Stan Math Library
2.12.0
reverse mode automatic differentiation
Main Page
Modules
Namespaces
Classes
Files
File List
File Members
stan
math
rev
core
precomp_vvv_vari.hpp
Go to the documentation of this file.
1
#ifndef STAN_MATH_REV_CORE_PRECOMP_VVV_VARI_HPP
2
#define STAN_MATH_REV_CORE_PRECOMP_VVV_VARI_HPP
3
4
#include <
stan/math/rev/core/vari.hpp
>
5
#include <
stan/math/rev/core/vvv_vari.hpp
>
6
7
namespace
stan
{
8
namespace
math {
9
10
// use for single precomputed partials
11
class
precomp_vvv_vari
:
public
op_vvv_vari
{
12
protected
:
13
double
da_
;
14
double
db_
;
15
double
dc_
;
16
public
:
17
precomp_vvv_vari
(
double
val,
18
vari
* avi,
vari
* bvi,
vari
* cvi,
19
double
da,
double
db,
double
dc)
20
:
op_vvv_vari
(val, avi, bvi, cvi),
21
da_(da),
22
db_(db),
23
dc_(dc) {
24
}
25
void
chain
() {
26
avi_
->
adj_
+=
adj_
*
da_
;
27
bvi_
->
adj_
+=
adj_
*
db_
;
28
cvi_
->
adj_
+=
adj_
*
dc_
;
29
}
30
};
31
32
}
33
}
34
#endif
stan::math::precomp_vvv_vari::chain
void chain()
Apply the chain rule to this variable based on the variables on which it depends. ...
Definition:
precomp_vvv_vari.hpp:25
stan::math::precomp_vvv_vari::dc_
double dc_
Definition:
precomp_vvv_vari.hpp:15
stan::math::op_vvv_vari::cvi_
vari * cvi_
Definition:
vvv_vari.hpp:13
stan::math::precomp_vvv_vari::da_
double da_
Definition:
precomp_vvv_vari.hpp:13
vari.hpp
stan::math::op_vvv_vari
Definition:
vvv_vari.hpp:9
stan
Definition:
log_sum_exp.hpp:8
stan::math::op_vvv_vari::avi_
vari * avi_
Definition:
vvv_vari.hpp:11
stan::math::precomp_vvv_vari::db_
double db_
Definition:
precomp_vvv_vari.hpp:14
stan::math::vari
The variable implementation base class.
Definition:
vari.hpp:30
stan::math::precomp_vvv_vari::precomp_vvv_vari
precomp_vvv_vari(double val, vari *avi, vari *bvi, vari *cvi, double da, double db, double dc)
Definition:
precomp_vvv_vari.hpp:17
vvv_vari.hpp
stan::math::op_vvv_vari::bvi_
vari * bvi_
Definition:
vvv_vari.hpp:12
stan::math::precomp_vvv_vari
Definition:
precomp_vvv_vari.hpp:11
stan::math::vari::adj_
double adj_
The adjoint of this variable, which is the partial derivative of this variable with respect to the ro...
Definition:
vari.hpp:44
[
Stan Home Page
]
© 2011–2016, Stan Development Team.