Stan Math Library
2.12.0
reverse mode automatic differentiation
Main Page
Modules
Namespaces
Classes
Files
File List
File Members
stan
math
fwd
scal
fun
rising_factorial.hpp
Go to the documentation of this file.
1
#ifndef STAN_MATH_FWD_SCAL_FUN_RISING_FACTORIAL_HPP
2
#define STAN_MATH_FWD_SCAL_FUN_RISING_FACTORIAL_HPP
3
4
#include <
stan/math/fwd/core.hpp
>
5
#include <
stan/math/prim/scal/fun/rising_factorial.hpp
>
6
#include <
stan/math/prim/scal/fun/digamma.hpp
>
7
#include <iostream>
8
9
namespace
stan
{
10
namespace
math {
11
12
template
<
typename
T>
13
inline
14
fvar<T>
15
rising_factorial
(
const
fvar<T>
& x,
const
fvar<T>
& n) {
16
T rising_fact(
rising_factorial
(x.
val_
, n.
val_
));
17
return
fvar<T>
(rising_fact,
18
rising_fact * (
digamma
(x.
val_
+ n.
val_
)
19
* (x.
d_
+ n.
d_
) -
digamma
(x.
val_
) * x.
d_
));
20
}
21
22
template
<
typename
T>
23
inline
24
fvar<T>
25
rising_factorial
(
const
fvar<T>
& x,
const
double
n) {
26
using
boost::math::digamma
;
27
28
T rising_fact(
rising_factorial
(x.
val_
, n));
29
return
fvar<T>
(rising_fact,
30
rising_fact * x.
d_
31
* (
digamma
(x.
val_
+ n) -
digamma
(x.
val_
)));
32
}
33
34
template
<
typename
T>
35
inline
36
fvar<T>
37
rising_factorial
(
const
double
x,
const
fvar<T>
& n) {
38
using
boost::math::digamma
;
39
40
T rising_fact(
rising_factorial
(x, n.
val_
));
41
return
fvar<T>
(rising_fact,
42
rising_fact * (
digamma
(x + n.
val_
) * n.
d_
));
43
}
44
}
45
}
46
#endif
core.hpp
stan::math::fvar::d_
T d_
Definition:
fvar.hpp:14
stan
Definition:
log_sum_exp.hpp:8
digamma.hpp
rising_factorial.hpp
stan::math::fvar::val_
T val_
Definition:
fvar.hpp:13
stan::math::rising_factorial
fvar< T > rising_factorial(const fvar< T > &x, const fvar< T > &n)
Definition:
rising_factorial.hpp:15
stan::math::fvar
Definition:
fvar.hpp:12
stan::math::digamma
fvar< T > digamma(const fvar< T > &x)
Definition:
digamma.hpp:15
[
Stan Home Page
]
© 2011–2016, Stan Development Team.