
DataMatrix Documentation
Release 0.8

Luca Beltrame and Giovanni Marco DallÓlio

June 13, 2009

CONTENTS

1 Overview 3

2 Requirements and installation 5

3 Usage 7
3.1 Invocation . 7
3.2 Basic operations . 7
3.3 Row and column manipulation . 8
3.4 Saving DataMatrix objects . 8
3.5 Further manipulation of DataMatrix objects . 9

4 DataMatrix variants - EmptyMatrix 11

5 Credits 13

6 License 15

7 Module reference 17
7.1 DataMatrix . 17
7.2 EmptyMatrix . 18
7.3 Functions . 18

8 Indices and tables 21

Module Index 23

Index 25

i

ii

DataMatrix Documentation, Release 0.8

Contents:

CONTENTS 1

DataMatrix Documentation, Release 0.8

2 CONTENTS

CHAPTER

ONE

OVERVIEW

DataMatrix is a Python module that tries to emulate the behavior of the data.frame data structure of the R program-
ming language. Data.frames are essentially tables that can be queried either by row or columns, or, in the presence of
a header, even by column names.

DataMatrix emulates this behavior by reading a text file (or file-like object), and returning an object where rows and
columns can be accessed by a variety of methods.

Row names are a way to identify a row precisely (R uses it because some of its operations return the names of the rows
rather than their values) and are either read from a specific column or a progressive numeric value otherwise.

DataMatrix objects can be queried with a dictionary-like syntax (e.g., matrix["column name"]), or by other
methods.

3

DataMatrix Documentation, Release 0.8

4 Chapter 1. Overview

CHAPTER

TWO

REQUIREMENTS AND INSTALLATION

DataMatrix requires Python, at least version 2.5. Python 2.6 is also known to work. It will likely not work on Python
3.0 (it has not even been tested: patches welcome). It makes no use ofi third-party modules so it should work on a
standard Python install. Being a pure Python module, it will work reliably on Windows, Linux, BSD and OS X.

The latest version can be downloaded from

http://www.dennogumi.org/projects/datamatrix

both as a source distribution and a Windows installer. Windows users just need to run the installer and follow the
on-screen instructions. Other operating system users should download the source distribution, unpack it (tar xvzf
filename) and then install it by issuing:

python setup.py install

as root.

5

http://www.dennogumi.org/projects/datamatrix

DataMatrix Documentation, Release 0.8

6 Chapter 2. Requirements and installation

CHAPTER

THREE

USAGE

3.1 Invocation

DataMatrix requires a file, or file-like object. A typical invocation is:

import datamatrix
matrix = datamatrix.DataMatrix(open("somefile"), header=True)

Aside the file object, which is mandatory, there are a number of parameters that can be used. First of all, the header
parameters tells DataMatrix if the file to read has a header or not, and if so, the header will be used to assign names
to the columns. Otherwise, it will just be a number for each column. To specify the column where row names are
located, the row_names parameter is used:

matrix = datamatrix.DataMatrix(open("somefile", header=True, row_names=1))

In this case, row names are obtained from the first column in the file.

If you are loading a file with an empty first element on the header (that is the case with files saved by R) you must set
the fixR parameter to True, which will work around this issue, otherwise you will obtain unpredictable results.

DataMatrix uses the csv module to do its parsing, so you can specify additional parameters to define the format of
your data, such as delimiter (the separator between fields), lineterminator and quoting (how to deal with non-numeric
fields). See the csv module documentation for additional details.

3.2 Basic operations

If you print a DataMatrix instance, you’ll get some basic information:

>>> print matrix
File name:
Column with identifier names: None (numeric)
No. of rows: 2
No. of columns: 2
Columns: Name, surname

With the columns attribute you can view the columns as a list:

>>> print matrix.columns
[’Name’, ’surname’]

7

DataMatrix Documentation, Release 0.8

Row names can be printed intead with the rownames attribute.

You can access specific rows with the getRow method:

>>> matrix.getRow(1)
[’1’, ’Albert’, ’Einstein’]

Or specific columns with a dictionary-like syntax::

>>> matrix["surname"]
[’Einstein’, ’Marx’]

Changed in version 0.8. In DataMatrix versions prior to 0.8, the getColumn method was used. This is no longer
the case: the method has been marked as deprecated and will be removed in future versions.

To get a representation of your data, there is the view method:

>>> matrix.view()
1 Albert Einstein
2 Groucho Marx

3.3 Row and column manipulation

Rows and columns can be appended with the append and appendRow methods, respectively. In both cases, the
item to be appended needs to be a sequence (list or tuple) and must be as long as the other columns (when appending
columns) or cover all the columns (when appending rows):

>>> profession = ["scientist", "comedian"] # new column
>>> matrix.append(profession, "Job")

>>> entry = ["Isaac", "Asimov", "writer"] # new row
>>> matrix.appendRow(entry,"3")

Notice that when you append a row and a column you must specify a column or a row name to the methods, as the
examples above show. Also, the rows and columns you are apppending need to be of the same length of the rows (or
columns) already present in the DataMatrix instance.

Alternatively, you can insert rows and columns at a specified position using the insert (for columns) and
insertRow (for rows). They behave exactly like the append* methods, with the difference that you must sup-
ply an integer argument (1 or greater than 1) representing the column or row number:

>>> matrix.insert(profession,"Job",2)
>>> matrix.inserRow(entry,"3",1)

New in version 0.7. If the number is greater than the number of columns or rows available, the method automatically
defaults to the append variant. Again, rows and columns must be of the same length as the ones already present in the
instance.

3.4 Saving DataMatrix objects

You can write DataMatrix objects to files or file-like objects with the writeMatrix function present in the
module:

8 Chapter 3. Usage

DataMatrix Documentation, Release 0.8

fh = open("somefile.txt","w")
datamatrix.writeMatrix(matrix,fh)

Output formatting is again set via options to the csv module. Optionally you can save only part of the columns,
specified as a list:

datamatrix.writeMatrix(matrix, fh, columns = ["Name","Job"])

If you want the header (column names) to be included, you need to set the header parameter to True:

datamatrix.writeMatrix(matrix, fh, header = True)

3.5 Further manipulation of DataMatrix objects

New in version 0.8. For some special uses, a number of functions have been provided. elementApply applies a
function to the whole matrix, matrixApply applies a function to either rows or columns, giving a single result, while
filterMatrix can be used to filter rows depending on the content of a specific column. For further information,
refer to the documentation strings of those functions.

You can also transpose the matrix (invert the rows and the columns) with the help of the transpose function.

Also, two conveinence functions have been provided to quickly calculate the mean of columns or rows: they are
meanRows and meanColumns, respectively.

3.5. Further manipulation of DataMatrix objects 9

DataMatrix Documentation, Release 0.8

10 Chapter 3. Usage

CHAPTER

FOUR

DATAMATRIX VARIANTS -
EMPTYMATRIX

EmptyMatrix is a DataMatrix variant that does not use a file. Like the name says, it’s an empty instance, which
only has column names and row names. A typical instantiation of an EmptyMatrix instance is like this:

>>> matrix = EmptyMatrix(row_names=["1","2","3"],column_names=["Name","Surname"])

in this case, we create an EmptyMatrix instance consisting of three rows and two columns. Columns contain only
empty lists when the instance is created: we can add column data by using assignments (e.g. matrix["Name"]
= XXX) or by inserting or appending rows using the append* and insert* methods (which are inherited from
DataMatrix).

Aside those details, EmptyMatrix instances behave exactly like their DataMatrix equivalents.

11

DataMatrix Documentation, Release 0.8

12 Chapter 4. DataMatrix variants - EmptyMatrix

CHAPTER

FIVE

CREDITS

DataMatrix was started by me (Luca Beltrame) and Giovanni joined up later, with code fixes and most importantly
with unit tests. Bug reports, feature requests and comments should be either sent via email (einar at heavensinferno
dot net) or by leaving a comment at http://www.dennogumi.org/projects-2/datamatrix .

13

http://www.dennogumi.org/projects-2/datamatrix

DataMatrix Documentation, Release 0.8

14 Chapter 5. Credits

CHAPTER

SIX

LICENSE

This program is distributed under the terms of the GNU General Public License (GPL), version 2. This means that
you can freely modify, copy and distribute the program, under the terms of said license. The COPYING file gives a
good overview of what you can and can’t do.

Although we hope that this program will be useful, it is without ANY WARRANTY, without even the implied warranty
of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

15

DataMatrix Documentation, Release 0.8

16 Chapter 6. License

CHAPTER

SEVEN

MODULE REFERENCE

7.1 DataMatrix

class DataMatrix(fh=None, row_names=None, header=True, delimiter=’t’, quoting=0, fixR=False)
Pythonic implementation of R’s data.frame structure. This class loads a file or a file-like structure then it
transforms it into a dictionary of (row name, value) tuples for each column. Optionally only column values
can be retrieved and at the same time single lines can be queried. Missing values are inputted as NAs.

The column used for row names (row_names) can be specified, otherwise rows are numbered sequentially. If
the file has an header (default True), it is used to name the fields, otherwise the fields are numbered sequentially,
with the first field being “x” (like R does).

If you are loading a text object saved by R using row.names=TRUE, the topmost, leftmost record will be blank.
To parse such files, specify fixR as True in the initializer options.

Other options include the delimiter, line terminator and quoting, and they are passed directly to the csv Dic-
tReader instance which will read the file. See the csv module documentation for more details.

Notable methods are: • getRow - returns a specific row
• view - Outputs a tab-delimited view of a number of lines. Start line and how much to show are

configurable.
• append - adds a column (of the same length and with the same identifiers) to the matrix, kind of

equivalent to R’s cbind.
• appendRow - adds a row at the end of the matrix, of the same length as the columns. It can be

seen as similar to R’s rbind.
• insert - inserts a column at a specified index
• insertRow - similar to insert, but works with rows
• iterRows - cycle through rows
• getRowByID - get a row with a specified row name

append(other, column_name)
Method to append a column. It needs a sequence (tuple or list) and a column name to be supplied. The
sequence must be of the same length as the other columns.

appendRow(other, row_name)
Appends a row to the end of the matrix. The row must encompass all the columns (i.e., it should be as long
as to cover all the columns). The row name is specified in the mandatory parameter row_name.

getColumn(key, column_name=False)
Gets a specific column, without the identifier. The result is returned as a list. Optionally the column name
can be printed. DEPRECATED: Use datamatrix[colname] instead.

getRow(row_number, columns=’all’, row_name=True)
Returns a specific row, identified from the row number, as a list. You can specify how many columns are
outputted (default: all) with the columns parameter.

17

DataMatrix Documentation, Release 0.8

getRowByID(rowId, **kwargs)
Fetches a specific row basing on the identifier. If there is no match, a ValueError is raised.

insert(other, column_name, column_no)
Method to insert a column at a specified column index.

insertRow(other, row_name, lineno)
Method that inserts a row at a specified line number.

iterRows(**kwargs)
Iterate over a matrix’s rows.

>>> from StringIO import StringIO
>>> matrixfile = StringIO(
... ’’’a b c d
... 3 3 3 3
... 2 2 2 2’’’)

>>> matrix = DataMatrix(matrixfile)
>>> for row in matrix.iterRows():
... print row
[’1’, ’3 3 3 3’]
[’2’, ’2 2 2 2’]

pop(index=-1)
Method analogous to the pop method of lists, with the difference that this one removes rows and returns
the removed item. If no index (a.k.a. row number) is supplied, the last item is removed.

replace(other, colName)
Replace a column with another.

view(lines=10, start_at=1, *args, **kwargs)
Method used to print on-screen the table. The number of lines, and the starting line can be configured via
the start_at and lines parameters. Optional parameters can be sent to getRow to select which columns are
printed.

7.2 EmptyMatrix

class EmptyMatrix(identifier=None, row_names=None, columns=None)
DataMatrix variant that once instantiated generates an empty matrix with specified columns and row names.
Does not depend upon reading a file. Rows and columns, after initialization, can be added with insertRows,
insert, appendRows and append methods, respectively.

7.3 Functions

writeMatrix(data_matrix, fh=None, delimiter=’t’, lineterminator=’n’, quoting=0, header=False,
row_names=True, *args, **kwargs)

Function that saves DataMatrix objects to files or file-like objects. A file handle is a mandatory parameter, along
with the data matrix object you want to use. You can optionally pass more parameters to getRows to select
which columns are saved.

elementApply(matrix, func)
Applies a function to each element of rows or columns, and outputs a new matrix as result. If the function
requires any type conversion, that must be done by the user.

matrixApply(matrix, func, what=’rows’, resultName=’Function result’)
Apply a user-specified function to all rows or all columns. If the function requires any type conversion, that

18 Chapter 7. Module reference

DataMatrix Documentation, Release 0.8

must be done by the user. The function must process the row (or the column) and return a single value. The
final result is a DataMatrix instance containing one row (or one column) with the function results. The name of
the column (or row) can be changed with the resultName parameter.

filterMatrix(matrix, func, column)
Function which returns a DataMatrix with a column that satisfies specified criteria. In particular, “func” must
be a function applied to the each row (on the column of interest) and should return True if the row needs to be
included, and False otherwise.

meanRows(sourceMatrix)
Calculates the mean of all rows for each columns.

meanColumns(sourceMatrix)
Calculates the mean of all columns for each row.

transpose(matrix, identifier=’x’)
Transposes a DataMatrix object: rows become columns and vice versa. The optional parameter identifier
is passed as the resulting matrix’s identifer name.

7.3. Functions 19

DataMatrix Documentation, Release 0.8

20 Chapter 7. Module reference

CHAPTER

EIGHT

INDICES AND TABLES

• Index

• Module Index

• Search Page

21

DataMatrix Documentation, Release 0.8

22 Chapter 8. Indices and tables

MODULE INDEX

D
datamatrix, 17

23

DataMatrix Documentation, Release 0.8

24 Module Index

INDEX

A
append() (datamatrix.DataMatrix method), 17
appendRow() (datamatrix.DataMatrix method), 17

D
DataMatrix (class in datamatrix), 17
datamatrix (module), 17

E
elementApply() (in module datamatrix), 18
EmptyMatrix (class in datamatrix), 18

F
filterMatrix() (in module datamatrix), 19

G
getColumn() (datamatrix.DataMatrix method), 17
getRow() (datamatrix.DataMatrix method), 17
getRowByID() (datamatrix.DataMatrix method), 18

I
insert() (datamatrix.DataMatrix method), 18
insertRow() (datamatrix.DataMatrix method), 18
iterRows() (datamatrix.DataMatrix method), 18

M
matrixApply() (in module datamatrix), 18
meanColumns() (in module datamatrix), 19
meanRows() (in module datamatrix), 19

P
pop() (datamatrix.DataMatrix method), 18

R
replace() (datamatrix.DataMatrix method), 18

T
transpose() (in module datamatrix), 19

V
view() (datamatrix.DataMatrix method), 18

W
writeMatrix() (in module datamatrix), 18

25

	Overview
	Requirements and installation
	Usage
	Invocation
	Basic operations
	Row and column manipulation
	Saving DataMatrix objects
	Further manipulation of DataMatrix objects

	DataMatrix variants - EmptyMatrix
	Credits
	License
	Module reference
	DataMatrix
	EmptyMatrix
	Functions

	Indices and tables
	Module Index
	Index

