
16 D. M. Wang et al.

A Technical Appendix

A.1 Proofs for Section 4

To prove the results from this section, it is convenient to make the following
additional observation about the relation between N and � in our procedure:

Proposition 1. At the start of each iteration of the loop in Procedure 2, it holds
that pD1 dN q “ pD1 d�q.

Proof. Initially, N “ H and � “ D1
“ D, so the statement of the proposition

holds at the start of the first iteration. We next consider further iterations.
To show that pD1 dN q Ñ pD1 d�q, we assume that D1 dN |“ M@t, for some

relational fact M@t. Therefore, we have either D1
|“ M@t, or D1

�|“ M@t and
N |“ M@t. If D1

|“ M@t, then clearly D1 d� |“ M@t. Next, consider the case
when D1

�|“ M@t and N |“ M@t. Since N |“ M@t, we have also D1dN |“ M@t.
Thus, there need to exist intervals %1 and %2, both of which include t, and such
that M@%1

P N , M@%2
P D1 dN , and %1

Ñ %2. Hence, M@%2
|“ M@%1, and so,

by the definition of � in Line 5, we obtain that M@%2
P �. Therefore � |“ M@t,

and thus, D1 d� |“ M@t.
To show that pD1 d�q Ñ pD1 dN q, we assume that D1 d� |“ M@t, for some

relational fact M@t. Therefore, we have D1
|“ M@t or � |“ M@t. If D1

|“ M@t,
then D1 dN |“ M@t. Otherwise, � |“ M@t, and so, there needs to exist % such
that t P % and M@% P �. By the definition of � in Line 5, we have � Ñ D1 dN ,
so M@% P pD1 dN q, and therefore D1 dN |“ M@t.

Theorem 1 (Soundness): Consider Procedure 2 running on input ⇧ and D.
Upon the completion of the kth (for some k P N) iteration of the loop of Proce-
dure 2, it holds that ID1 Ñ T k

⇧pIDq.

Proof. For each k P N, we let Nk, �k, and Dk denote the contents of, respectively,
N , �, and D1 in Procedure 2 upon the completion of the kth iteration of the
loop. Thus, it suffices to show, inductively on k P N, that IDk Ñ T k

⇧pIDq.
In the base case, by the initialisation of the procedure, we have D0 “ D.

Moreover, T 0
⇧pIDq “ ID, and so, ID0 Ñ T 0

⇧pIDq, as required.
For the inductive step, we assume that IDk Ñ T k

⇧pIDq, for some k P N, and
that the procedure enters the k`1st iteration of the loop. If the k`1st iteration
of the loop breaks in Line 6, then Dk`1 “ Dk. By the inductive assumption we
have IDk Ñ T k

⇧pIDq, so IDk`1 Ñ T k
⇧pIDq, and thus, IDk`1 Ñ T k`1

⇧ pIDq.
Now, assume that the k`1 iteration of the loop does not break in Line 6. To

show that IDk`1 Ñ T k`1
⇧ pIDq, we assume that IDk`1 |“ M@t, for some relational

fact M@t. By Line 5, we obtain that Dk`1 “ Dk d Nk`1. Therefore, we have
Dk |“ M@t or Nk`1 |“ M@t.

Case 1: Dk |“ M@t. By the inductive assumption, we know that IDk Ñ T k
⇧pIDq,

so T k
⇧pIDq |“ M@t. Clearly, T k

⇧pIDq Ñ T k`1
⇧ pIDq, so T k`1

⇧ pIDq |“ M@t.

Seminaïve Materialisation in DatalogMTL 17

Case 2: Nk`1 |“ M@t. By Line 3, we have Nk`1 “ ⇧rDk
¨̈̈�ks. Thus, by Defini-

tion 3, there is a rule r P ⇧, say of the form M 1
– M1 ^ ¨ ¨ ¨ ^ Mn, such that

instrrDk
¨̈̈�ks |“ M@t. Hence, by Expression (4), there are a substitution �

and intervals %1, . . . , %n such that pM1�@%1, . . . ,Mn�@%nq P instrrDk
¨̈̈�ks

and M 1�@p%1 X ¨ ¨ ¨ X %nq |“ M@t. Since pM1�@%1, . . . ,Mn�@%nq belongs to
instrrDk

¨̈̈�ks, the sequence pM1�@%1, . . . ,Mn�@%nq belongs also to instrrDks.
Therefore, by Expression (2), we obtain that Dk |“ Mi@%i, for each i P

t1, . . . , nu. Hence, by definition, T⇧pIDkq |“ M 1�@p%1 X ¨ ¨ ¨ X %nq, and so,
T⇧pIDkq |“ M@t. By the inductive assumption, we have IDk Ñ T k

⇧pIDq,
therefore T k`1

⇧ pIDq |“ M@t. [\

Theorem 2 (Completeness): Consider Procedure 2 running on input ⇧ and
D. For each k P N, upon the completion of the kth iteration of the loop of
Procedure 2, it holds that T k

⇧pIDq Ñ ID1 .

Proof. We use the same notation Nk, �k, and Dk as in the proof of Theorem 1.
Let ↵ be the least ordinal such that T↵

⇧pIDq “ C⇧,D, so T↵
⇧pIDq “ T↵`1

⇧ pIDq.
We will show, inductively on natural numbers k § ↵, that T k

⇧pIDq Ñ IDk . The
base case holds trivially, because we have D0 “ D, and so, T 0

⇧pIDq Ñ ID0 .
For the inductive step, assume that T k`1

⇧ pIDq |“ M@t, for some relational
fact M@t. We show that IDk`1 |“ M@t. If T k

⇧pIDq |“ M@t then, by the induc-
tive assumption, IDk |“ M@t. Since IDk Ñ IDk`1 , we obtain that IDk`1 |“ M@t.
Now, assume that T k

⇧pIDq �|“ M@t and T k`1
⇧ pIDq |“ M@t. Hence, there exists

a rule r P ⇧, say of the form M 1
– M1 ^ ¨ ¨ ¨ ^ Mn, and a time point t1 such

that an application of r at t1 yields M@t. More precisely, it means that there
exists a substitution � such that T k

⇧pIDq |“ Mi�@t1, for each i P t1, . . . , nu, and
M 1�@t1

|“ M@t. Next, for each i P t1, . . . , nu, we let %i be the subset-maximal
interval such that T k

⇧pIDq |“ Mi�@%i and t1
P %i. By the inductive assumption,

we obtain that T k
⇧pIDq Ñ IDk , so Dk |“ Mi�@%i, for each i P t1, . . . , nu. Hence,

by Expression (2), we have pM1�@%1, ¨ ¨ ¨ ,Mn�@%nq P instrrDks.
We argue that pM1�@%1, ¨ ¨ ¨ ,Mn�@%nq P instrrDk

¨̈̈�ks. By Expression (4),
it suffices to show that there is i P t1, . . . , nu such that Dkz�k �|“ Mi�@%i. For
this, we will consider two cases, namely, when k “ 0 and when k ° 0.

Case 1: k “ 0. Then, by the initialisation of Procedure 2, we have Dkz�k “ H,
so Dkz�k �|“ Mi�@%i, for each i P t1, . . . , nu.

Case 2: k ° 0. By Line 7, we have Dk “ Dk´1 dNk so, by Proposition 1, we ob-
tain Dk “ Dk´1 d�k. Thus IDk “ IDk´1 Y I�k , so IDkzI�k “ IDk´1zI�k ,
and therefore IDkzI�k Ñ IDk´1 . Hence, it suffices to show that Dk´1 �|“

Mi�@%i, for some i P t1, . . . , nu. Suppose towards a contradiction that
Dk´1 |“ Mi�@%i, for all i P t1, . . . , nu. By Theorem 1, T k´1

⇧ pIDq |“ Mi�@%i,
for all i P t1, . . . , nu. Thus, T k

⇧pIDq |“ M@t, which raises a contradiction.

Finally, assume that k ° ↵. By the inductive argument above and by Theorem 1,
we obtain that T↵

⇧pIDq “ ID↵ . Since T↵
⇧pIDq “ C⇧,D, we obtain that D↵`1 “

D↵. Thus, by Line 5, we obtain that �↵`1 “ H. Consequently, Procedure 2

18 D. M. Wang et al.

terminates in Line 6 in the ↵ ` 1st iteration of the loop, and outputs D↵. Since
T↵
⇧pIDq “ ID↵ , T↵

⇧pIDq “ C⇧,D, and k ° ↵, we obtain that T k
⇧pIDq “ ID↵ .

Hence, T k
⇧pIDq Ñ ID1 , where D1

“ D↵ is the output of the procedure. [\

A.2 Proofs for Section 5

Lemma 1: Consider Procedure 3 running on input ⇧ and D and let ⇧nr be the
non-recursive fragment of ⇧. If flag “ 1, then C⇧nr,D Ñ ID1 .

Proof. If C⇧nr,D entails a relational fact with a recursive predicate, then this fact
is already entailed by ID and, by the form of Procedure 3, we have ID Ñ ID1 . To
show that the implication holds also for facts with non-recursive predicates, we
observe that ID Ñ ID1 and ⇧nr Ñ ⇧ imply C⇧nr,D Ñ C⇧,D1 . Hence, it suffices
to show that each relational fact with non-recursive predicates which is satisfied
in C⇧,D1 is also satisfied in ID1 .

According to Line 4 and Line 16 in Procedure 3, we know that D1 will change
to a bigger dataset (D1 dN) after each iteration, where N is obtained in Line 3.
It suffices to show the case in which D1 and N denotes the contents of D1 and
N when flag becomes 1 for the first time. Hence, we have D1 and D1 dN entail
same facts with non-recursive predicates in ⇧ according to Line 7. Before the
flag changes to 1, Procedure 3 works exactly as Procedure 2, so we obtain that
D1dN “ T⇧pID1 q. Therefore, it suffices to show that both T⇧pID1 q and T 2

⇧pID1 q

entails the same facts with non-recursive predicates in ⇧, as applying the same
argument recursively implies ID1 and C⇧,D1 entail same facts with non-recursive
predicates in ⇧. Towards a contradiction we suppose that T 2

⇧pID1 q |“ M@t for
some relational fact M@t with a non-recursive predicate in ⇧ and T⇧pID1 q �|“

M@t. Hence, there is a rule r P groundp⇧,Dq and a time point t1 such that
T 1
⇧pID1 q entails each body atom of r at t1, and the head of r holding at t1 entails

M@t. Since M@t is a relational fact with a non-recursive predicate in ⇧ and
according to Definition 5, we obtain that there is no path with a cycle ending in
the non-recursive predicate node representing M , so we obtain that each body
atom in r should mentions only non-recursive predicates in ⇧. Recall that ID1

and T 1
⇧pID1 q entails same facts with non-recursive predicates in ⇧, so ID1 also

entails each body atom of r at t1, so T 1
⇧pID1 q |“ M@t. Hence, ID1 |“ M@t, which

raises a contradiction.

Lemma 2: If ID |p´8,ts“ T⇧pIDq |p´8,ts, for a forward propagating program
⇧, dataset D, and time point t, then ID |p´8,ts“ C⇧,D |p´8,ts.

Proof. It suffices to show that T⇧pIDq |p´8,ts“ T 2
⇧pIDq |p´8,ts, as applying the

same argument recursively implies ID |p´8,ts“ C⇧,D |p´8,ts. The inclusion
T⇧pIDq |p´8,tsÑ T 2

⇧pIDq |p´8,ts is clear, so we proceed with the opposite direc-
tion. Towards a contradiction we suppose that T 2

⇧pIDq |“ M@t1 and T⇧pIDq �|“

M@t1, for some relational fact M@t1 with t1
P p´8, ts. Hence, there is a rule

r P groundp⇧,Dq and a time point t2 such that T⇧pIDq satisfies each body atom
of r at t2, and the head of r holding at t2 entails M@t1. Since r is forward-
propagating, we have t2

§ t1 so, by t1
§ t, we obtain that t2

§ t. Moreover, by

Seminaïve Materialisation in DatalogMTL 19

the fact that r mentions only past operators in its body, we obtain that already
T⇧pIDq |p´8,ts satisfies each body atom of r at t2. However, by the assumption,
ID |p´8,ts“ T⇧pIDq |p´8,ts, so ID |p´8,ts satisfies each body atom of r at t2,
and so, T⇧pIDq |“ M@t1, which raises a contradiction.

Lemma 3: If in Procedure 3 a rule r is removed from ⇧ 1 in Line 10 or in Line 15,
then C⇧1,D1dN “ C⇧1ztru,D1dN .

Proof. Clearly, C⇧1,D1dN Ö C⇧1ztru,D1dN , therefore it is sufficient to show that
C⇧1,D1dN Ñ C⇧1ztru,D1dN . Suppose towards a contradiction that C⇧1,D1dN *
C⇧1ztru,D1dN , so there is the least ordinal ↵ such that T↵`1

⇧1 pID1dN q |“ M@t and
T↵`1
⇧1ztrupID1dN q �|“ M@t, for some relational fact M@t. So, there is a substitution

� and a time point t1 such that—for r of the generic form M 1
– M1 ^ ¨ ¨ ¨ ^ Mn—

we have T↵
⇧1 pID1dN q |“ Mi�@t1, for all i P t1, . . . , nu, and M 1@t1

|“ M@t.

If in Line 10, the condition in the if statement applies, then r has a body atom
Mi that is non-recursive in ⇧ and such that D1

�|“ Mi�@t1. Since C⇧nr,D Ñ ID1 ,
we get C⇧nr,D �|“ Mi�@t1, and so, C⇧,D �|“ Mi�@t1. Moreover, as ⇧ 1

Ñ ⇧
and D1 dN “ T⇧1 pID1 q, we obtain T↵

⇧1 pID1dN q Ñ C⇧,D. Thus T↵
⇧1 pID1dN q �|“

Mi�@t1, which raises a contradiction.

Now, if in Line 15, the condition in the if statement applies, then ⇧ 1 is
forward-propagating. By the construction of tr and the fact that r P ⇧ 1 is
forward-propagating, we obtain that t1

§ tr. As all Mi�@t1 hold in T↵
⇧1 pID1dN q,

all these facts hold also in ID1 . Therefore, ID1dN |“ M@t so T↵`1
⇧1ztrupID1dN q |“

M@t, which raises a contradiction.

Theorem 3 (Soundness and Completeness): Consider Procedure 3 running
on input ⇧ and D. For each k P N, the partial materialisation D1 obtained upon
completion of the kth iteration of the main loop represents the interpretation
T k
⇧pIDq.

Proof. If for both Line 10 and Line 15, the condition in the IF statement does not
apply, then Procedure 3 works in the same way as Procedure 2 so, by Theorems 1
and 2, D1 represents T k

⇧pIDq. If flag is changed to 1 in the kth iteration, then
C⇧nr,D Ñ ID1 , by Lemma 1. Therefore, C⇧nr,D “ C⇧z⇧nr,D1 , and so, ⇧nr can be
safely deleted from ⇧ in Line 8.

Otherwise, the loop from Procedure 3 works similarly as Procedure 2, except
that it deletes in Line 10 or Line 15 rules. As we have shown in Lemma 3, such
rules can be safely deleted from the program, without loosing the properties
established in Theorems 1 and 2.

20 D. M. Wang et al.

A.3 Program from Experiments in Section 6
ResearchAssistantCandidate(x) – �r0,5s UndergraduateStudent(x)

ResearchAssistantCandidate(x) – �r0,2sGraduateStudent(x)

ResearchAssistantCandidate(x) – �r0,2sTeachingAssistant(x)

ResearchAssistant(x) – undergraduateDegreeFrom(x,y) ^ �r0,3sResearchAssistantCandidate(x)

ResearchAssistant(x) – mastersDegreeFrom(x,y) ^ �r0,1sResearchAssistantCandidate(x)

LecturerCandidate(x) – �r0,2sResearchAssistant(x)

LecturerCandidate(x) – �r0,4sResearchAssistantCandidate(x)

LecturerCandidate(x) – �r0,1sGraduateStudent(x) ^ publicationAuthor(y,x)Sp0,1sPublication(y)

Lecturer(x) – LecturerCandidate(x)Up0,2sresearchInterest(x,y)

Lecturer(x) – �r1,5sLecturerCandidate(x)

AssistantProfessorCandidate(x) – �r1,3sLecturer(x)

AssistantProfessorCandidate(x) – �r1,2sLecturerCandidate(x) ^ �r0,3spublicationAuthor(z,x)

AssistantProfessorCandidate(x) – �r1,2sLecturerCandidate(x) ^ �r0,3sdoctoralDegreeFrom(x,y)

AssociateProfessorCandidate(x) – �r1,3sLectuer(x) ^ �r0,3sdoctoralDegreeFrom(x,y) ^ publicationAuthor(y,x)

AssociateProfessorCandidate(x) – �r1,5sAssistantProfessorCandidate(x)

AssociateProfessorCandidate(x) – �r1,3sAssistantProfessor(x)

AssociateProfessorCandidate(x) – �r1,2sAssistantProfessorCandidate(x) ^ doctoralDegreeFrom(x,y)

AssociateProfessor(x) – �r1,2sAssociateProfessorCandidate(x))

AssociateProfessorCandidate(x) – �r1,3sAssistantProfessor(x)

FullProfessorCandidate(x) – �r1,2sAssociateProfessorCandidate(x) ^ �r0,3spublicationAuthor(y,x)

FullProfessorCandidate(x) – �r1,2sAssociateProfessor(x) ^ �r0,3spublicationAuthor(y,x)

GoodDepartment(y) – �r0,2sworksFor(x,y) ^ FullProfessor(x)

SmartStudent(x) – UndergraduateStudent(x) ^ �r1,2smemberOf(x,y) ^ GoodDepartment(y)

SmartStudent(x) – GraduateStudent(x) ^ �r1,3smemberOf(x,y) ^ GoodDepartment(y)

GoodDepartment(x) – �r0,2sSmartStudent(x) ^ �r0,1spublicationAuthor(y,x)

ScientistCandidate(x) – worksFor(x,y) ^ �r0,1sScientistCandidate(x)

Scientist(x) – �r0, 4sScientistCandidate(x)

Scientist(x) – �r1,2sFullProfessor(x)

FullProfessor(x) – �r1,2sScientist(x)

University(x1)– mastersDegreeFrom(x,x1) degreeFrom(x,y)– hasAlumnus(y,x)

hasAlumnus(x,y)– degreeFrom(y,x) Employee(x)– Faculty(x)

Faculty(x)– Professor(x) Professor(x)– AssociateProfessor(x)

Person(x1)– member(x,x1) Professor(x)– AssistantProfessor(x)

Professor(x)– Chair(x) worksFor(x,y)– headOf(x,y)

Person(x)– degreeFrom(x,x1) University(x1)– degreeFrom(x,x1)

Person(x1)– hasAlumnus(x,x1) memberOf(x,y)– member(y,x)

member(x,y)– memberOf(y,x) Course(x1)– teacherOf(x,x1)

University(x)– hasAlumnus(x,x1) Person(x)– telephone(x,x1)

Organization(x1)– subOrganizationOf(x,x1) memberOf(x,y)– worksFor(x,y)

Person(x)– Employee(x) Person(x)– advisor(x,x1)

Organization(x)– member(x,x1) Organization(x)– Department(x)

Faculty(x)– Lecturer(x) Person(x1)– publicationAuthor(x,x1)

Professor(x1)– advisor(x,x1) Work(x)– Course(x)

Professor(x)– FullProfessor(x) degreeFrom(x,y)– doctoralDegreeFrom(x,y)

TeachingAssistant(x)– teachingAssistantOf(x,x1) Person(x)– undergraduateDegreeFrom(x,x1)

Organization(x)– University(x) Person(x)– doctoralDegreeFrom(x,x1)

University(x1)– doctoralDegreeFrom(x,x1) Course(x1)– teachingAssistantOf(x,x1)

University(x1)– undergraduateDegreeFrom(x,x1) degreeFrom(x,y)– mastersDegreeFrom(x,y)

Person(x)– GraduateStudent(x) Person(x)– ResearchAssistant(x)

Student(x)– UndergraduateStudent(x) degreeFrom(x,y)– undergraduateDegreeFrom(x,y)

Publication(x)– publicationAuthor(x,x1) Person(x)– mastersDegreeFrom(x,x1)

Organization(x)– ResearchGroup(x) Faculty(x)– teacherOf(x,x1)

Person(x)– Chair(x) Course(x)– GraduateCourse(x)

Person(x)– TeachingAssistant(x) Person(x)– Student(x)

Person(x)– emailAddress(x,x1) Chair(x)– Person(x) ^ headOf(x,x1) ^ Department(x1)

Employee(x)–a1:Person(x) ^ worksFor(x,x1) ^ Organization(x1) Student(x)– Person(x) ^ takesCourse(x,x1) ^ Course(x1)

TeachingAssistant(x)– Person(x) ^ teachingAssistantOf(x,x1) ^ Course(x1)

Organization(x)– subOrganizationOf(x,y) ^ Person(x) ^ Student(x)

