of the
field with a formal modelling language. This language is more graspable than the
statistical formulation of the potential outcomes framework. We will mainly use the
graphical approach as a way to model and communicate our assumptions. We use
the graphs for didactic purposes in our specific pursuit to estimate causal effects.
This is not to say by any means that the mathematical tools provided by SCMs are
inferior or useless. They are, if anything, too sophisticated for the simplified setting
in Section 2.1, which we are concerned with. The theory around SCMs is, as Pearl
writes, not a contender for the potential outcomes framework, but rather a gener-
alizing theory that subsumes the formulations of the potential outcomes framework
[42].

2.2.1 Structural Causal Models

A structural model M consists of two sets of variables i and V and a set of functions
F that determine how the values of the endogenous variables V; € V are assigned
their values. Essentially, we differentiate between exogeneous and endogeneous vari-
ables as the ones that are set externally with respect to our model and those that
are causally dependent of others through functions f; € F. The assignments of
variables in V usually represent causal physical processes. Formally, we can write
M = (U,V,F). For any V; € V and U; € U we can write exemplary V; = f;(V,U).
The relations expressed in a model M can also be captured in a graph G(M), or
just G if the corresponding model is clear. To avoid confusion regarding notation,
we will continue to name variables in the SCMs by their meaning in the potential
outcomes framework (i.e. T for treatment, X for covariates, etc.). It is important to
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note, though, that SCMs are not constrained to the limited treatment effect estima-
tion setting. The graphs can be used to model any causal dependence and complex
system.

X1 X3

X

A\l A\

T Y

Figure 2.1: Graph G of the model M for the asthma study.

To make the use of SCMs clearer, let us consider the following example from [63]
used also in [46, Chapter 4]. The authors aim to study the effects of smoking on
asthma and have modelled the dependencies they know in a structural causal model
M, with the corresponding graph shown in Figure 2.1. Following the notation in
Section 2.1, T' € {0, 1} stands for the treatment, in this case whether or not a person
smokes. Y stands for the outcome, which in this case is the severity of asthma. The
covariates X; through X3 stand for (1) whether a parent of the individual smoked,
(2) whether the person had asthma in her childhood and (3) for an underlying
predisposition towards asthma. The variables X; and X3 are ezogeneous, meaning
that we don’t know or don’t encode the mechanism by which they are assigned in
the model. Formally, X, X3 € U. For all other variables we write

T= fT(XlaXQ)a
X2 = fXQ(Xl’X?))’
Y - fy(T,Xg).

With this model M we can determine the values of the endogenous variables Xo, T’
and Y in that order, whenever we observe an instantiation of the exogeneous vari-
ables in U, i.e. X; = x1, X3 = x3. Mostly, however, we don’t know the exact
functions f € F. In this case the graphical model can still be used to draw impor-
tant conclusions about the data, as we’ll see later.

Controlling for a Variable

As a quick aside, we clarify the term "o control for”, which is used regularly through-
out the following chapter. In statistical parlance, we say that we control for a variable
A, if we either try to hold it constant by design of the study or by include it in a
regression model on the outcome. In either way, the goal is to separate the effect
of the variable A from other variables in the study. The simplest way to consider
the effect of controlling in an observational study is to look at the tabular data and
only consider rows where the variable A takes a specific value. In other words, we
look at the single strata of A.

In a probability distribution P(A, B,C) over A, B and C, we say we control for A,
if we look at the conditional distribution P(B,C | A = a).
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2.2.2 Common Typologies and the flow of information

Before we continue with our analysis of the graph in Figure 2.1, we want to introduce
the fundamental typologies underlying causal graphs. There a three main component
of which any causal graph is made up and they carry specific characteristics. Namely,
we consider a causal chain, a confounder and a collider. For simple causal relations
we use the inline notation A — B, if A is required to determine B or, in other words,
if A is a cause of B.

A—B——(C A«~—B——(C A—B<+—C
1 2 3

Figure 2.2: The three basic typologies from left to right: chain, confounder, collider.

The causal chain (1) can be exemplified by the causal relationship of fire and the
fire alarm. A is fire which causes B, smoke, which results in C, the fire alarm going
of. We say that B mediates the effect from A on C'. Namely, fire does not cause the
fire alarm to go off directly, it does so by means of causing smoke.

The second kind of junction is called a confounder, or more explicitly, B is a con-
founder of A and C'. In other words, B is a common cause of A and C'. An example
that David Freedman proposed is "Shoe Size” < "Age of Child” — "Reading Abil-
ity”. Within in this simple topology we can observe something interesting. If we
were to measure data on A and C, namely shoe sizes of children and their reading
ability, without knowing about their ages, we observe that they are correlated. With
increasing shoe size, reading ability increases. We could come to the wrong conclu-
sion that there is a causal relationship between the two. If we now also measure B,
the age, we can control for it and will see that within a stratum of B there is no
correlation between A and C. For example, looking only at the population of 14
year old children, there is no relationship between shoe size and reading ability.

Finally, there is the collider. This topology results in a vary strange behaviour
called the "explain-away-effect” by Pearl [46, Chapter 3]. Consider this causal model:
"Talent” — "Celebrity” <— "Beauty”, which formalises that both beauty and talent
contribute to the celebrity of an actor or actress (Example from [16]). If we now
collect data on A and C independently we will, as expected by common sense, not
observe any correlation between beauty and talent. If we collect B, namely celebrity
by some measure, and control for it, than we do observe a negative correlation
between A and C. That is to say, looking only at famous actors and actresses, we
observe the general relationship that they are either beautiful or talented. In other
words, if we look at a famous actor and see that he is not very beautiful, we assume
he is very talented, otherwise he wouldn’t be famous. This correlation was only
created by us looking at a specific stratum of B, namely famous actors.

Having considered these basic typologies we can discern between two types of infor-
mation flow in a causal graph [55, p.481]. There is the causal information on the one
hand side, which, figuratively speaking, flows along the edges of the directed graph.
On the other hand side there is statistical information, which, as we’ve seen, flows
in both directions of the edge, because correlation is inherently non-directional (See
also Section 1.3.3). These types of information flow become crucially important for
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our analysis of causal effects. Essentially, we only want to measure causal infor-
mation flowing directly from treatment to outcome while ignoring all the statistical
information flowing through indirect paths contaminating our results.

2.2.3 The Do-Operator

The do operator introduced by Pearl (e.g. [42]) extends the language of statistics,
located on the first rung of the ladder of causation, with a tool to model interventions,
residing on the second rung. The do-operator does exactly what his name implies.
Given a structural causal model (e.g. Figure 2.1), we can formulate a query P(Y |
do(T = t)), which, in plain English equals the the question: "What is the distribution
of the outcomes, given we set the treatment to t / given we do treatment”. Notice
that we "set” the treatment, which is different to observing a specific treatment (See
Section 1.3.2).

For the purpose of studying causal effects, P(Y | do(T = 1)) — P(Y | do(T = 0)),
the difference between intervening on treatment and not intervening treatment, is
exactly what we want. However, as we’ve discussed before, the experimental setting
in which we can actually do something is rarely the reality we face. The quest
of causal effect estimation, from the structural point of view, is thus to determine
whether we camulate the quantity P(Y | do(T = t)) only using observational data
(i.e. probability distributions without do operator). The next section introduces a
graphical method for doing exactly that.

2.2.4 Causal Effect Estimation and the Back-Door-Criterion

Having build an intuitive understanding of causal graphs and their interpretation,
we now want to use the theory of structural models to look at the task of causal
effect estimation from a different point of view. Essentially we are trying to block
all indirect, non-causal paths between treatment 7' and the outcome Y.

To do so we use the tools provided by Pearl [42, 43]. First we define what it means
to block a path p.

Definition 2.10 (d-separation [42]). A set of nodes S is said to block a path p if
either

e p contains at least one arrow-emitting node that is in S or

e p contains at least one collision node that is outside S and has no descendant
inS.

If S blocks all paths form X to Y, it is said to “d-separate X and Y”, and then, X
and Y are conditionally independent given S, for which we write X 1 Y | S. Note
that a path does not have to be directed, since statistical information flows either
way [55].

To illustrate the definition, consider the three archetypical topologies. In the causal
chain A - B — C, S = {B} d-separates A and C. In the confounding constellation



20 2. Foundations

A+ B — C, B also blocks the path from A to C'. Only in the collider case we
have to be careful. Here, A and C are already d-separated by the empty set S = {}.
Controlling for B, as we've seen, breaks this separation and results in a correlation

of A and C.

We now come back to the example introduced in the beginning of this section. We
redraw the graph here for convenience.

X1 X3

A\

T Y

Figure 2.3: Graph G of the model M for the asthma study, redrawn from Figure
2.1.

To retrieve the unbiased effect of treatment P(Y | do(T = t)), we have to consider
closing all indirect paths from 7" to Y, namely (7" < X5 < X3 — Y) and (T <«
X; = Xy « X3 = Y). We follow Pearl and call these indirect paths "back-door”
paths [43]. A set of nodes S that fulfills this requirement is called an admissible set
and we can define this using Pearls back-door criterion:

Definition 2.11 (Admissible Set [42]). A set of nodes S is admissible for adjust-
ment regarding a causal effect of T' on Y if two conditions hold:

e No element of S is a descendant of X

e The elements of S "block” (Definition 2.10) all "back-door” paths from T toY,
namely all paths that end with an arrow pointing to T

Finding such an admissible set for a fully specified causal model can be done sys-
tematically and there are polynomial time algorithms solving the problem for any
graph and query [42].

For our specific example, we know which paths to consider. We also know that we
must not add X5 to S, for this would open the backdoor path (T + X; — X5 «
X3 = Y), but we must close the path (T < X, < X3 — Y'), for it carries statistical
information from 7" to Y. We can do so by controlling for X3. Using that now
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Y 1L T | X3 and the consistency assumption Y = Y (1)T 4+ Y (0)(1 — T'), we can
write

P(Y | do(T ZP Ydo(T = t), X3 = x3)P(x3)
= Z P(Y|do(T =1t),T =t, X3 = z3)P(z3) (using Asm 2.2)

= Z PY|T =t, X3 = x3)P(x3) (using Asm 2.1).

x3

Thus, S = {X3} is an admissible set and we have the equality

P(Y |do(T=1),S=3s)—P(Y |do(T =0),5 =s)
—P(Y|T=1,S=s)-P(Y |T=0,8=s),

where the right hand side can be evaluated from the data using statistical tools alone
[42, Eq. 40], because it does not contain the do-operator.

2.2.5 Collider Bias - Or Why we Need Structural Models

In order to show the power of graphical modelling and the danger waiting in its
absence, we now run through a little synthetic working example.

Imagine we have collected observational data from a medical trial. We aim to
study the effect of treatment 7' (some medication) on the outcome Y (recovery
time) and we collect four covariates (age, sex, severity of disease and a collider)
in X. The variables X, and X,., are confounders that influence both treatment
and outcome, age only influences the outcome and the imaginary collider X¢ is a
common effect of treatment and outcome. Figure 2.4 shows the causal structure of
the Data Generating Process (DGP). We also assume for now that we didn’t know
the causal structure and only collected the data in a format S = {T;,Y;, X;}? for
n = 50.000 individuals.

Xsea: Xsev Xage

N -
\
=

Xc

Figure 2.4: Graph G¢ for the collider toy example.

Following the approach that Pearl criticizes in [42, p.130] we would be tempted to
include all covariates X in our analysis using, for example, regression adjustment.
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However, if we compare the results for the average treatment effect, we observe that
including the collider into our analysis totally skews the results. Interesting from a
machine learning point of view is that the Mean Squared Error (MSE) of the target
prediction (outcome in the case of regression adjustment) is significantly lower when
we include the collider variable. This is so, because as Pearl says, X still carries
statistical information that helps to improve the prediction. We are, however, as
discussed above, not concerned with a merely predictive task. Instead we want to
find the average coefficient of the edge T" — Y and thus we have to block all back-
door paths carrying statistical information. Controlling for X by including it in the
analysis opens the backdoor path 7' — X < Y and thus yields wrong results. In-
stead an admissible set for the identification of P(Y | do(T = 1))—P(Y | do(T = 0))
i { Xsex, Xsew ), as that set closes the two back-door paths through the confounders.
Also, we include X, into the feature set for our outcome regressor, because it
influences the outcome variable and leaving it out would amount to ignoring the
influence of age on the recovery time, which is in our example unreasonable.

Note that this is a simplified example to illustrate the devastating effect of a col-
lider. Realistically, statisticians often only consider pre-treatment variables as con-
founders. In this case, that would mean they don’t consider X, because it cannot
be a pre-treatment variable. After all, the outcome Y is its cause. Figure 2.1,
however, also includes a collider that any well-meaning statistician would include
as a confounder [46, 42]. Namely, X is associated with 7" and Y and could thus
be considered a confounder. Controlling for it, though, will open the collider-path
T < X; — X5 < X3 — Y and pollute the results. The constellation present in
Figure 2.1 is, due to it’s iconic shape, called M-bias. We’ve seen what Pearl sum up
by saying: "M-bias puts a finger on what is wrong with the traditional approach” [46,
Chapter 4.]. Specifically, the common statistical procedure without Structural Mod-
els does not contain appropriate tools to make arguments about ignorability. That
is to say that statistician using the Potential Outcomes framework alone often make
the unconfoundedness assumption without a theoretically sound argument for its
validity. Joffe et al. [29] highlight that, “such assumptions [i.e. unconfoundedness]
are usually made casually, largely because they justify the use of available statisti-
cal methods and not because they are truly belicved”. Pearl and other advocates of
the structural approach point at the fact that still today, a concept as essential as
a confounder, is often misunderstood and not handled with the appropriate care.
To illustrate, look at this opening definition from a 2016 paper: “all pre-treatment
variables that predict both treatment and outcome, also known as confounding co-
variates” [15]. What sounds intuitively right from a statistical perspective fails to
discern the M-bias example from a true confounder. For the variable X5 does predict
both treatment and outcome as it is associated with both. It does not, however,
yield the expected result to control for X, as if it were a confounder.

Notice that while the structural theory aims to make clean mathematical statements,
the actual estimation of effects given a sample is still prone to sampling errors.
Thus, knowing that an admissible set closes a backdoor paths theoretically, does not
guarantee a perfect estimation of the causal effect given a finite sample.

The collaborative approach using both frameworks outlined here is used in Microsofts
DoWhy! package by default. Essentially, they split the task into three steps: mod-

'More information: https://microsoft.github.io/dowhy/
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elling the scenario as a graph, identifying the effect, estimating the effect. A collider,
like in our example, would by design not be included in the estimation procedure to
ensure that the true estimation is possible.

2.3 When to use what?

The approaches taken by the potential outcome practitioners and the advocates of
structural theory differ fundamentally. We note some of the differences we have
encountered and elaborate on the use of each of the methods. Most importantly,
it ought to be stated that the Potential Outcome Framework (Section 2.1) and the
Structural Models are not competing alternatives. Rather, they both have their
merits and requirements. Generally, as Pearl notes [42], the Structural Theory
comprises the potential outcomes framework and we ought to use the best of both
worlds to achieve our desired results.

Structural Causal Models for Modelling Assumptions. Using graphical mod-
els, i.e. causal graphs, to encode assumptions about an underlying data distribution
is much more convenient and transparent than formulating model blind conditional
independence assumptions in the potential outcomes framework. [42, 45, 7]. For
example it is easy to assert via the graph A — B — C that C' 1L A | B. The
potential outcome analyst, however, would write B, I {C}, A} instead of the graph
and read: "the value that B would obtain had A been «a is independent of the value
that C' would obtain had B been b jointly with the value of A. In theory, the same
conditional independence C' Il A | B can be derived, but the way the knowledge is
modeled is far removed from our own understanding. Thus, it is easier to put our
knowledge about the world we observe in the form of a causal graph. Studies have
been done that show that the causal graph represents closesly the way humans think
about the relation of events in the world [21].

Structural Causal Models for Identification. It is often said that Pearls struc-
tural models are more for the qualitative analysis of a problem. We found this to be a
confusing statement, for the SCMs also allow the quantitative estimation of an effect
from data once it has been identified, using normal regression approaches. However,
SCMs are far more capable in identifying the causal effect in the first place. In fact,
they are the only model to do so, because in the potential outcomes framework we
simply assume the necessary condition (i.e. unconfoundedness). Using a graph on
the other hand we can determine rigorously whether a desired query is answerable
given the data.

Structural Causal Models for Infinite Data. Within the structural framework
causal effects can be estimated by controlling for the right adjustment set and then
looking at the respective conditional distribution, which can be observed from the
data. If, however, we have many confounders and thus must control for a large set
of covariates, the sample size of the observed data becomes a bottleneck. Thus, the
estimation implied by SCMs is ideal for the rare cases with small adjustment sets
or infinite data [62].

Potential Outcomes for quantitive approximation. In case we don’t know
the causal structure of all covariates, we often ressort to the potential outcomes
framework and the methods that are build on top of it. This, while being logically
questionable at times (see Section 2.2.5), at least allows us to get some approximation
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without a tedious theoretical analysis of the causal structures. Instead, we often
introduce the unconfoundedness assumption and then continue to work with the
statistical methods of the Potential Outcome framework.



3. Treatment Effect Estimation
Methods

Blessed is he who has been able to
win knowledge of the causes of
things.

Virgil (29 BC)

Having set the foundations for the study of causal effect estimators we now dive into
the various methods, we want use in the performance evaluation in Chapter 5. We
have chosen the following methods, because they each stand for a peculiar paradigm
and all of them use largely different approaches to the problem.

3.1 Generic Meta-learners

The following baseline methods are firmly based on the theoretical underpinning
of causal effect estimation and thus are introduced first. Other than the more
elaborate methods later on, these have been widely used in the respective literature
for almost fourty years. They are generic in the sense that all of them employ a
regression method without specifying which regression to use. Thus we can plug in
any supervised learning method or statistical regression of our choice.

3.1.1 Propensity Score Weighting

Being one of the most straightforward and oldest techniques in the field, inverse
propensity score weighting [48, 20] still has its right for existence. We first introduce
what the propensity score is and then show how it can be used to estimate the
average treatment effect.

Definition 3.1 (Propensity Score [48]). The propensity score is the probability of
treatment given the covariates of a unit. Formally,

plz)=P(T=1|X=2)=E[T| X =z
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Using this propensity score estimate, the idea is to create a pseudo-population by
weighting each sample with the inverse propensity score (IPS-Weighting, or IPSW).
According to Rosenbaum and Rubin [48], the treatment assignment is independent
of the observed covariates given the propensity score, X 1L T | p(x), if uncon-
foundedness (Assumption 2.2) holds. This Theorem is also known as the Sufficiency
of the Propensity Score. Essentially it says that if the covariates are sufficient for
adjusment then so is the propensity score.

We can use any generic supervised machine learning method or regression algorithm
to estimate p(x). Assuming that our propensity score estimate p(x) equals the true
propensity score p(z), we get

E L%} _E ( )} using Assumption 2.1
]
_E Z((xl))]ET|Y( ) X]}
~E % E[T | X]] using Assumption 2.2
— & |2 U] =] wsing plo) ~ I X0

We can follow the same steps to show that E| ((11:5;;})/)] = E[Y(0)]. Then we can again

simply estimate the average causal effect 7 = E[Y'(1)] —E[Y(0)]. For a finite sample
S, with |S| = n, this can be written, using propensity score estimate p, as

TIPW =N - n YR
— p(z) —~ 1—p(z)

T 12”: (1-T)Y;

Essentially, this gives a higher weight to instances that are underrepresented. This
means that in the first summand, treated instances whose predicted probability of
treatment is very low, are weighted very high. The second summand achieves the
same for control instances, in reverse logic. Notice that we are dependent on the
quality of our propensity estimate for this method to work. The propensity score
model has to approximate the true assignment mechanism for the weighting to be
meaningful. Thus, only if the chosen regression model equals the true regression,
our propensity score weighted estimate recovers the true average treatment effect.

Despite this straightforward weighting method, we can use the propensity score to
partition our data into strata, in which we can assume covariate-similarity or we
can use 1:1 matching based on the propensity score, using greedy algorithms [36,
20]. In our evaluation we only consider propensity score weighting with generic base
regressors as a baseline.

3.1.2 Conditional Mean Regression

Another straightforward method for estimating causal effects is conditional mean
regression, also called regression adjustment [20]. Following [33], we discern between
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S- and T-Learners. S- or Single-Learners use a single supervised machine learning
technique or regression algorithm to estimate the combined response function

wlx,t) =EY | X =z, T =t].

Let i be the estimator of . We can then estimate the conditional treatment effect
as

T(l’) = /:L(.T, 1) - [L(I, 0)

T-Learners on the other hand use two estimators to perform the same task. Essen-
tially we split the dataset into treated and control and learn a outcome regression
on each of the subsets. Thus, we learn

po(x) =E[Y | X =2, T =1],
using observations in the treated group. Similarly we learn
pi(z) =ElY | X =2, T =0,

using observations in the control group. Finally, we use the estimates ji; and fig to
get

27(z) = fir(x) — fio().

A key advantage of T-learners is that we can use different methods to estimate p; and
1o and thus adapt to the structure of the data if necessary. Also, a notable side effect
of using a S-Learner with Linear Regression is that it cannot capture heterogeneous
effects because the coefficient ap remains fixed for any predicted instance (see the
results in Section 5.3.1 for more details).

Why does it work?

Consider the simple example where we use a linear regressor with the S-learner
method and estimate

ElY | X,T] ~ ap + ar + XTax.

Then, intuitively fi(z,1) — fi(x,0) is equal to the coefficient ap of the treatment
indicator. This is to say that ag is the average treatment effect. More formally and
generalized, the efficacy of regression adjustment is based on the following derivation:

EEY | X, T=1]] =E[E[Y(1) | X,T = 1]] using Assumption 2.1
=E[E[Y (1) | X]] = E[Y(1)] using Assumption 2.2

However, that is only true if the linear regression is actually the true regression of
the outcome on covariates and treatment. Also, as always, unconfoundedness and
consistency constraints from Assumptions 2.2 and 2.1 must hold.

It’s important to note that, just like propenstiy score weighting, outcome regression
is dependent on the regression model we choose.
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3.1.3 Doubly Robust Estimators

Having introduced Inverse Propensity Score Weighting and Regression Adjustment,
the next natural step is to look at Doubly Robust Estimators. We've seen that both
methods are dependent on the choice of the model. Thus, if we select the wrong
model for our regression, we get wrong results. The core idea behind Doubly Robust
Estimators (DRE) is to combine IPSW and T-Learners in a smart way, such that
only one of two regression models has to be chosen correctly. Formally, the double
robust estimator for finite samples is defined as

TDR = 121 LD(XZ') p(X3) Ml(Xz)}

o E:L— %5+ Ty ]

Following [11], we can split this term into an estimation for E[Y(1)] and E[Y (0)].
The two seperate forms can then be written as the quantity they estimate plus a
residual which must be zero for the estimator to work perfectly. We can derive

T - p(X)
p(X)

where E[Y(1)] is the target quantity. For the second term to be zero, either the
propensity score or the outcome regression has to match the true regression. As a
user of a doubly robust estimator, we have to choose one model for the propensity
and one for the outcomes. Only one of the two, however, must be specified correctly
for the estimation to work. That is what is known as the doubly robust property,
which is desirable in real world applications, as we can never be sure of the true
regression and having two guesses open, increases our chances.

mRJzEwun+E[ ~a«n—umxﬂ,

3.1.4 X-Learner

The last meta-learner we want to introduce here is the X-learner [33]. The approach
taken is similar to that of the T-learner, but it is enhanced through reweighting.
The authors themselves claim that the X-learner is particularly strong in cases where
treatment and control group are of significantly different size. This is so, they argue,
because the X-learner “can use information from the control group to derive better
estimators for the treatment group and vice versa.” [33].

Formally, we can again use any supervised machine learning method to estimate pg
and p;. The second step is then to impute the treatment effects for units in the
treated and control group separately as

Dj ==Y} — jio(X}) and
DY = (X)) - YO

We then use another pair of base learners to learn estimators 7; and 7y by using D}
and D? as response variables. Finally, these estimators are combined in a weighted

manner to yield
7(x) = g(x)70(z) + (1 = g(z)) 71 (2),
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with g(x) € [0,1] as a weight function. The authors themselves recommend using
g(x) = p(x), a propensity score estimator. The X-Learner scores by means of a
simple algorithm that is flexible enough to be used with all base learners but powerful
enough to yield competitive results on many problems.

We use the implementation provided by S. Wager and X. Nie [41] with linear lasso
as a base learner.!

3.1.5 R-Learner

The R-learner is not directly related to concepts of T- and S-learners. Rather, it
approaches the task by using a neat reformulation of the problem statement that is
better graspable for machine learning estimators. A detailed discussion and com-
parison is found in the proposal of X. Nie and S. Wager [41]. Here, we only briefly
outline the novelty.

The essential background behind the R-learner is what they call Robinsons Trans-
formation, which also gives name to the R-Learner [41]. Given the perfect response
surfaces po(x) and pq(z) and the true propensity score p(z), they write

E [ (T7) | X, Ti] = 0, where &;(t) := Y;(t) — (po (X;) +t7(X5)).

The authors argue that, given this setup, they can and should rewrite the quantity
of interest 7(x) in a new equation as

Yi —m (X;) = (T; — p(X3)) 7 (Xi) +ei(T),

where

m(z) = E[Y|X = a] = po (Xi) +p (X)) 7 (X5) .

Note that the quantities m(z) a p(z) are not known. Were they known, however,
the treatment effect could be estimated by means of an empirical loss minimisation
on a finite sample via

=1

#() = argmin, {% S (¥ = m (X0) — (T~ p (X)) 7 (X0)* + An<f<->>} SNERY

where A, is a regularisation term on the complexity of the CATE function 7(z).

Thus, the estimation of a heterogeneous treatment effect functions comes down to
a two step procedure, which they study in more detail in the paper:

1. Learn m(z) and p(x) via regression tuned for predictive performance.

2. Estimate treatment effects via the Equation 3.1

They summarise, “the first step learns an approzimation for the oracle objective, and
the second step optimizes it.” [41].

!The code can be found here: https://github.com/xnie/rlearner.
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3.2 Causal Forests

Causal Forests, as the name implies, are a recent adaption of causal trees [4] using the
ideas from random forests [10]. Similar to nearest-neighbor methods, causal forests
speficially and random forests in general aim to make predictions using information
about nearby instances [60]. Other than classical distance metrics, however, random
forests [10] can be understood as an adaptive neighborhood metric [64]. That is to
say, they can weight the influence of dimensions depending on their significance to
the target. As Wager and Athey [60] state, this is an important property in envi-
ronments with many covariates or complex interactions among covariates. However,
this adaptive consideration of features in the training data also bears a problem.
Namely, trees tend to overfit the data they are constructed on, as spurious extreme
values in the target are considered, while they may not be present in the general
population [4].

Single decision trees alone are known to be unstable and exhibit a high variance due
also to the fact that more splits with a normal objective of minimizing the MSE
are usually better, but lead to overfitting. Using forests based on a large number of
decorrelated trees solves this problem [32, p.14]. Also, Athey and Imbens [4], derive
a splitting criterion that encourages low variance (bigger leaves), while the bias is
reduced through a concept called honesty.

The main difficulty that causal forests have to capture compared to regression forests
is what we have encountered before as the fundamental problem of causal inference
[26]. Since usually training off-the-shelf regression models requires a known ground-
truth (e.g. a class-label) we cannot use them directly for causal inference tasks.
Athey and Imbens address this problem by constructing the trees with the objective
to have heterogeneous leaves with regard to the treatment effect 7. The following
construction works under the common assumptions (SUTVA, unconfoundedness,
consistency).

The core idea is to split the covariate-space into similarity leaves minimizing the
squared error loss Y, (f(X;) — Y;)?, which is equivalent to maximizing the variance
of 1(X;) [60]. Within these leaves, the instances are assumed to behave as if coming
from a randomized experiment [4].

3.2.1 Honest Trees for Treatment Effects

Before attempting the more difficult task of estimating causal effects, Athey and
Imbens first consider the more common task of predicting population averages. This
is easier as we have a ground truth form the training data. For sake of brevity, we
skip this elaboration here and continue right away with the estimation of treatment
effects.

Also skipping the detailed derivation of the splitting objective in [4], we present the
formulas underlying the training of honest trees. First, let us consider a tree as a
partition of the feature space X and write it as a set of leaves IT = {ly, ..., ljm}
We denote by [(z,II) the leaf [ € II such that x € [.

Given a tree II the estimation of the population average outcome is

p(w, z, 11 := E[Y;(w) | X; € I(z, )],
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and can be estimated over a sample S as

1
ﬂ(w,l’,S,H) = 3 }/;’
’{7/ c Sw’Xz € Z(IB,H)}l ieszzi;l(a:,H)

from which we can directly derive the treatment effect estimate
7(z, S, 1) :== a(1,z,S,11) — (0, z, S, 1),

as a comparison of instances within a leaf. Now we introduce a goodness-of-fit
metric, which is the mean squared error of the target 7, subtracted by the square
of the target 72. This subtraction is used in the derivation of unbiased estimators
of this metric. It does not affect the way the metric ranks estimators, but merely
constitutes a mathematical trick to simplify the derivation. Formally,

o {7 (s ) -2}

) 22

MSE; (8%, 8 T1) :=

where S and S°' are test and evaluation samples, respectively. EMSE_(II) is
the expectation over the estimation and test samples defined as EMSE,(II) :=
Egte gest [MSE, (S, 8%, II)]. This is then used as a criterion to find the best tree.

The central difficulty we encounter here is that we do not know 7; and thus the
MSE function remains infeasible. Using the unbiased estimator 7 and the fact that
the estimator [ is constant within any specific leaf, Athey and Imbens propose an
estimator of EMSE. as

—EMSE, (8", N*' II) := Nit 2 (X;; 8™, )
iestr

1 1 Ser(D) S5 (D)
_(NtﬁNest)'Z( Pan vl B

lell

where ngr (1) is the within-leaf variance using the treatment group in the training

sample Si". The first term reflects the heterogeneity of treatment effects across
the leaves and the second reflects the variance within leafs. The latter can also be
understood as the uncertainty about the in-leaf treatment effects [39].

The conventional CART methods, on the other hand, use a so called in-sample
goodness-of-fit. criterion MSE, (8, 8", 1) = & >icqn A2 (Xi; S™,1I), which can
also be approximated, but does not use a separate sample for validation. Also, it
does not penalise for high variance [4].

The essential difference of honest causal trees to the CART approach is that dif-
ferent samples S and S¢! are used for constructing and evaluating a partition
by its conditional mean [4]. This property is called honesty and ensures unbiased
prediction.

Definition 3.2 (Honest Tree [60]). A tree is honest if and only if, for each training
sample i, it only uses the response Y; to either estimate the within-leaf treatment
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effect T or to decide where to place the splits, but never both. That is to say, each
sample ¢ is either in 8! to place the splits or in S* to validate the split within

_m’r.

Using the training sample for both construction and evaluation leads to over-fitting.
The tree will use spurious extreme values (in our case variances) in the training
data to construct the splits. These extreme relationships are, however, not present
in the overall population from which the sample is drawn and thus the estimate is
biased. Honest trees circumvent this problem by evaluating the constructed splits on
a separate sample. This reflects a tradeoff between variance and bias, as we accept
a higher variance due to smaller sample sizes. Athey and Imbens argue that the
drawbacks are far outweighted by the benefits.

3.2.2 Inferring causal effect estimates

Given the tree II, we expand the causal effect estimate 7 as

1
T(x) = — Yi

1
- > Y
T =0, % € U@ 1D oSty
This implies that we think of the leaves as small enough to assume that the instances
in one leaf are similar, which allows us to think of the instances within a leaf as if
coming from a randomized experiment, for their covariates are similar while only
their treatment varies.

3.2.3 From Trees to Forests

The natural next step, once the causal trees were established was for the authors
to incorporate these trees into Causal Forests [60]. These bring two advantages: 1)
they use the power of multiple trees to improve prediction 2) they remove the trade-
off of using smaller samples. The first property is closely related to the motivation
of classic random forests [10]. The second property is due to the fact that each
individual tree must be honest, that is to say, it can only use half of the data for
training. In an ensemble of trees however, each tree can consider a different split of
the whole sample § such that eventually all data is used for constructing the forest.

Inferring the causal effect using a forest merely amounts to averaging the estimations
of every single tree. Considering an ensemble of B trees with estimates 7,(x) we infer

3.2.4 Overcoming the Unconfoundedness Assumption

Causal Forests are good with heterogeneous effects, because of the special criterion
presented above. However, as the authors note, they struggle with observed con-
founding. To deal with this, Athey et al. [6] introduced a method to make causal
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forests more robust to confounding: local centering. Knaus et al. [32] find that
Causal forests with local centering indeed perform better under confounding.

Local centering is a preprocessing step. To perform it, we write y(z) = E[Y;| X = x]
and t(z) = E[T;|X = 2| = p(x) for the conditional expectations of Y; and T; and
§74(X;), t77(X;) are leave-one-out estimates of those expectations. We then compute
Y, =Y, — §7%(X;) and T, =T, — f‘i(Xi) and run the causal forest procedure on
S = {X;Y;, T;}7, instead of the original sample S = {X;,Y;, T;}™,.

3.3 GANITE

The basic idea behind Generative Adversarial Nets for Inference of Individual Treat-
ment Effects (GANITE) is to use Generative Adversarial Networks [19] to simulate
the counterfactual distribution. More specifically, the authors see the counterfactual
outcome as a missing label and they model the Generative Adversarial Nets (GAN)
such that the descriminator has to decide which of the two given outcomes is the
factual one. The following construction again works using Assumptions 2.2 and 2.3.

We denote in this section, for sake of readability, by ¢ the joint super-distribution
in the potential outcomes framework (see Section 2.1). That is, ¢ is the joint dis-
tribution on X x T x (Y(1),Y(0), where T = {0,1}* is a unit vector that is one
at precisely one index, denoting whether treatment or control were given. E.g.
T; = (0,1) means that treatment has been given, because T; is one at index one.
Y = (Y(1),Y(0)) is the outcome vector of which only one is observed and the other
is counterfactual. The construction of T and Y might seem convoluted for the sim-
ple binary treatment setting, but is motivated by the fact that the mathematical
derivation works similarly for a setting with multiple treatments. Finally, we denote
by ¢x the marginal distribution of X and by v (z) the conditional distribution of
Y given X = x. Notice that we slightly change our notation compared to Section
2.1 to allow better handling in the formulas below.

The final goal of GANITE is to estimate an individual treatment effect 7; for any
given instance. The performance of this estimation I(z) is measured using criteria
introduced in [25], which is the expected Precision in Estimation of Heterogeneous
Effects

Definition 3.3. (Expected PEHE [25]) The Expected PEHE error eppyp is de-
fined over the true distribution as

crene = Bxv | (Bxvaoo V(1) = YO - By [T - YO )| 02

which is approximated in finite samples S, with |S| = n, as
n

ppmp =n S (%)~ ¥i(0)] - [0 - 7:0)] )

=1

3.3.1 Two generators and two discriminators

The first step of the problem, as the authors divided it, is to generate the coun-
terfactual samples 7.y from distribution ¢y s (x,t,Y(f)), where Y (f) and Y (cf)
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denote factual and counterfactual outcomes respectively. These counterfactual sam-
ples are then combined with the observed data to obtain a complete dataset S =
{X;, T, Y;}7, which is used to train a second generator on the individual treatment
effects. The layout is depicted in Figure 3.1.
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Figure 3.1: Diagram showing the layout of the GANITE method, taken from [65].
We see the two blocks G and I, the combined loss functions with Vor and Eg as
well as Vypp and L.

The first generator G is defined as random variable depending on observed covariates
x, treatment indictation vector t € T and factual outcome Y (f). The goal is then
to find a function g such that G(z,t,Y(f)) = g(z,t,Y(f),zc) ~ ev(z,t,Y(f)),
where zg ~ U(—1,1) is uniform random variable. We denote, following the authors,
by y a sample from G and by y the outcome vector when we replace the generated
factual outcome with the observed factual outcome in y.

The corresponding discriminator Dg is modelled differently than in the usual GAN
framework. There, the discriminator is given a sample and has to decide from which
of two distributions (the true and the generated) it came from. Instead Dg maps
pairs (x,¥y) to vectors in [0,1]?, denoting the probability that the first or second
component in y is the factual outcome. Note that the construction in [65] works for
and is in fact designed for multiple treatments. For our purposes, however, we stick
with binary treatment.

Following the general idea of GAN[19], the discriminator is trained to maximize
the probability of correctly identifying the factual outcome in the vector y while the
generator is trained to minimize that probability. This idea is captured in the classic
minimax game in the formula:

m(i,n r%axE(x,ty(f)) [E, [t"logDg(z,y) 4+ (1 —t)"log (1 — Dg(z,¥))]], (3.3)
G

where log is perfomed element-wise and ¢y (s is the factual distribution on which

the generator works. Practically, this objective is optimized iteratively using mini-

batches (See [65, Section 4] for details).
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Using the generator G we generate the partially synthetic dataset S by augmenting
the observed outcomes with generated counterfactuals. This is then passed to the
second block with generator I and discriminator Dy.

The ITE generator I uses only the feature vector X = z to generate a potential
outcome vector y, similar to the method used for G, we search for a function A such
that I(x) = h(x,21) ~ py(z), where z; induces randomness. Note that we consider
G and I to be random variables.

The corresponding discriminator Dy now works like the standard conditional GAN
discriminator, because we have access to our complete dataset S. It takes a pair
(z,y*) and returns the probability of y* being drawn from the dataset S instead of
from the generator I. The stereotypical optimization game is

min max Ey.x [Ey oy (0 [l0g Dr (x,y")] + Ey-axx [log (1 = Dr (x,57))]]  (3.4)

3.3.2 Incorporating two loss functions

Having set the scenario, the authors in [65] introduce the loss functions used in the
minibatch optimization. Namely, for each generator G and I, they introduce two
loss functions. One of which models a supervised loss and one of which models the
loss implied by the respective descriminator. Formally, we define

Vor(x,t,5) = t" log (Dg(x,¥)) + (1 —t)" log (1 — Da(x,))

as the objective from the minimax problem in Equation 3.3. Aditionally we define

LS (Y (). 3() =¥ () =5,

which aims to enforce that the generated outcome sampled from G, for the observed
treatment equals the observed outcome. This is important as G generates the whole
potential outcome vector y not only the counterfactual outcome. Although we
eventually replace the generated factual outcome with the observed factual outcome
in y, we want the generator to take into account the correct distribution of factual
outcomes. Together this yields the two objectives for the counterfactual block:

min — Ver(x,t,y),
- % cr( yY)

ménz [VCF(X7 ta?) + aﬁg (Y(f)’ S’(f))} y

kg

where o > 0 is a hyper-parameter. Similarly we define for the ITE block the
objective from the minimax competition as

Vire(x,y,y) = log (D1(x,y)) + log (1 — Di(x,y)) .

And likewise the authors add a supervised loss to ensure generated potential out-
comes from I, y closely match the augmented potential outcomes y with respect to
their ITE:

L5(v.9) = (F(1) = 5(0)) — (y(1) = 3(0))".
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Combined we get the objective functions for optimization:
min — Z ‘/ITE (X, y7 y)v

kr
mlln; [V}TE(Xa_a y) + 55{9(?7 5’)} .
G

For the implementation we use the source code provided by [53], which is build using
TensorFlow. We use 200 epochs for training both G and I. While the training is
stable, the results returned by the model are not expected and in fact, unusable.
Since the authors refuse to provide their own project code and reimplementation is
beyond the scope of this work, we are bound to leave GANITE out of the evaluation.

3.4 Neural Representation Learning

Lastly, we want to introduce another modern machine learning approach to the
problem of causal effect estimation. We briefly outline the idea and underlying
thought processes before introducing a specific method that uses them: DragonNet.

3.4.1 Balancing Representations

The idea of a representation learning approach to counterfactual inference, i.e. causal
effect estimation, was first introduced in [30]. The authors argue that the factual
distribution P from which we draw our samples {X;, T;,Y;} might not be the same
as the counterfactual distribution PY which would contain the samples {X;,1 —
T;, Y7} and is not observable. If we transfer this situation to machine learning
terms, one could say that the training sample, in our case drawn from P, has a
different distribution than the test sample PYF. Johansson et al. point out that
this is a form of covariate shift.

In order to tackle this problem, they propose to preprocess the covariates by learning
a representation ® : X — R? which is then plugged into a function h : R? x
{0,1} — R, to predict outcomes. In words, the learned representation trades off
three objectives:

1. enabling low-error prediction of the observed outcome,

2. enabling low-error prediction of unobserved counterfactual outcomes under
consideration of relevant factual outcomes,

3. ensuring a similar or balanced distribution of both treatment groups.

Formally, these objectives are expressed in

B (®,h) = %Z |h(® (), t;) — yF |+ (3.5)

(AP g 7
adisc (Pg,PgF> +ﬁ E |h(® (:pi),l—ti)—yﬁi)‘ (3.6)
i=1
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where «, v > 0 are hyperparameters to “control the strength of the imbalance penal-
ties”[30]. The operator disc refers to a measure of disrepancy that is elaborated on in

the paper. The second objective is represented in the term |h (® (z;),1 — ;) — yﬁi)

where yﬁi) stands for the outcome of the nearest counterfactual neighbour of unit ¢
in the metric space X.

Uri Shalit et al.[54] now use a very similar approach in their generalizating work.
While in [30], the function h gets both treatment and representation as input, they
here use two different networks h; and hg to represent the two potential outcomes.
They argue that when the dimension d of the representation is high, the influence
of treatment might get lost. The resulting objective they minimize by means of
end-to-end training is very similar to the one from Johansson et al [30]. It contains
a measure of imbalance in the representation space as well as a measure of predictive
accuracy. The network architecture that results from their considerations is shown
in Figure 3.2.

Oty -
| A FO @),y =1

(JIPMe (5%, 95

Figure 3.2: The network architecture introduced in [54]. IPM¢ refers to a distance
metric for probability distributions. In this case, the distribution between treated
and control group are compared in the representation space. h; and hg are the two
separate heads for the two potential outcomes. During training, only one of each
heads is updated for each unit i, depending on t;. ® refers to the representation
learned by the neural network on the left.

3.4.2 DragonNet

DragonNet [56], which is a conceptually simpler approach, is similar in architecture
to the neural network from [54], but theoretically based on another consideration.
Namely, the Sufficiency of the Propensity Score. This theorem says that if the
treatment effect 7 is identifiable by adjusting for X (Assumptions 2.2 and 2.3) then
it is sufficient to adjust for the true propensity score p(X) (see [56] and [48, Theorem

3]).

The objective of DragonNet is to learn a representation Z(X) that is good for
prediction of the outcomes but also good for prediction of the propensity score. The
intuition is that the close link to the propensity score objective will convince the
representation network to use mostly features that have an influence on treatment
assignment, i.e. confounders. Considering features that only influence the outcome,
the authors argue, hurts the estimation of the causal effect.

In practice, this is achieved by training a neural network with multiple heads.
Namely we have a propensity prediction head ¢(X) and two outcome prediction
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Figure 3.3: The multi-headed DragonNet architecture from [56]. Similar to Figure
3.2, we have two heads for the potential outcomes, here denoted by Q(l, -) and
Q(O, -). Again, only one head is updated for each unit. Additionally, the propensity
score head ¢(-) is added to enforce a representation that allows good treatment
prediction.

heads Q(1,X) and Q(0, X), that were refered to in [54] as hy and hy. Figure 3.3
shows the multi-headed architecture of the DragonNet.

We train these estimators using a combined loss function on a finite sample of n
instances

argmin = n~" > " (Q(T;, X;) — Y;)* — CrossEntropy(g(X;), ;) -
Q.9 i

Similar to the T-learner in Section 3.1.2 we can then estimate the treatment effect
as

7(r) = Q(1,2) — Q(0,z).

The rationale behind the architecture is to have representation network with a high
capacity that can learn a meaningful representation of the covariates based on the
objectives of outcome and propensity estimation. The authors argue and show
empirically that the strong incorporation of the propensity score leads the network
to ignore elements of X that are not predictive of the treatment. This is counter-
intuitive for the prediction of Y (1) and Y (0), but aids the true prediction of the
treatment effect as we have seen in Section 2.1.

We train DragonNet over 100 epochs using the default configuration proposed by the
authors?. Specifically, they use three fully connected layers with 200 units for the
representation network. The function g(z) is implemented as a single linear layer
with a sigmoid activation and the two potential outcome heads have three fully
connected layers with 100 units each. If not specified otherwise, an Exponential
Linear Unit (ELU) is used for activation.

2The code can be found here https://github.com/claudiashi57/dragonnet
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3.5 Other Methods

The following are a few methods which we do not introduce in detail, but still use
in the evaluation in Chapter 5. We shortly introduce their respective ideas and refer
to the original papers for a comprehensive discussion.

3.5.1 Pollinated Transformed Outcome Forests

The first method proposed in [47] is based on simple off-the-shelf regression forests
which are trained on a propensity weighted outcome (referred to as the transformed
outcome). To alliviate the burden of high variance that comes with this propensity
adjustment, the authors introduce the method of ’pollination’. It entails that they
replace the estimates of the tranformed outcome in each leaf with the difference in
conditional means between treated and untreated instances in that leaf.

3.5.2 Causal Boosting

Causal Boosting [47] uses Causal Trees, which we’ve introduced in Section 3.2. In-
stead of combining them into a Causal Forest, however, gradient boosting for least
squares is used [17].

3.5.3 Causal MARS

Finally, the the authors of [47] argue that tree based methods always come with
potentially high bias, due to their reliance on the within-leaf ATE estimates. Sub-
sequently they propose the Causal MARS method, based on Multivariate Adaptive
Regression Splines (MARS), which are said to reduce the inherent bias problem of
tree-based methods.
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4. Design of an Evaluation
Framework

Fundamentally, there is no way to
know what we don’t know before
we know it.

Alejandro Schuler [50, 52, 47] upon
the question, what he thinks about
evaluation of causal effect
estimators.

With the foundations in place, we have introduced a wide spectrum of applicable
methods for causal effect estimation in Chapter 3. Naturally, the question arises,
how these methods fare against each other. Or, in other words, how can we select
the best model for our task? In order to make such statements, we first have to
consider some obstacles. Namely, we want to shed light on the inherent problem in
evaluating causal effect estimators that is derived from the FPCI. Subsequently, we
will look at existing benchmark datasets with their underlying assumptions. Finally,
we introduce interesting dimensions of adjustment for a synthetic data generation
process (DGP) based on the existing work. We use these dimensions to design
experiments for specific hypothesis in Chapter 5.

4.1 The Problem of Evaluation

We have seen in the introduction that the Fundamental Problem of Causal Inference
[26] makes causal inference without further assumptions an impenetrable task. For
any instance we only ever observe one of two potential outcomes. The effect we
are trying to estimate, however, is exactly the difference between the two potential
outcomes. Thus, evaluating an estimator requires us to know a quantity that is never
observable for real data. To put it differently, we will never have a ground truth. At
best, we have a RCT of the same phenomenon to give us a good approximation of
the average treatment effect [51, 47].
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To solve the inherent problem of causal effect benchmarks, several partially synthetic
and completely synthetic datasets have been introduced. The idea is simple. We use
existing data and synthetically create outcomes for which we know the individual
treatment effect by construction. This approach, which we will shed more light on
in Section 4.3, also comes with significant drawbacks. Specifically:

e The data generating processes of fully synthetic datasets are often quite sim-
plistic (e.g. in [37, 64, 35]) and thus a questionable representation of reality.

e The DGPs introduce assumptions as to the structure of the problem. For
example, the number of confounders or the function used to determine the
treatment effect based on covariates. We show in Section 5.3.1 that the per-
formance of methods can only be judged for a specific problem setting. Thus
limiting the claim of generality of any reference dataset.

e In practice, there exists a confusing array of different versions of reference
datasets due to slightly different simulations. (e.g. [35] vs [64] vs. [37] for the
TwINS data or [54] vs [40] for THDP'). This leads some authors to copy the
results instead of validating the numbers themselves.?

e There is no single established procedure for measuring results. Different met-
rics are used for the same dataset, different numbers of replicas, and so forth. A
standard procedure like held out k-fold cross validation for supervised learning
would be desirable.

We now elucidate the approaches introduced to circumvent the inherent problem
of evaluating causal treatment effects. Also, we elaborate on the problems outlined
above.

4.2 Existing Benchmark Datasets

While the respective literature is widely spread throughout many different disci-
plines, a few reference datasets have emerged, that are used to compare and rank
causal estimation methods. Here, we show their background and their assumptions
with respect to the fundamental problem explained above.

4.2.1 Infant Health Development Program

The Infant Health Development Program (IHDP) provides a dataset that has first
been used by Jennifer L. Hill in [25] to evaluate causal estimators. The original
study was constructed to study the effect of special child care for low birthweight,
premature infants. In total, six continuous and 19 binary pretreatment variables

1V. Dorie points out that the script used to generate IHDP evaluation data is probably faulty:
"The only complication is that R changed how the sample function works, so you’ll need to use
RNGkind to set sample.kind to Rounding if you want to get identical results. [...] I should really
take it down [...]”

2Citing a personal communication with the lead author of [65], Jinsung Yoon: "I also got some
different results when I used their code for reproducing the results. However, there may be a chance
that the reviewers complains that I did not use their reported results. Therefore, I just copied and
pasted their results in their paper”
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were collected in a randomised control trial. Using the covariates of all instances
in both treatment groups, the potential outcomes are generated synthetically as
decsribed in Equation 4.1. Finally, Hill simulates an observational study by omitting
a non-random set of samples from the treatment group. The way the subset is
generated from the experimental data does not ensure complete overlap [25].

Specifically, the observational subset is created by throwing away the set of all
children with nonwhite mothers from the treatment group. Thus, for computation of
conditional average treatment effects on the treated (CATT), the overlap condition
is met, while this not the case for the control group.

After the adaptions from Hill, we are left with 139 instances in the treated group
and 608 instances in the control group. For these, Hill then proposes two different
response surfaces, of which we use the one most commonly used by others, referred
to in the paper as setting B3. The following elaboration on the data generation is
taken from [25].

The potential outcomes are defined as

Y (0) ~ N(exp (X + W) - fg,1) and (4.1)
Y (1) ~ N(XBp —wp, 1), (4.2)

where X represents the standardised covariate matrix, W is an offset matrix with
the dimensions of X and all values set to 0.5 and finally wy is chosen such that
the mean CATE is 4. The entries of the coefficient vector Sp are sampled from the
values (0,0.1,0.2,0.3,0.4) with probabilites (0.6,0.2,0.1,0.1,0.1) respectively. This
results in a nonlinear response with heterogeneous treatment effect.

THDP is used in [35, 65, 54, 64, 30, 56, 53, 40].

4.2.1.1 THDP Replication

Using the instructions provided in the aforementioned papers, we generate 1000
replications of this DGP using the script provided by Vincent Dorie*. To make sure
the data generated is equal to the ones used by other authors, we contacted Christos
Louizos [37] to get their set of 1000 replications. The Figures 4.1 and 4.2 show,
however, that the true ATE has a significantly different distribution over the 1000
simulations. Thus, we cannot expect to reproduce results using our own generated
data. Considering the intricacy of the script used for generation and the potentially
unknown changes in the R internal handling of random sampling, pinpointing the
error is tedious if not impossible. The author himself pointed out that he cannot
guarantee the results of the script to be correct as it is not maintained anymore.

For these reasons, we resort to using the replications provided by Christos Louizos,
as they have been used in [30] and [37], where the same results as in [54] are reported.

3Fredrik D. Johansson [30] clarified via mail that the setting used in their implementation of
THDP refers to setting B in [25], while the implementation by V. Dorie refers to it as setting A.
Johansson: “The setup that we want to emulate is Jennifer Hills “B” setting in the original paper,
but that is implemented as “A” in NPCI (confusingly enough). This is a typo in our paper which
we should fix if we have the opportunity.”

4The script was retrieved from GitHub (https://github.com/vdorie/npci) on August 18th 2019.
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Figure 4.1: 1000 replications IHDP dataset provided by Christos Louizos [37].
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Figure 4.2: 1000 replications of the IHDP dataset we generated using the exact
instructions from [54] and [30]
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Figure 4.3: Distribution of the individual treatment effects for one replication of
the IHDP dataset provided by C. Louizos. Most notably, the distribution is almost
gaussian around the ATE and does not show clear heterogeneous groups.



4.2. Existing Benchmark Datasets 45

4.2.2 Twins

The TwiNs dataset is derived from birth data collected in the US between 1989
and 1991. The original data is compiled and analyzed by Almond et al. [3]. From
all these births, only the twins are considered, because these allow us to perform
a special kind of synthetic generation. Namely, we only consider twins with a low
birthweight and then define treatment 7" = 1 as being the heavier twin. In doing so,
we follow other authors that have used the TwWINs dataset for comparisons [65, 64,
37].

This construction means that we know the outcome, mortality in this case, for both
treatments. The only synthetic part in the data is the assignment of treatment.
From the full data containing both potential outcomes, we want to generate data
that resemble an observational study. As mentioned above, this is done via different
functional relationships in different papers. For our purposes we present the process

described in [65].

First, we only use low birthweight twin pairs for which all 30 features are available.
That leaves us with 8215 samples. Since we know the mortality for both twins, we
know the ground truth. To generate a observational study we now assign treatment
by defining

P(T | X) ~ BErN(c(WTX +n)), with
W ~U((—0.1,0.1)**) and
n ~ N(0,0.1),

where o is the sigmoid function, BERN refers to the Bernoulli distribution, U to
a uniform distribution and A(0,0.1) to a normal distribution with mean 0 and
standard deviation of 0.1.

TWINS is used in [35, 64, 65, 37].

4.2.3 Atlantic Causal Inference Challenge - ACIC

The dataset used for the Atlantic Causal Inference Challenge (ACIC)5 2018 is based
on the Linked Births and Infant Deaths Database (LBIDD), a set of de-identified
clinical records made available by The National Vital Statistics System (NVSS) and
The National Center for Health Statistics (NCHS). A detailed description of the the
covariates and the underlying study can be found in [14].

Similar to the procedure in IHDP the authors of the challenge [57] use the real co-
variates and generate synthetic outcomes. Additionally, in this case, the treatment
assignment is also generated. Unfortunately, the exact DGP underlying the data is
not available. This is due to the fact, that the data was part of a public causal infer-
ence challenge and thus publishing the underlying assumptions of the DGP would
simplify the estimation, as we’'ve seen in Section 3.1.1. The authors do, however,
provide many different versions of the data, generated from different DGPs. For ex-
ample, they modify the number of confounders or the degree of the polynomial used
to link covariates and outcome or covariates and treatment. Since both treatment
and outcome are generated synthetically, Y;(0) and Y;(1) are known for all instances
and we can evaluate the performance of estimators.

5The challenge data and further explanations of the corresponding data can be found here:
https://www.synapse.org/#!Synapse:syn11738767/wiki/512854
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4.3 Data Generating Processes

Inspired by the rigid formalisation of a DGP in [22] and the parametric approach in
[57], we now look in more detail at the generating processes behind benchmarking
datasets. As mentioned above, the DGPs can be categorised in three major classes.
There are real processes, partly synthetic processes and fully synthetic processes.
Fully synthetic DGPs create covariate, treatment and outcome data from scratch.
Partly synthetic processes, like the ones used in IHDP, AcIC and for Empirical Monte
Carlo Study (EMCS) in general, create only treatment and/or outcome assignment
and use real covariates. At last, real processes refer to the observational or exper-
imental measurement of natural phenomena through a study. Such data are hard
to come by for evaluation purposes because of the fundamental problem of causal
inference. There is simply no way to know the causal effects of real phenomena,
especially, when we are concerned with individual treatment effects.

The fully synthetic approach, on the other side of the spectrum, is rarely taken
because of its dependence on parameter choices. However, Powers et al. [47] argue,
synthetic data allow us to focus on a specifically constructed problem. A first step
away from the simplicity of fully synthetic data is given with the idea of Structured
Design [2]. Essentially, the idea is to create synthetic distribution which uses pa-
rameters estimated from the original, real data [2, Section 2.2]. The next step is
that used for the IHDP and ACIC datasets, which has been called EMCS in [32].

4.3.1 Empirical Monte Carlo Studies

The idea of an EMCS is to use as many components of the final DGP as possible
from real data [32]. Knaus et al. [32, Table 3] introduce a specific procedure for the
creation of such a study based on collected real world data. Essentially, their specific
approach is to omit all treated instances, such that for all remaining samples Y;(0)
is known. They then generate a treatment effect 7(x;) for all instances based on a
sophisticated concatenation of a sinus function, normalization and a discrete choice
based on constraints of the desired outcome. They argue that their ITE is "highly
non-linear and complicated” [32, p. 20].

More generally, EMCS describes an approach to create evaluation studies for causal
effect estimation. They can thus be used for meaningful evaluation of estimators.
The specific procedure by which simulated outcomes are added to the real data
varies, like we’ve seen with IHDP and TWINS.

At the same time, Advani et al. argue in [2] that these procedures have to be
considered carefully. In their study they theoretically show that for both Placebo
Design and Structured Design, the evaluation can be designed in a way that it does
not yield meaningful results. They show that the simulation can not help to choose
the best estimator for a task. A problem that Alejandro Schuler [50] considered in
detail.

Still, with our current understanding, the evaluation of an EMCS best matches real
life performance compared to fully synthetic data. Accordingly, we continue to use
the approach taken by Knaus et al. for most of our evaluation. In Section 7.2, we
give a brief outlook on methods proposed to improve the real life applicability of
evaluation studies.
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4.3.2 Design Dimensions of a DGP

In the wider context of Empirical Monte Carlo Studies there are many possible
dimensions to consider when designing the distributions of treatment and outcome.
Here, we introduce some of the degrees of freedom that one has and show how they
possibly affect the difficulty of the DGP. In the discussion of our results in Chapter
5 we come back to these and show their effects on the performance of estimators.

During the research for this thesis, we’ve discovered ambiguous descriptions of data
used in evaluations. This concerns the degree of detail with which the used data
is described and also the terminology for describing it. Specifically, the IHDP and
TwiNs datasets are often used with a lack of insight as to how their covariates,
treatment and outcome are structured. It is this observation that motivated us
to further elaborate on the possible dimensions one can tweak when generating
synthetic and partially synthetic data. As further discussed in Chapter 7, we aim
to point towards the more thoughtful description and discussion of DGPs in causal
effect estimation, as thoughtfully exercised by the authors of the ACIC challenges
[22].

Refreshing the notation from Section 2.1, we consider how our covariates, X, out-
comes Y (1),Y(0) and Y, and treatment 7' are structured and how they depend
on each other. Following the formalisation in [22] and [32], we aim to identify an,
yet incomplete, set of parameters to tweak the following dimensions. Simplifying
notation, we assume that any unit ¢ can be identified by it’s set of covariates X;,
thus 7; = 7(X;) refers to the treatment effect of unit 7 identified by X;.

If not stated otherwise we assume the potential outcomes to follow a certain structure
introduced in [22] or, much more precisely, to be expressed in a certain form:

E[Y; | Xi = 2, T}] = p(z;) + () - T (4.3)

That is to say, the expected value of the outcome is defined by the base outcome
plus the treatment effect in case T; = 1. For the individual case we can generally
write

Vi = p(wi) + 7(2) - T + €, (4.4)
including an unspecified error term ¢; that is centred around zero.

The following dimensions are summarised in Table 4.1.

Covariates

The starting point for most DGPs is a set of covariates. As we’ve seen above, these
are often real, taken from a observational or experimental study. The two major
parameters describing the set of covariates are dimensionality, £ = | X;|, and the cor-
relation. The number of covariates influences the quality of estimators and usually,
more covariates, i.e. a high-dimensional setting [47, 61, 39], make the estimations
worse, if the sample size remains fixed. This is intuitive for any machine learning
method, because overfitting becomes more of a problem when £ is high with respect
to the number of samples n. Furthermore, strong correlation or even multicollinear-
ity between covariates make it hard for regressors to choose the right features and
result in a fluctuation of feature importance.
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Heterogeneity

With the homogeneity and heterogeneity of a DGP we refer to the structure of
the treatment effect. A homogeneous treatment effect means, that the ITE for all
instances is the same, i.e. 7(X;) = 7,4 = 1,...,n. When we use a homogeneous
treatment effect, we also remove all dependencies of the covariates on the treatment
effect and thus remove confounding by design. A heterogeneous treatment effect, as
we’ll show, is harder to estimate for most methods, because it introduces complexity
in the function to estimate and also introduces possible confounding. The strength
of heterogeneity can be expressed by the variance of the effect minus the variance
of the error Var(r(z)) — Var(e;).

Distribution of Treatment Effects

Depending on the covariates we use to determine the treatment effect, we can observe
different distributions for it. In general, many covariates follow a normal distribu-
tion, when they refer to natural phenomena, but other distributions are also likely,
especially for categorical features. The distribution of 7(z) can be easily plotted as
done in Chapter 5. It has a significant influence on the difficulty of the problem,
especially for linear methods like the S-Learner with linear regression, that are not
able to capture heterogeneous treatment effects. Is the distribution widely spread
on the range of possible treatment values or even a multi-modal distribution, these
methods will fail predictably, because the ATE is not a good approximation of the
ITE. The distribution can be adjusted by either using a synthetic covariate with the
desired distribution or by choosing the right covariate out of real collected data.

Size of Treatment Effect

The size of the treatment effect is a parameter that can be used to challenge the
sensitivity of estimation methods. We can vary on a scale from no treatment effect
to a very strong relative treatment effect, defined as

7(7;)

Y;(0)

Trel<xz'> =

A small relative treatment effect is harder to grasp, because it is potentially difficult
to differentiate between a causal effect and noise in Equation 4.4.

Confounding

The most essential design choice in any DGP for treatment effect estimation is that
of confounding. As we’ve shown in the introduction and in Section 2.1, confounding
introduces a bias that skews our estimates of the treatment effect. However, we
cannot directly adjust the degree of confounding. In practice, we can only design
treatment assignment and outcome assignment. By choosing the same covariates to
determine treatment and outcome, we introduce confounding, as is shown exemplary
in Figure 4.4. We can then choose the number of confounders and their respective
strength, both increasing the difficulty of the resulting problem. Another variation,
not considered in our work, is the use of so called hidden confounders [18, 44, 40].
That is to say, covariates that influence both treatment and outcome, but are not
in the data we provide to the methods. See [40] for a discussion and one method
covering the use of hidden confounders.
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Figure 4.4: Visual representation of a confounding and no-confounding scenario.
Using the theory from Section 2.2, we can observe that there is no back-door path
in the left graph, while T' <— X5 — Y is an open back-door path in the right graph.

Treatment Assignment

The treatment assignment is just as essential and, as we’ve shown, closely related to
the design of confounding. What separates a randomised trial form a observational
study is the treatment assignment mechanism (Section 2.1.3), which makes this
parameter so important. With the treatment assignment we also control the overlap
condition. That is to say, we control whether the treatment and control groups
are similar or completely different. Also, we control the respective sizes of the two
groups, thus also heavily influencing the difficulty of our DGP. In general, we can
say that less overlap makes the problem more difficult. A common setting in medical
observational studies is that treatment is assigned to instances where the treatment
effect is biggest, thus creating an inherent selection bias in the sample [47]. We
denote the treatment assignment as a function of the covariates that maps to the
probability of the instances described by the covariates receiving treatment. In other
words, we manually fabricate the propensity score p(x).

Outcome Assignment

Just as we assign treatment based on the covariates, we have to assign our outcomes
in the setting of Equation 4.4 by means of the functions p and 7. We call u the base
function and 7 the treatment effect function.

Functional Form

For the relationship of covariates on treatment, outcome and effect, we have the
freedom to choose any functional form. That is to say, we can map the features
using linear functions, polynomials, exponential functions, logits or any other form
we can think of.

Noise

Lastly, we can determine the distribution of the error term e. From a simple additive
normal to interactive measurment errors, biasing the results, there is a wide range
of possibilites.
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Sample Size

The number of instances we provide heavily influences the performances of methods
that rely on larger datasets to learn. For any DGP we can evaluate the estimator
perfomance on different sub-samples and thus get an idea of how the methods per-
form when we scale the number of instances. In reality, we are often confronted
with limited data for medical or political settings, as even observational studies are
costly. In a big data scenario, on the other hand, collecting more samples is often
only a matter of time.

4.4 Benchmarking Metrics

To score the results of the methods presented, different metrics are proposed to
measure error, bias and confidence on individual treatment effects as well as average
treatment effects.

4.4.1 Average Treatment Effect Error

For the evaluation of the estimation of an average treatment effect, we use a an
absolute error, calculated as

€EATE = |T - 7A_|7

where 7 is often retrieved as the average of individual effect estimations, 7 =

no ().
4.4.2 Precision in Estimation of Heterogeneous Effects

The most relevant score for our scenarios, where the heterogeneous use-case is more
interesting, is the Precision in Estimation of Heterogeneous Effects (PEHE). First
proposed in [25], the PEHE score is actually just a MSE on the individual treatment
effects, comparing the estimates with the true effects. Formally, epgpyp is defined
for finite samples as

crons =™ 30 (150 = 00) = [0~ 50)])

_ . 2
=n! (7(z) — ()"
i=1
Often, instead of reporting eppgg directly, the root /eppgg is listed, thus making

the PEHE score a Root Means Squared Error (RMSE) on individual treatment
effects.

4.4.3 Bias

Since the absolute error on ATE is agnostic to the direction in which the method
errs, the bias is also an interesting metric to consider [57]. It allows us to see if
methods tend to over- or under-estimate the treatment effect and is calculated as

n

epras =n"" Yy (#(x;) — ().

%



4.4. Benchmarking Metrics

Dimension | Possible Considerations

Real or synthetic
Covariates | Number of covariates

Correlation between covariates

Homogeneous vs. heterogeneous
Treatment Effect | Small vs. large relative effect

Distribution of effects

Number of confounders
Confounding | Strength of the confounding relation

Hidden confounders

Random vs. confounded

Treatment Assignment | Overlap condition

Treatment/Control size ratio

Sample Size | Number of instances used for training

Signal to noise ratio
Noise

Distribution of noise terms

Homoscedasity | Different variance of covariates or not

Table 4.1: Overview of possible dimensions and their description
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4.4.4 Effect Normalized Root Means Squared Error

The Effect Normalized Root-Mean-Squared-Error (ENoRMSE) is, to our knowledge,
first proposed in [57] with the intent to report an error score that is independent
of the absolute treatment effect size. Naturally, it considers the relative treatment
effect error, :Ez:g, instead of the absolute one. To penalize wrong estimation this is

incorporated into a RMSE via

n

€EENORMSE = [N~ Z(l - jEZ;)Q

i

This score, however, has a problem with treatment effects close to zero and might
overpenalize such effects due to a lack of computational precision [57].

4.5 Towards a Benchmarking Framework

In the the process of designing the experiments we wanted to run, it became clear
that to simplify the workflow we had to design and implement a small framework.
Essentially, the motivation was to be able to quickly compare a multitude of meth-
ods on a set of (potentially parametric) DGPs or datasets using different metrics.
Furthermore, results should be easy to analyse, stored persistently and categorised
according to their settings. Finally, as we’ve recognised the large dependence of per-
formance on the specifics of the data, we wanted to add tools to analyse reference
datasets visually using plots.

The result of this process is a preliminary benchmarking framework® that abstracts
CausalMethods and DataProviders so that new methods and new datasets can be
added efficiently. The experiments are tracked using the python package sacred’,
which makes the workflow a lot easier and faster. All experiments are stored with
their parameters and results in a database that can be searched using the corre-
sponding dashboard omniboard®. More information about the module structure
and usage examples can be found in the repository.

6The framework can be found at https://github.com/inovex/justcause. For the experiment in
this work, the version v0.1 was used. Since then, we’ve restructured the package completely to
provide it as a library.

"More information: https://github.com/IDSIA /sacred

8More information: https://github.com/vivekratnavel /omniboard
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The short story is that there is no
single optimal way to estimate
treatment effects — the performance
of different methods depends on
problem-specific questions.

Stefan Wager [60, 4, 6] in response
to the questions, why Causal
Forests are outperformed by simple
methods.

Already during the design of the experiment in the previous chapter, the inherent
problems of treatment effect estimator evaluation became clear. We have specified a
set of possible dimensions which can be tweaked to create unique challenges. Here,
we now show the results we observed for a small subset of possible experiments.
Specifically, we validate one major claim with experimental results using the frame-
work introduced in Section 4.5. We further try to replicate the results other authors
have observed on IHDP, with limited success. Finally, we discuss some of the prop-
erties of specific methods that we observed during the experiments and try to give
an explanation for their behaviour.

5.1 What We Evaluate

To clarify which methods are used, we briefly introduce the abbreviations we used
occasionally for formatting reasons. In general, there are meta-learners like the S-
, T-, R- and X-learners, that can be implemented using any statistical regression
model like linear regression or random forests. To distinguish between different
implementations, we list the meta-learners always in conjunction with the used base-
learner. All abbreviations are listed in Table 5.1.

GANITE, presented in Section 3.3, is not evaluated because the implementation
provided by a third-party [53], does not yield meaningful results. While training
seems to be stable, the method performs worse than the simplest baseline. The
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authors themselves [65] refused to provide their project code for replication. Because
re-implementation with hyperparameter search is beyond the scope of this thesis,
we had to leave GANITE out of the evaluation.

Full Name Abbreviation Origin Implementation
Causal Forest CF 60, 6, 4] grf!

Random Forest RF [10] sklearn’

Linear Regression LR - sklearn

Logistic Regression LogR - sklearn
CausalBoost CB 47] causallearning®
CausalMARS CM [47] causalLearning
PTOForest PTO [47] causalLearning
Propensity Score Weighting PSW 48] FW*

Doubly Robust Estimator =~ DR [11] FW

S-Learner SL 33] FW

T-Learner TL 33] FW

GANITE GANITE 65] perfect-match®
DragonNet DN [56] dragonnet®
X-Learner XL 33] r-learner’
R-Learner RL [41] r-learner

Table 5.1: Overview of methods under comparison, their abbreviations, original
paper and the implementation used.

5.2 Evaluation Procedure

In Section 4.3.2 we've elucidated the multitude of dimensions one can adjust during
evaluation. What’s more, the parameters of the methods can also be tweaked to
see how they change the performance in a specific setting. The sheer number of
possibilities for experimentation led us to follow only a specific hypothesis. We leave
the detailed empirical analysis of methods open for future research, but remark on
general directions and intuitions about specific methods and their strengths.

The major claim we aim to show with examples in Section 5.3 is the following:

Hypothesis: The performance of methods heavily depends on the DGP settings
used. Thus, different DGPs will lead to a different ordering of methods with respect
to a metric.

In general, the aim was to design a data generating process (DGP) that isolates a
specific component, so that we can rule out any other influence on the results. We
implement all DGPs in our benchmarking framework and run the desired methods
on them. Since most DGPs are based on random variable distributions for either

Thttps://github.com/grf-labs/grf

2http:/ /scikit-learn.github.io/stable

3https://github.com /saberpowers/causalLearning

4Refers to our own framework implementation; more details in Section 4.5.
Shttps://github.com/d909b/perfect_match

Shttps://github.com /claudiashi57/dragonnet
"https://github.com/xnie/rlearner
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their covariates, treatment or outcome, we evaluate the methods on a number of
replications to rule out sampling specific problems. That is to say, we sample from
the DGP a set of instances, run the method, score the results and then re-sample
a new dataset. This is the procedure proposed in [54] for ITHDP. It ensures that
sampling variance does not skew results.

For all experiments, we report every metric introduced in Chapter 4, but we mostly
list the \/eppnE score as a measure of accuracy. We do this, because €47g is not
relevant for the heterogeneous settings, egrag is relevant mostly for practical ap-
plications but not for theoretical comparison and €gy,grrrse has rounding problems
with small effects. Also, the /epppg score is the most commonly used reference
score.

5.2.1 A Note on Plots

Throughout this section we use plots to visually report results and communicate
an intuition about them. Specifically, we’ll use a point cloud plot to get a sense of
how a dataset looks like. Figure 5.1 shows such a plot. The left subplot shows the
difference between treated and control instances, colored black and cyan respectively.
The right shows the difference between observed and unobserved instances, colored
blue and red respectively. The z dimension refers to the outcomes, z and y are the
two dimensions of a t-SNE (t-Stochastic Nearest Neighbor Embedding) [59] of the
covariates. Without going into details here, t-SNE tries to find an embedding that
keeps the t nearest neighbours intact. Thus, for real covariates, t-SNE will cluster
similar instances together, while a gaussian distribution, for example, results in a
more even cloud.

Treated Observed
Control Counterfactual
14 ~ 14 7
12~ 12 7
10 ~ D) 10 ~
08 - [y s 08 -
06 - it | 30 06 -
L et
04 - “’F‘ L = qh* - 04 - -
40 =20 0 - 0 -20 40 40 -20 0 - 0 -20 40
20 0 0 20 20 40 0 20

Figure 5.1: An example t-SNE plot.
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5.3 Method perfomance varies between settings

Others have hinted at the fact, that method evaluation is highly dependend on the
setting we evaluate in [51, 50, 47]. In this Section we present two experiments that
make this point clearer and show how difficult it is to get a trustworthy performance
estimation for any method.

5.3.1 Multi-Modal versus Exponential

We designed two simple DGPs based on the covariates from the IHDP dataset. One
has an explicitly multi-modal effect distribution, denoted by S);, and the other
has a rather simple uni-modal effect function, denoted by Sg. This is to say, in
setting Sy, we have two groups of units in the treated group with distinctly different
treatment effects, that can be distinguished by one covariate. The differences in
treatment effects in setting S are less clear. This distinction becomes clear in Figure
5.2. We use the 25 covariates from the underlying ITHDP study as our covariates,
X = (Xi,...,Xy5). Covariates are each normalized to zero mean and standard
deviation. The treatment and outcome assignment for the the multi-modal and
exponential case are then defined as follows. We set

7 =exp (1 + o (X)),
T; = BERN (0(X3)),

Y;(0) ~ N (X} + 1, %) and

for the setting Sg. And for the multi-modal setting, Sy;, we change 7; to

i =1 (O(X,-S) > %) , (5.1)

7 ~ N3y + 1(1 —7),0.1). (5.2)

The treatment assignment remains the same. Thus, for both settings, Xg is the
confounder. Figure 5.2 gives a visual insight into the two distributions of treatment
effects dependent on the confounder Xg. Covariate Xg refers to the birthweight
of the units in the original IHDP study and is chosen because of its clean normal
distribution. The threshold for the sigmoid function is chosen to ensure a 50/50 split
between the two treatment effects. The coefficients for 7; in seeting Sy, are chosen to
present a clear split and no overlap due to a small deviation of 0.1. Confounding is
similar in strength in both scenarios, thus the difference in predictions stems mainly
from the structure of the treatment effect. The t-SNE plots in Figures 5.3 and 5.4
show the resulting data distributions.

We run a set of 13 methods over 100 replications of the data and measure the PEHE
scores. Firstly, our intuition from visual analysis, that the multi-modal setting is
more difficult to grasp, is vindicated by the ENoRMSE score. Namely, the average
ENoRMSE score for the exponential setting over all methods is 0.14 versus 0.89 for
the multi-modal setting.

Secondly, the results in Table 5.2 show what we claim with our Hypothesis. There
is no one best method and performance is highly dependent on the structure of the
problem.
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Figure 5.2: Scatter plot of the treatment effect dependent on the confounder for the
two settings Sy, on the left and Sg on the right.
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Figure 5.3: Data distribution of the multi-modal setting in the t-SNE plot. Because

part of the effects is small and thus hard to detect, the multi-modal setting is
considered more difficult.

In general, however, we see that linear methods don’t perform well on setting Sy,
because they have difficulties grasping the two groups of treatment effects. Instead,
they tend to approximate them by choosing the mean, somewhere around 2, result-
ing in an root mean squared error close to 1. Figures 5.5 (f) and (h) on the next
page clarify this intuition. We plotted the true effect against the estimated effect
to see how they are approximated. Especially the S-Learner with linear regression
and the Propensity Score Weighted methods struggle, because they can only esti-
mate the ATE, not the ITE. Thus, the ATE estimate 7 is broadcast to all units
yielding the distinctive plots (f) and (h) in Figure 5.5. For the exponential setting,
Sg, on the other hand, the lasso based X- and R-learner perform best besides the
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Figure 5.4: Data distribution of the exponential setting in the t-SNE plot.

surprisingly good PTOforest. These results for linear learners fit the theory, because
the treatment effect curve shown in Figure 5.2 for Sg is almost a linear function of
the confounder Xg, due to the normalisation with the sigmoid function. Only in
the lower effect range can we observe the typical 'knee’ of an exponential function.
As expected, this is also where the T- and X-learner consistently underestimate the
effect according to the subplots (c) and (d) in Figure 5.6, because they approach the
problem with a linear regressor. Tree based learners like the PTOforest or the Causal
Forest struggle with the exponential setting, because the limited number of training
samples (747 instances) is not enough for them to learn a smooth representation of
the curve.

Surprising is also the below average performance of DragonNet in both settings,
which we ascribe to the lack of training data. A hypothesis we consider in more
detail in the next section.
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Figure 5.5: Predicted treatment effect plotted against the true treatment effect in
the multi-modal setting Sy, for various learners.
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Method \ VE€PEHE Method \ VE€PEHE

Causal Forest 0.1648 +0.01 PTOforest 0.1801 4+0.01
PTOforest 0.3864 £+0.03 R-Learner-Lasso | 0.1996 +0.02
T-Learner - RF | 0.4158 4+0.02 X-Learner-Lasso | 0.2071 +0.01
S-Learner - RF | 0.4179 +0.03 Causal Forest 0.2518 £0.03
CausalBoosting | 0.5315 +0.02 T-Learner - LR | 0.2641 £0.02
X-Learner-Lasso | 0.5601 40.00 CausalMARS 0.3448 +0.06
T-Learner - LR | 0.5837 +£0.01 T-Learner - RF | 0.3607 £0.02
R-Learner-Lasso | 0.5838 40.00 S-Learner - RE | 0.3713 +0.02
DragonNet100 0.6153 +£0.02 DragonNet100 0.5524 £0.05
CausalMARS 0.8705 +0.22 S-Learner - LR | 0.9515 £0.00
PSW - LogR 0.9960 4+0.01 CausalBoosting | 0.9522 +0.02
S-Learner - LR | 1.0094 +0.00 PSW - RF 1.0711 £0.05
PSW - RF 1.0094 £0.02 PSW - LR 1.1264 £0.06

Setting Sy Setting Sg

Table 5.2: Method performance on multi modal setting (left) and exponential setting
(right) compared. The score is averaged over 100 replications on a held-out test

sample. The different orderings among methods support our Hypothesis.

predicted effect
IN o o

w

3 4

PTOforest

5

true effect

(a) PTOforest

T-Learner - LinearRegression & LinearRegression

6

o

predicted effect
S

w

true effect

(c) T-Learner - LR

predicted effect
A o o
[&)] o (&)}

by
o

Causal Forest

true effect

(b) Causal Forest

[«

[&)]

w

predicted effect
S

N

X-Learner-Lasso

true effect

(d) X-learner

Figure 5.6: Predicted treatment effect plotted against the true treatment effect in
the exponential setting Sg for linear learners and tree-based learners. We see that
tree-based learners struggle to approximate the smooth treatment effect function.
Note that a perfect approximation would result in straight diagonal line in this plot.
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Figure 5.7: Treatment scatter plots of DragonNet estimations for small and big
training sets. Surprisingly, the performance of DragonNet on the two settings Sy,
and Sg is in the lower segment (see Table 5.2). The treatment scatter plots show
relatively high variance that hints at a lack of training data when the original 747

samples are used. Figures (¢) and (d) show the approximation with 20000 samples,
where the estimation is much better and more robust.
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5.3.2 Scaling Effects

The previous section introduced the multi-modal setting Sy, as well as the exponen-
tial setting Sg. We observed, among other things, that tree based methods struggle
to approximate the treatment effect for setting Sg, because of its smooth and linear
structure and that the deep neural network of DragonNet performed below average.
Naturally, we thought that the limited training data that the IHDP covariates pro-
vide might explain these observations. Thus, we created two very similar settings
Sy and Sg based on ACIC covariates, so that we can evaluate scaling effects. The
Acic datasets provides full covariates for 100.000 samples, of which we used 20.000
for our specific experiment.

As the confounding variable for both settings as described in the section above we
chose birth weight, because of its clean normal distribution. In total, 7 covariates
are included, all other settings remain the same as in the section above. Results are
compiled in Table 5.3

Method \/€EPEHE Method \/€EPEHE

Causal Forest 0.2073 DragonNet100 0.0606
T-Learner - LR 0.2886 Causal Forest 0.0851
X-Learner-Lasso  0.3003 R-Learner-Lasso  0.2627
DragonNet100 0.3173 X-Learner-Lasso ~ 0.2871
S-Learner - RF 0.3727 T-Learner - LR 0.2955
R-Learner-Lasso  0.3745 T-Learner - RF 0.3499
CausalMARS 0.3962 S-Learner - RF 0.3638
T-Learner - RF 0.4152 CausalMARS 0.7462
DR - LogR & RF 0.8542 DR - LogR & RF 0.8542
S-Learner - LR 0.8576 S-Learner - LR 0.8549
DR - RF & RF 0.8582 PSW - LogR 0.8566
PSW - RF 0.8652 DR - RF & RF 0.8582
PSW - LogR 0.8858 PSW - RF 0.8802
Setting Sk on 1000 samples Setting Sy on 20000 samples

Table 5.3: Method performance on the new exponential setting S trained on 1000
and 20000 samples

While the results are not comparable directly with the results above due to the
different covariates, we can still make interesting observations. Firstly, we see that
some methods benefit more than others from the higher number of training samples.
Among the beneficiaries are Causal Forests, DragonNet, R-Learner-Lasso and the
T-Learner with random forests. This matches our intuition that tree based methods
as well as sophisitcated deep models require more training data. For the DragonNet
the improvement is most significant. This can also be seen visually by comparing
the plots (b) and (d) in Figure 5.7. We see that for setting Sg, the variance of
estimation is far less. The same observations counts for Causal Forests in Figure
5.8, where we see that Linear Models like the T- or S-Learner with linear regression,
don’t improve their performance with increasing training data.

For the multi-modal setting Sj;, we observe that the number of training instances
is less relevant. We argue that this is due to the fact that the distribution of
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Figure 5.8: Causal Forest evaluated on the exponential setting with 1000 and 20000
samples.

treatment effects is simpler. That is to say, in order to learn the two clusters of
treatment effects, the number of instances in each cluster does not matter. To learn
the smooth distribution of the exponential setting, however, more data is always
helpful. This intuition is visualised in Figure 5.9, where we see that the clusters are
already recovered almost perfectly by the Causal Forest with 1000 training samples.
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Figure 5.9: Causal Forest evaluated on the multi-modal setting with 1000 and 20000
samples. The effect of more samples is less pronounced than for the exponential
setting, as shown in Figure 5.8.

5.4 Experiments on IHDP

The IaDP dataset we introduced in Section 4.2.1 is among the most commonly used
reference datasets for new causal effect estimation methods. Thus, we aim to repro-
duce the results here. Besides the issues we elucidated in the design chapter, IHDP
suffers from another curse, that is not considered in the evaluation of other authors.

Namely, the error distributions of almost all methods on the 1000 replications of
[HDP are heavily skewed.

5.4.1 The IHDP Error Distribution

We use the 1000 replications provided by Christos Louizos [40] and Frederik Jo-
hansson [30], because of the problems we had replicating the same distribution with
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Figure 5.10: Distribution of €pep. two T-Learners over the 1000 replications of IHDP.
The red line marks the median, the yellow line marks the mean over all replications.
For other methods, the long-tail effect is even worse.

the provided script. In Figure 5.10 we’ve plotted the distribution of \/eéprpy g scores
on the 1000 replications for a simple T-learner with a linear base learner. We ob-
serve that the scores are not normally distributed, but highly skewed towards bigger
values. To make things worse, results are usually reported as the average of all
replications [54, 65, 35, 37, 40]. Thus, the reported results are highly dependent on
a few of the 1000 replications leading to significantly different scores when running
experiments with fewer replications due to time constraints. Because of this obser-
vation we propose reporting the median instead of the mean, since mean is sensitive
to extreme values. The median is located closer to the highest density of the distri-
bution as can be seen in Figure 5.10. It is thus less dependent on the chosen subset
of replications and accordingly more robust.

When it comes to understanding why the 1000 replications of THDP have such differ-
ent difficulty levels, we assume the cause to be the random sampling of coefficients
in B, as outlined in Section 4.2.1. Because treatment assignment is fixed, depend-
ing on the sampled coefficients, the problem is has different levels of confounding,
ranging from none to strong. Also treatment effect sizes change significantly among
the 1000 replications, as was reported in Figure 4.1. Because the \/epppg score is
not effect-size-normalised, the few replications with high treatment effects have a
greater influence on the resulting mean score.

In Table 5.4 we can observe that reporting the median instead of the mean yields the
same ordering of methods that perfectly matches with our theoretical expectations®.
However, the results for T-learner with random forest vs. linear forest lay closer
together when the median is reported. This is a result of the different long-tails that
can be observed in Figure 5.10. Namely, the T-learner with linear regression is less
robust and results in an average /eppmE score that is substantially worse than that
of the T-learner with random forest. The same significant difference is not present
when the median is reported. Essentially, the T-Learner-Linear performs really bad
on some problems, thus nudging the results towards a higher mean score.

8To be specific, we expect the non-parametric T-Learner with random forests to best learn the
heterogeneous distributions, while S-Learner variants or T-Learner variants with linear regression
fall behind.
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Method \/EPEHE Method \/€EPEHE

T-Learner - RF  1.9749 T-Learner - RF 1.2634
T-Learner - LR 2.3448 T-Learner - LR 1.2849
S-Learner - RF  3.5076 S-Learner - RF 1.458
S-Learner - LR 5.7849 S-Learner - LR 3.0779
DR - LR & RF 5.8168 DR - LR & RF  3.1146
PSW - LR 10.4242 PSW - LR 5.2498
Results as Mean Results as Median

Table 5.4: Comparing IHDP results reported as mean (left) and median (right). We
only report these base-methods, because their training and inference time is low.
Computational limitations make it infeasible to run a large number of experiments
with sophisticated methods on 1000 replications of the IHDP set.

5.4.2 The Lack of Overlap

We've shortly pointed out in Section 4.2.1, that the overlap condition (Assumption
2.3) is not met for the IHDP dataset. Specifically, the way an observational subset
was created from the experimental data yields a set of instances, where overlap
cannot be guaranteed for the control group. Because all units with a value of the
feature momrace (mother’s race) other than white are removed from the treated
group, a theoretically sound evaluation of treatment effects on non-white instances
in the control group is not possible. The probability of treatment for these instances
is strictly zero and thus 0 < P[T' | X] < 1 (Assumption 2.3) does not hold.

The fact that the overlap condition is not met in both directions is often overlooked.
Most authors use the IHDP reference dataset without referring to this abnormality.
Theoretically, the evaluation of methods on IHDP with respect to ITE estimation is
not possible, as the methods require the overlap condition to be met. An estimation
of individual treatment effects, and thus its evaluation, is only valid for the subset
of treated instances. Indeed, evaluation of a T- and S-Learner on the individualised
Conditional Average Treatment Effect on the Treated (CATT) yields better results
than on the whole set of instances. To show this, we trained the two estimators
on the whole set of 747 instances, but evaluated the ITE predictions on only the
treated or control instances respectively. The results in Table 5.5 hint at the fact
that evaluation on the whole set does not do justice to the true performance of the
estimators.

Method VePEHE Method VEPEHE

T-Learner - LR 2.2406 +0.1 T-Learner - LR 2.6203 £0.1
S-Learner - LR 5.3863 £0.2 S-Learner - LR 5.8576 +0.3
Only on treated Only on control

Table 5.5: Comparing €,epe scores on the subset of treated instances and on the
whole dataset.
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What’s more, the size of the treated group is far smaller than the control group with
139 versus 608 instances. Results reported as the mean of ITE predictions over all
instances are thus dominated by the results on the control group, where the overlap
condition is not met.

5.4.3 Reproducing IHDP Results

We run all the methods presented in Chapter 3 on the IHDP to see which results we
can reproduce. In Table 5.6, we compiled the results with mean and standard errors
for the \/eprrr score on a held-out test set. Comparing the results with [54], we are
able to perfectly reproduce the scores of the base methods T-learner and S-learner
with linear regression. Causal Forests, however, perform worse in our experiment
than was reported by others [54, 65, 64].

The best performance of the methods compared has the DragonNet, because it uses
both theoretical underpinning and the capacity of modern deep neural networks.
However, the result cannot be compared with what the authors themselves report,
because they report the mean absolute error instead of the \/eppyg score, obfus-
cating their results unnecessarily in comparison to other evaluations. At least they
mention the limits of IHDP and note specifically, that these results alone are mean-
ingless [56].

The order of propensity score weighting implementations is interesting, because it
verifies the intuition that default random forests over-fit on the training set and
thus don’t work as well as logistic regression or a limited random forest, where the
number of splits is artificially constrained.

Method VEPEHE

DragonNet-100 2.0350 £ 0.1
X-Learner - Lasso 24173 £ 0.1
T-Learner - LR 2.5180 £ 0.1
R-Learner - Lasso 2.7188 + 0.1
T-Learner - RF 3.0884 + 0.1
CausalMARS 3.4904 £+ 0.1
S-Learner - RF 3.7921 £ 0.2
CausalBoosting 3.8348 + 0.2
CausalForest 4.3146 £ 0.2
S-Learner - LR 5.7920 + 0.3
DoubleRobustEstimator - LogR & RF 5.7401 + 0.3
DoubleRobustEstimator - RF & RF 5.8021 £ 0.4
PropensityScoreWeighting - RF limited® 7.6800 % 0.3
PropensityScoreWeighting - LogR 8.3973 £+ 0.3
PropensityScoreWeighting - RF std 10.4296 + 0.4

Table 5.6: Full results on 1000 replications of IHDP. The evaluation is in the within-
sample setting proposed in [54], where treatment assignment and the factual outcome
can be used for treatment effect estimation.

9To check the effect of a random forest with less capacity on the propensity regression, we limit
the depth of each tree in the forest to 2. That means, each tree can only make two splits.
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5.4.4 IHDP as Benchmark Data

Having reported the difficulty to reproduce the exact IHDP DGP in Section 4.2.1,
we showed in this section that the way results are reported is questionable.

First, the 1000 replications contain vastly different data yielding vastly different
estimation results with a skewed distribution. Secondly, the results are reported as
mean, making them dependent on the few really difficult replications. Lastly, results
are reported on the whole sample of 747 instances, where the overlap condition
cannot be guaranteed by design. To make things worse, all this is done without
acknowledgement of the problems that can occur.

This leads us to the conclusion that using IHDP as a reference dataset should be done
with great care. Authors should provide a clear reference to the specific problem
that the DGP models as well as the underlying problems of the evaluation. Ideally,
multiple evaluations on different, opposing problem settings are performed to show
where the method performs well and where it struggles.

5.5 The Speciality of Causal Forests

Right from the start of our research, Causal Forests played an essential role. Not
least, because of their popularity in the field and the large reputation the authors en-
joy among causal inference researchers. The average performance on Causal Forests
on THDP, however, sparked the question, why Causal Forests are so popular after
all.

5.5.1 Causal Forests for Small Treatment Effects

Upon the question why Causal Forests are outperformed by a simple T-learner with
Linear regression on the IHDP reference data, Stefan Wager responded with a little
toy example to demonstrate the strong-ground of Causal Forests. He claimed that
Causal Forests are particularly strong in settings with small and confounded hetero-
geneous treatment effects. This section aims to analyse the hypothesis along with
the example given by Wager.

The demonstration uses a very simplistic DGP, with all 10 covariates sampled from
a standard normal N (0, 1). Further, as Stefan Wager proposed,

Y (0) = o(X1) + N(0, 1),

T = X2 + X37
Y(1) =Y (0) +,
T = BERN(0.5),

for the simple setting. For this settings, the hypothesis is, that both Causal Forests
and T-learner perform well, because treatment is randomised and treatment effects
are large.

The hard setting Sy as defined by Wager is slightly different, with

Y (0) = o(Xy) + N(0,1),
T=0(Xs+ X3)/2,
Y (1) =Y(0) + T,
T = BERN(o(X4)).
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We’ve found this experimental setup to be confusing, because it introduces variation
in the two DGPs beyond the dimension we are concerned with. Specifically, applying
the sigmoid function o onto the treatment effect not only makes it smaller, which
is the desired focus of the comparison, but also changes it’s range to [0,1]. In
effect, this produces are clearer split between treated and control group with respect
to outcome, because in the simple setting, the normal distribution of X, and X3
results in a blended distribution of treated and control.

Figures 5.11 and 5.12 show that the two original DGPs do not only differ in the size
of the treatment effect. For these proposed DGPs the results we observe match those
Stefan Wager predicted. Namely, T-Learner and Causal Forest both perform well on
the simple setting. In the hard setting, however, the Causal Forest far outperforms
the T-learner.

To make the claim more meaningful, we slightly adjust the proposed DGP. Because
we are only interested in the size of the treatment effect we leave everything else
equal. Thus, for the simple setting, we change 7 to

T:U(X2+X3)'3,

and denote this adjusted simple setting by Sg and the hard setting by Sy . It follows,
that now the two DGPs are equal with the only difference being the multiplicative
coefficient of the treatment effect and the assignment mechanism. In Table 5.7 we
compiled the results on our adjusted challenge for the simple and hard settings.
Given this adjusted DGP, Stefan Wagers claim does not hold. The T-Learner with
linear regression outperforms the Causal Forest in both settings. That is to say, the
mere size of treatment effects does not qualify the Causal Forest. Rather, it is the

detection of strictly heterogeneous treatment effects like the ones in setting S); in
Section 5.3.1.

Method A/ EPEHE Method \/€EPEHE

X-Learner - Lasso 0.1408 X-Learner - Lasso 0.0240
R-Learner - Lasso 0.1431 R-Learner - Lasso 0.0258
T-Learner - LR 0.1553 CausalMARS 0.0272
CausalMARS 0.1700 T-Learner - LR 0.0281
S-Learner - RF 0.1859 Causal Forest 0.0337
T-Learner - RF 0.1955 S-Learner - RF 0.0641
Causal Forest 0.1956 T-Learner - RF 0.0680
PTOforest 0.2517 PTOforest 0.0794
CausalBoosting 0.4040 CausalBoosting 0.0817
S-Learner - LR 0.7880 S-Learner - LR 0.1314
Setting Sy Setting Ss

Table 5.7: Method performance on hard (left) and simple setting (right) compared.
The score is averaged over 100 replications.

5.5.2 Explaining the Performance of Causal Forests

We asked other authors how they explain the average performance of the renowned
Causal Forests on problems like the IHDP dataset. Jinsung Yoon, author of the
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Figure 5.11: Data distribution of the simple setting proposed by Wager in the t-SNE
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Figure 5.12: Data distribution of the proposed hard setting in the t-SNE plot.

GANITE paper [65], attributed the behaviour to over-fitting. This is possible, as a
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single Causal Tree splits the data and essentially only uses one half for finding the
splits. This is required for the honest property (see Definition 3.2) to work. The
negative effect of this split, however, is reduced if not completely alleviated by using
Causal Forests, because each tree uses a different split. Hence, over all trees in a
forest, all data samples are used for training. All things considered, we do not think
that overfitting is the reason for the average performance, rather it is the specific
setting with which Causal Forests struggle.

Through the example in Section 5.3.1 and especially the plots in Figure 5.5, we
could show that the theoretical stronghold of Causal Forests, i.e. identifying het-
erogeneous groups, matches the practical results. Hence, the performance on THDP
is less surprising, not because of the method but because of the structure of the
problem. In Figure 4.3, we saw that there aren’t any clear splits between differ-
ent treatment effects on IHDP. Thus the Causal Forest approach to identify these
groups is more likely to fail than approximation of outcomes with regression, which
does not explicitly search for heterogeneous groups. This is especially so, with a
limited number of training instances. To put it differently: the outcome regression
methods don’t require distinct treatment effect groups, while the splitting objective
of Causal Forests does. This claim is corroborated by the performance of the Causal
Forest on setting Sg, shown in Table 5.2, where it is also trumped by linear R- and
X-Learners.

Given the clear results of the section above, it is surprising that the author of the
method himself gives an example that does not match the theoretical underpinnings
of the approach and does not seem robust to detailed analysis. By accident we
stumbled across an example that matches the theory with the multi-modal effect
setting in Section 5.3.1. Considering how the objectives are chosen for tree splits
in Section 3.2, it makes sense to construct a distinct treatment effect rather than a
continuous normal distribution.

Another argument that speaks for Causal Forests is given by the authors. In their
proposition of generalised random forests, which are a generalisation of Causal
Forests, [6], Susan Athey et al. write: "We develop a large sample theory for our
method showing that our estimates are consistent and asymptotically Gaussian, and
provide an estimator for their asymptotic variance that enables valid confidence in-
tervals”. Thus, we attribute the high interest in the method they developed to the
statistical properties rather than to the hard-measured performance on general set-
tings. Especially in the original field of study of Susan Athey and Stefan Wager,
econometrics, these properties are of higher importance.
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I would rather discover one causal
law than be King of Persia.

Democritus (460-370 B.C.)

In this thesis we provided an overview of the field of causal inference and elaborated
on the two major frameworks providing tools for working with causal claims: Po-
tential Outcomes and Structural Causal Models. We then focused on the subset of
causal inference that is concerned with the estimation of treatment effects. To tackle
this task we introduced a wide set of methods and clarified the underlying theories
based on the theoretical foundations. In the second part of the thesis, starting from
Chapter 4, we 1) analysed how causal effect estimators are evaluated, 2) uncovered
a bad state of affairs regarding the use of reference datasets and 3) provided a more
comprehensive taxonomy of data generating processes (DGPs) to allow for clearer
communication of results. Finally, we presented experimental results for one major
hypothesis concerned with the very nature of evaluations and we discussed inter-
esting observations. In the meantime, we implemented a benchmarking framework
using parametric DGPs that allows to run a variety of experiments easily, ensuring
consistency, logging and visual reports.

This section concludes our work and summarises the observations.

6.1 Two Viewpoints United

After a detailed study of the theoretical foundations and assumptions underlying
the Potential Outcomes framework and Structural Causal Models in Chapter 2, we
came to the conclusion that the two theories stand for entirely different paradigms
in the field of Causal Inference.

The Potential Outcomes framework is concerned with the very specific setting where
some form of treatment is applied to a population or to individuals. The theory
considers the problems that are derived from this setting. It’s primary achievement
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and use is to give the formal foundations for using statistical learning methods, both
old and new, to tackle the problem of treatment effect estimation in various settings.

Structural Causal Models, on the other hand, tackle a wider problem by modelling
causal claims through graphs. The primary contribution is more on the logical,
theoretical side than on the task of actual estimation. Namely, SCMs allow to make
clear statements whether a quantity, i.e. a causal effect, can be recovered from
observational data. The algorithmic machinery introduced by Pearl et al. [43] is
comprehensive and powerful, but not all-mighty:.

For treatment effect estimation we learned that we can unite the two paradigms
and use SCMs to model our assumptions and study the feasibility of our task in
theory. We then use the formulations of the PO framework to estimate the quantities
of interest. In Section 2.2.5, we showed by means of an example, what such a
collaboration can look like.

6.2 Different Settings, Different Results

By virtue of the experiments outlined in Section 5.3, we corroborated the hypothesis
that has been hinted at before by others [47, 51, 52]. Namely, different settings for
the data generating process yield different evaluation results. The gist being, we
cannot make general statements as to the performance of estimators. Or, to put it
differently, when we proclaim the good quality of a method, we must accompany
this claim with a clear definition of the setting used.

In our specific setting we could show that the case of a clearly separated, hetero-
geneous treatment effect is best handled by tree based method, foremost by the
specifically designed Causal Forest [4, 60]. Linear methods, on the other hand,
struggled to grasp the difference in treatment effects.

Furthermore, we could show that some methods benefit more from increasing sample
sizes, while others keep a steady performance or even deteriorate slightly.

6.3 Misuse of reference data

Throughout our work with reference datasets for treatment effect estimation, namely
Iapp and TWINS, we encountered difficulties in reproducing DGPs as well as results.
These obstacles put a big question mark behind the evaluation results of other
authors, because they hinder replicability.

In Sections 4.2.1 and 5.4, we revealed that:

1. The script used to generate the IHDP data is faulty with invisible traps. What’s
more, apparently different versions of the dataset are being used under the
same name.

2. The fundamental overlap condition is not met for the larger part of the sam-
ples within the IHDP data, making a theoretically sound evaluation infeasible.
While this was clear to the authors of the original paper [25], later users of the
dataset don’t mention it.
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3. The distribution of /€ ppr £ over the 1000 replications used for IHDP evaluation
is long-tailed, making the reported mean result dependent on the performance
of a method on a few very difficult replications.

4. The way IHDP is generated does not follow a specific hypothesis. It only
covers one possible problem setting and does not allow a general comparison
of methods, as seen in Section 5.3.

These observations led us to believe that the way by which many new treatment
effect estimation methods are evaluated is flawed and, to put it bluntly, unscientific.
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7. Future Work

Building on the concluding observations of Chapter 6, we want to point out a few
directions of further research that we believe to be important, if not inevitable for
the field.

7.1 More Hypothesis

In Section 5.3, we've elaborated on a hypothesis by designing a specific DGP. In Sec-
tion 5.4 we've attempted a detailed analysis of a commonly used reference dataset.
The sheer number of dimensions, methods and datasets introduced in Chapter 4,
however, made it infeasible to consider these hypothesis in more detail, let alone
consider more research questions.

To make up for this, we list a few potentially interesting experiments for study that
can reveal specific strengths and weaknesses of methods. Thus, further illuminating
the vague field of performance.

1. Number of Observations. The so called scaling properties first considered in
[57] are of interest especially for big data applications, where huge dataset are
potentially available.

2. Number of Confounders. In our work, we’ve only looked at examples with a
few specific confounders. Studying the effect of more confounders and more
interaction between them is of great importance for real world applications.

3. Level of Noise. Introducing more noise to the error terms in the synthetic
DGPs can yield meaningful results for the robustness of method.

7.2 Toward Better Evaluation of Causal Effect Es-
timators

We’ve seen in our evaluation in Chapter 5 that the performance of causal effect
estimators is largely dependent on the properties of the data. For the selection of
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an estimator for a given task, this means that we have to evaluate the performance
of different methods on the dataset we target. As we’ve learned, though, this is not
possible.

One way to tackle this is to evaluate on a large set of DGPs, the direction pointed
out in the previous section. Another way to cope with this problem is to study
real world validation. Alejandro Schuler et al. [52] proposed a method that aims to
take into account the properties of the target dataset while synthetically providing
ground-truth. Based on it’s similarity to cross-validation they call their method
Synth-Validation.

7.2.1 Synth-Validation

The goal of synth-validation [52] is to estimate a generative distribution P*(X, W,Y)
of covariates X, binary treatment 7" and outcomes Y, that has a synthetic treatment
effect 7 while being informed by the real data distribution. That is to say, formally,
we want a distribution that has a chosen treatment effect, while also maximising
the likelihood of the observed data. Note that Synth-Validation does not estimate
the original distribution P(X,W,Y) directly, for this would mean it could calculate
the true treatment effect. Instead, it estimates a distribution that comes close to
the original covariate and treatment distribution P(X, W) while having a specified
synthetic treatment effect.

Given a synthetic treatment effect 7, we want the estimated distribution to satisfy

F=EY |X,T=1—E[Y |X,T =0

1 — 1 —
“DS EY | X=2,T=1—--) EY | X=2,,T=0
W 2BV X = T =] =0 Bl | X =0 T =)

_ %Z[ul(m) — po(),

for the finite observed sample & = {X;,T;,Y;}?. This works because we can fac-
torize the distribution P(X,T,Y) = P(Y|X,T)P(X,T), and estimate P(X,T)
from the empirical data via standard Mazimum Likelihood Estimation. To estimate
P(Y|X,T), we assume that

yi = {1 = 0} - po(ws) + {T; = 1} - pua ().

The essential step is now to estimate pig, 11 while also holding the constraint for the
synthetic treatment effect. Thus, normal machine learning approaches to estimation
do not work. Instead we retrieve the results via:

_ Jargming . 35g Uy, fo(wi) + Xs, Ui, [1(w:)
Hos subject to = > .[fi(x;) — fo(ai)] =7

How exactly this constrained optimisation can be done, is described in detail in the
original paper [52].

Choosing the synthetic treatment effect 7 is not a trivial endeavour either, because
we want it to be somewhat realistic. Therefore, the authors resort to a simple heuris-
tic. They run various inference methods on the data and capture their estimated
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effects. They then choose a synthetic treatment effect from the range between the
maximum and minimum estimated effect.

We point toward Synth-Validation at this stage, because we believe it to be an im-
portant approach that needs further research. Especially in practice we can never be
sure as to how our data looks. Thus having a oracle approach like Synth-Validation
that tells us which method likely performs best, is a promising idea. Also, Advani
et al. [2] point toward Synth-Validation after discarding the standard EMCS ap-
proach. Schuler et al. show empirically that while being computationally expensive
and “somewhat unorthodox” [50, p. 40|, Synth-Validation led to a better model
selection on datasets where the best method was already known.

7.3 A Taxonomy for Benchmarking Datasets

Building upon the ideas outlined in Section 4.3.2, we propose that further research
ought to be directed at designing a clear taxonomy of benchmarking datasets.

On the one hand, there is a significant difficulty in practice to validate the quality
and origin of a dataset, as was shown with the IHDP example in Section 4.2.1.
Knowing the classification of a reference dataset and it’s true generating process, we
could avoid using erroneous versions of the dataset!.

On the other hand, the reference datasets are used without deliberate discussion
of their respective features. This is particularly dangerous in light of the fact that
the quality of causal effect estimation methods can only ever be evaluated for a
specific setting. Especially more recent methods [65, 35, 37, 54, 44] resort to using
the most common datasets ITHDP and TWINS to show the quality of their methods.
The way these benchmarks are listed, seems to claim generality. The two common
benchmarks, however, only cover a very small set of possible combinations of the
dimensions listed in Section 4.3.2.

Besides more research on the various possible settings described in Section 4.3.2,
a clearer language is required. Along with this clear taxonomy goes a heightened
awareness for the necessity of differentiating between the performance of a method
in a specific field and its performance in general.

While there have been more elaborate efforts to formalize DGPs, like in [22, 47, 32],
a overarching categorisation and classification is missing.

'We noted in Section 4.2, that some authors have defaulted to copying results instead of vali-
dating them for the lack of replicability.
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