Generated by Cython 3.0.12

Yellow lines hint at Python interaction.
Click on a line that starts with a "+" to see the C code that Cython generated for it.

Raw output: inverter.c

+01: # To compile:  #warning "Using deprecated NumPy API, disable it by #defining NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION"
  __pyx_t_7 = __Pyx_PyDict_NewPresized(0); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 1, __pyx_L1_error)
  __Pyx_GOTREF(__pyx_t_7);
  if (PyDict_SetItem(__pyx_d, __pyx_n_s_test, __pyx_t_7) < 0) __PYX_ERR(0, 1, __pyx_L1_error)
  __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0;
 02: # python setup.py build_ext --inplace --force
 03: 
 04: # "cimport" is used to import special compile-time information
 05: # about the numpy module (this is stored in a file numpy.pxd which is
 06: # currently part of the Cython distribution).
 07: 
 08: cimport cython
 09: cimport numpy as np
 10: 
+11: import numpy as np
  __pyx_t_7 = __Pyx_ImportDottedModule(__pyx_n_s_numpy, NULL); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 11, __pyx_L1_error)
  __Pyx_GOTREF(__pyx_t_7);
  if (PyDict_SetItem(__pyx_d, __pyx_n_s_np, __pyx_t_7) < 0) __PYX_ERR(0, 11, __pyx_L1_error)
  __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0;
 12: from cython.parallel import prange
 13: 
 14: ctypedef np.float64_t DTYPE_t
 15: 
+16: @cython.cdivision(True)
/* Python wrapper */
static PyObject *__pyx_pw_8inverter_1diag_inverter(PyObject *__pyx_self, 
#if CYTHON_METH_FASTCALL
PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
#else
PyObject *__pyx_args, PyObject *__pyx_kwds
#endif
); /*proto*/
PyDoc_STRVAR(__pyx_doc_8inverter_diag_inverter, "\n    Inverts a symmetric tridiagonal matrix\n\n    Parameters\n    ============\n    diag_c : np.ndarray\n        The central diagonal of the matrix \n    diag_offset : np.ndarray\n        The non-central diagonal\n    output : np.ndarray\n        Array to which the inverted matrix will be written to \n    n_threads : int\n        Number of threads to use \n    ");
static PyMethodDef __pyx_mdef_8inverter_1diag_inverter = {"diag_inverter", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_8inverter_1diag_inverter, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_8inverter_diag_inverter};
static PyObject *__pyx_pw_8inverter_1diag_inverter(PyObject *__pyx_self, 
#if CYTHON_METH_FASTCALL
PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
#else
PyObject *__pyx_args, PyObject *__pyx_kwds
#endif
) {
  __Pyx_memviewslice __pyx_v_diag_c = { 0, 0, { 0 }, { 0 }, { 0 } };
  __Pyx_memviewslice __pyx_v_diag_offset = { 0, 0, { 0 }, { 0 }, { 0 } };
  __Pyx_memviewslice __pyx_v_output = { 0, 0, { 0 }, { 0 }, { 0 } };
  CYTHON_UNUSED int __pyx_v_n_threads;
  #if !CYTHON_METH_FASTCALL
  CYTHON_UNUSED Py_ssize_t __pyx_nargs;
  #endif
  CYTHON_UNUSED PyObject *const *__pyx_kwvalues;
  PyObject *__pyx_r = 0;
  __Pyx_RefNannyDeclarations
  __Pyx_RefNannySetupContext("diag_inverter (wrapper)", 0);
  #if !CYTHON_METH_FASTCALL
  #if CYTHON_ASSUME_SAFE_MACROS
  __pyx_nargs = PyTuple_GET_SIZE(__pyx_args);
  #else
  __pyx_nargs = PyTuple_Size(__pyx_args); if (unlikely(__pyx_nargs < 0)) return NULL;
  #endif
  #endif
  __pyx_kwvalues = __Pyx_KwValues_FASTCALL(__pyx_args, __pyx_nargs);
  {
    PyObject **__pyx_pyargnames[] = {&__pyx_n_s_diag_c,&__pyx_n_s_diag_offset,&__pyx_n_s_output,&__pyx_n_s_n_threads,0};
  PyObject* values[4] = {0,0,0,0};
    if (__pyx_kwds) {
      Py_ssize_t kw_args;
      switch (__pyx_nargs) {
        case  4: values[3] = __Pyx_Arg_FASTCALL(__pyx_args, 3);
        CYTHON_FALLTHROUGH;
        case  3: values[2] = __Pyx_Arg_FASTCALL(__pyx_args, 2);
        CYTHON_FALLTHROUGH;
        case  2: values[1] = __Pyx_Arg_FASTCALL(__pyx_args, 1);
        CYTHON_FALLTHROUGH;
        case  1: values[0] = __Pyx_Arg_FASTCALL(__pyx_args, 0);
        CYTHON_FALLTHROUGH;
        case  0: break;
        default: goto __pyx_L5_argtuple_error;
      }
      kw_args = __Pyx_NumKwargs_FASTCALL(__pyx_kwds);
      switch (__pyx_nargs) {
        case  0:
        if (likely((values[0] = __Pyx_GetKwValue_FASTCALL(__pyx_kwds, __pyx_kwvalues, __pyx_n_s_diag_c)) != 0)) {
          (void)__Pyx_Arg_NewRef_FASTCALL(values[0]);
          kw_args--;
        }
        else if (unlikely(PyErr_Occurred())) __PYX_ERR(0, 16, __pyx_L3_error)
        else goto __pyx_L5_argtuple_error;
        CYTHON_FALLTHROUGH;
        case  1:
        if (likely((values[1] = __Pyx_GetKwValue_FASTCALL(__pyx_kwds, __pyx_kwvalues, __pyx_n_s_diag_offset)) != 0)) {
          (void)__Pyx_Arg_NewRef_FASTCALL(values[1]);
          kw_args--;
        }
        else if (unlikely(PyErr_Occurred())) __PYX_ERR(0, 16, __pyx_L3_error)
        else {
          __Pyx_RaiseArgtupleInvalid("diag_inverter", 1, 4, 4, 1); __PYX_ERR(0, 16, __pyx_L3_error)
        }
        CYTHON_FALLTHROUGH;
        case  2:
        if (likely((values[2] = __Pyx_GetKwValue_FASTCALL(__pyx_kwds, __pyx_kwvalues, __pyx_n_s_output)) != 0)) {
          (void)__Pyx_Arg_NewRef_FASTCALL(values[2]);
          kw_args--;
        }
        else if (unlikely(PyErr_Occurred())) __PYX_ERR(0, 16, __pyx_L3_error)
        else {
          __Pyx_RaiseArgtupleInvalid("diag_inverter", 1, 4, 4, 2); __PYX_ERR(0, 16, __pyx_L3_error)
        }
        CYTHON_FALLTHROUGH;
        case  3:
        if (likely((values[3] = __Pyx_GetKwValue_FASTCALL(__pyx_kwds, __pyx_kwvalues, __pyx_n_s_n_threads)) != 0)) {
          (void)__Pyx_Arg_NewRef_FASTCALL(values[3]);
          kw_args--;
        }
        else if (unlikely(PyErr_Occurred())) __PYX_ERR(0, 16, __pyx_L3_error)
        else {
          __Pyx_RaiseArgtupleInvalid("diag_inverter", 1, 4, 4, 3); __PYX_ERR(0, 16, __pyx_L3_error)
        }
      }
      if (unlikely(kw_args > 0)) {
        const Py_ssize_t kwd_pos_args = __pyx_nargs;
        if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_kwvalues, __pyx_pyargnames, 0, values + 0, kwd_pos_args, "diag_inverter") < 0)) __PYX_ERR(0, 16, __pyx_L3_error)
      }
    } else if (unlikely(__pyx_nargs != 4)) {
      goto __pyx_L5_argtuple_error;
    } else {
      values[0] = __Pyx_Arg_FASTCALL(__pyx_args, 0);
      values[1] = __Pyx_Arg_FASTCALL(__pyx_args, 1);
      values[2] = __Pyx_Arg_FASTCALL(__pyx_args, 2);
      values[3] = __Pyx_Arg_FASTCALL(__pyx_args, 3);
    }
    __pyx_v_diag_c = __Pyx_PyObject_to_MemoryviewSlice_ds_nn___pyx_t_8inverter_DTYPE_t__const__(values[0], 0); if (unlikely(!__pyx_v_diag_c.memview)) __PYX_ERR(0, 19, __pyx_L3_error)
    __pyx_v_diag_offset = __Pyx_PyObject_to_MemoryviewSlice_ds_nn___pyx_t_8inverter_DTYPE_t__const__(values[1], 0); if (unlikely(!__pyx_v_diag_offset.memview)) __PYX_ERR(0, 19, __pyx_L3_error)
    __pyx_v_output = __Pyx_PyObject_to_MemoryviewSlice_dsds_nn___pyx_t_8inverter_DTYPE_t(values[2], PyBUF_WRITABLE); if (unlikely(!__pyx_v_output.memview)) __PYX_ERR(0, 19, __pyx_L3_error)
    __pyx_v_n_threads = __Pyx_PyInt_As_int(values[3]); if (unlikely((__pyx_v_n_threads == (int)-1) && PyErr_Occurred())) __PYX_ERR(0, 19, __pyx_L3_error)
  }
  goto __pyx_L6_skip;
  __pyx_L5_argtuple_error:;
  __Pyx_RaiseArgtupleInvalid("diag_inverter", 1, 4, 4, __pyx_nargs); __PYX_ERR(0, 16, __pyx_L3_error)
  __pyx_L6_skip:;
  goto __pyx_L4_argument_unpacking_done;
  __pyx_L3_error:;
  {
    Py_ssize_t __pyx_temp;
    for (__pyx_temp=0; __pyx_temp < (Py_ssize_t)(sizeof(values)/sizeof(values[0])); ++__pyx_temp) {
      __Pyx_Arg_XDECREF_FASTCALL(values[__pyx_temp]);
    }
  }
  __PYX_XCLEAR_MEMVIEW(&__pyx_v_diag_c, 1);
  __PYX_XCLEAR_MEMVIEW(&__pyx_v_diag_offset, 1);
  __PYX_XCLEAR_MEMVIEW(&__pyx_v_output, 1);
  __Pyx_AddTraceback("inverter.diag_inverter", __pyx_clineno, __pyx_lineno, __pyx_filename);
  __Pyx_RefNannyFinishContext();
  return NULL;
  __pyx_L4_argument_unpacking_done:;
  __pyx_r = __pyx_pf_8inverter_diag_inverter(__pyx_self, __pyx_v_diag_c, __pyx_v_diag_offset, __pyx_v_output, __pyx_v_n_threads);
  int __pyx_lineno = 0;
  const char *__pyx_filename = NULL;
  int __pyx_clineno = 0;

  /* function exit code */
  __PYX_XCLEAR_MEMVIEW(&__pyx_v_diag_c, 1);
  __PYX_XCLEAR_MEMVIEW(&__pyx_v_diag_offset, 1);
  __PYX_XCLEAR_MEMVIEW(&__pyx_v_output, 1);
  {
    Py_ssize_t __pyx_temp;
    for (__pyx_temp=0; __pyx_temp < (Py_ssize_t)(sizeof(values)/sizeof(values[0])); ++__pyx_temp) {
      __Pyx_Arg_XDECREF_FASTCALL(values[__pyx_temp]);
    }
  }
  __Pyx_RefNannyFinishContext();
  return __pyx_r;
}

static PyObject *__pyx_pf_8inverter_diag_inverter(CYTHON_UNUSED PyObject *__pyx_self, __Pyx_memviewslice __pyx_v_diag_c, __Pyx_memviewslice __pyx_v_diag_offset, __Pyx_memviewslice __pyx_v_output, CYTHON_UNUSED int __pyx_v_n_threads) {
  Py_ssize_t __pyx_v_x_max;
  PyArrayObject *__pyx_v_C_VALUES = 0;
  PyArrayObject *__pyx_v_inv_C_VALUES = 0;
  Py_ssize_t __pyx_v_row;
  Py_ssize_t __pyx_v_column;
  CYTHON_UNUSED __pyx_t_8inverter_DTYPE_t __pyx_v_temp;
  Py_ssize_t __pyx_v_i;
  __pyx_t_8inverter_DTYPE_t __pyx_v_val;
  __pyx_t_8inverter_DTYPE_t __pyx_v_previous;
  __Pyx_LocalBuf_ND __pyx_pybuffernd_C_VALUES;
  __Pyx_Buffer __pyx_pybuffer_C_VALUES;
  __Pyx_LocalBuf_ND __pyx_pybuffernd_inv_C_VALUES;
  __Pyx_Buffer __pyx_pybuffer_inv_C_VALUES;
  PyObject *__pyx_r = NULL;
  __pyx_pybuffer_C_VALUES.pybuffer.buf = NULL;
  __pyx_pybuffer_C_VALUES.refcount = 0;
  __pyx_pybuffernd_C_VALUES.data = NULL;
  __pyx_pybuffernd_C_VALUES.rcbuffer = &__pyx_pybuffer_C_VALUES;
  __pyx_pybuffer_inv_C_VALUES.pybuffer.buf = NULL;
  __pyx_pybuffer_inv_C_VALUES.refcount = 0;
  __pyx_pybuffernd_inv_C_VALUES.data = NULL;
  __pyx_pybuffernd_inv_C_VALUES.rcbuffer = &__pyx_pybuffer_inv_C_VALUES;
/* … */
  /* function exit code */
  __pyx_r = Py_None; __Pyx_INCREF(Py_None);
  goto __pyx_L0;
  __pyx_L1_error:;
  __Pyx_XDECREF(__pyx_t_1);
  __Pyx_XDECREF(__pyx_t_2);
  __Pyx_XDECREF(__pyx_t_3);
  __Pyx_XDECREF(__pyx_t_4);
  { PyObject *__pyx_type, *__pyx_value, *__pyx_tb;
    __Pyx_PyThreadState_declare
    __Pyx_PyThreadState_assign
    __Pyx_ErrFetch(&__pyx_type, &__pyx_value, &__pyx_tb);
    __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_C_VALUES.rcbuffer->pybuffer);
    __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_inv_C_VALUES.rcbuffer->pybuffer);
  __Pyx_ErrRestore(__pyx_type, __pyx_value, __pyx_tb);}
  __Pyx_AddTraceback("inverter.diag_inverter", __pyx_clineno, __pyx_lineno, __pyx_filename);
  __pyx_r = NULL;
  goto __pyx_L2;
  __pyx_L0:;
  __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_C_VALUES.rcbuffer->pybuffer);
  __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_inv_C_VALUES.rcbuffer->pybuffer);
  __pyx_L2:;
  __Pyx_XDECREF((PyObject *)__pyx_v_C_VALUES);
  __Pyx_XDECREF((PyObject *)__pyx_v_inv_C_VALUES);
  __Pyx_XGIVEREF(__pyx_r);
  __Pyx_RefNannyFinishContext();
  return __pyx_r;
}
/* … */
  __pyx_tuple__22 = PyTuple_Pack(13, __pyx_n_s_diag_c, __pyx_n_s_diag_offset, __pyx_n_s_output, __pyx_n_s_n_threads, __pyx_n_s_x_max, __pyx_n_s_C_VALUES, __pyx_n_s_inv_C_VALUES, __pyx_n_s_row, __pyx_n_s_column, __pyx_n_s_temp, __pyx_n_s_i, __pyx_n_s_val, __pyx_n_s_previous); if (unlikely(!__pyx_tuple__22)) __PYX_ERR(0, 16, __pyx_L1_error)
  __Pyx_GOTREF(__pyx_tuple__22);
  __Pyx_GIVEREF(__pyx_tuple__22);
/* … */
  __pyx_t_7 = __Pyx_CyFunction_New(&__pyx_mdef_8inverter_1diag_inverter, 0, __pyx_n_s_diag_inverter, NULL, __pyx_n_s_inverter, __pyx_d, ((PyObject *)__pyx_codeobj__23)); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 16, __pyx_L1_error)
  __Pyx_GOTREF(__pyx_t_7);
  if (PyDict_SetItem(__pyx_d, __pyx_n_s_diag_inverter, __pyx_t_7) < 0) __PYX_ERR(0, 16, __pyx_L1_error)
  __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0;
 17: @cython.boundscheck(False)
 18: @cython.wraparound(False)
 19: def diag_inverter(const DTYPE_t[:] diag_c, const DTYPE_t[:] diag_offset, DTYPE_t[:,:] output, const int n_threads):
 20:     """
 21:     Inverts a symmetric tridiagonal matrix
 22: 
 23:     Parameters
 24:     ============
 25:     diag_c : np.ndarray
 26:         The central diagonal of the matrix 
 27:     diag_offset : np.ndarray
 28:         The non-central diagonal
 29:     output : np.ndarray
 30:         Array to which the inverted matrix will be written to 
 31:     n_threads : int
 32:         Number of threads to use 
 33:     """
+34:     cdef Py_ssize_t x_max = diag_c.shape[0]
  __pyx_v_x_max = (__pyx_v_diag_c.shape[0]);
+35:     cdef np.ndarray[DTYPE_t, ndim=1] C_VALUES = np.empty(x_max)
  __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_np); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 35, __pyx_L1_error)
  __Pyx_GOTREF(__pyx_t_2);
  __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_empty); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 35, __pyx_L1_error)
  __Pyx_GOTREF(__pyx_t_3);
  __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
  __pyx_t_2 = PyInt_FromSsize_t(__pyx_v_x_max); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 35, __pyx_L1_error)
  __Pyx_GOTREF(__pyx_t_2);
  __pyx_t_4 = NULL;
  __pyx_t_5 = 0;
  #if CYTHON_UNPACK_METHODS
  if (unlikely(PyMethod_Check(__pyx_t_3))) {
    __pyx_t_4 = PyMethod_GET_SELF(__pyx_t_3);
    if (likely(__pyx_t_4)) {
      PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_3);
      __Pyx_INCREF(__pyx_t_4);
      __Pyx_INCREF(function);
      __Pyx_DECREF_SET(__pyx_t_3, function);
      __pyx_t_5 = 1;
    }
  }
  #endif
  {
    PyObject *__pyx_callargs[2] = {__pyx_t_4, __pyx_t_2};
    __pyx_t_1 = __Pyx_PyObject_FastCall(__pyx_t_3, __pyx_callargs+1-__pyx_t_5, 1+__pyx_t_5);
    __Pyx_XDECREF(__pyx_t_4); __pyx_t_4 = 0;
    __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
    if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 35, __pyx_L1_error)
    __Pyx_GOTREF(__pyx_t_1);
    __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
  }
  if (!(likely(((__pyx_t_1) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_1, __pyx_ptype_5numpy_ndarray))))) __PYX_ERR(0, 35, __pyx_L1_error)
  __pyx_t_6 = ((PyArrayObject *)__pyx_t_1);
  {
    __Pyx_BufFmt_StackElem __pyx_stack[1];
    if (unlikely(__Pyx_GetBufferAndValidate(&__pyx_pybuffernd_C_VALUES.rcbuffer->pybuffer, (PyObject*)__pyx_t_6, &__Pyx_TypeInfo_nn___pyx_t_8inverter_DTYPE_t, PyBUF_FORMAT| PyBUF_STRIDES| PyBUF_WRITABLE, 1, 0, __pyx_stack) == -1)) {
      __pyx_v_C_VALUES = ((PyArrayObject *)Py_None); __Pyx_INCREF(Py_None); __pyx_pybuffernd_C_VALUES.rcbuffer->pybuffer.buf = NULL;
      __PYX_ERR(0, 35, __pyx_L1_error)
    } else {__pyx_pybuffernd_C_VALUES.diminfo[0].strides = __pyx_pybuffernd_C_VALUES.rcbuffer->pybuffer.strides[0]; __pyx_pybuffernd_C_VALUES.diminfo[0].shape = __pyx_pybuffernd_C_VALUES.rcbuffer->pybuffer.shape[0];
    }
  }
  __pyx_t_6 = 0;
  __pyx_v_C_VALUES = ((PyArrayObject *)__pyx_t_1);
  __pyx_t_1 = 0;
+36:     cdef np.ndarray[DTYPE_t, ndim=1] inv_C_VALUES = np.empty((x_max))
  __Pyx_GetModuleGlobalName(__pyx_t_3, __pyx_n_s_np); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 36, __pyx_L1_error)
  __Pyx_GOTREF(__pyx_t_3);
  __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_empty); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 36, __pyx_L1_error)
  __Pyx_GOTREF(__pyx_t_2);
  __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
  __pyx_t_3 = PyInt_FromSsize_t(__pyx_v_x_max); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 36, __pyx_L1_error)
  __Pyx_GOTREF(__pyx_t_3);
  __pyx_t_4 = NULL;
  __pyx_t_5 = 0;
  #if CYTHON_UNPACK_METHODS
  if (unlikely(PyMethod_Check(__pyx_t_2))) {
    __pyx_t_4 = PyMethod_GET_SELF(__pyx_t_2);
    if (likely(__pyx_t_4)) {
      PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_2);
      __Pyx_INCREF(__pyx_t_4);
      __Pyx_INCREF(function);
      __Pyx_DECREF_SET(__pyx_t_2, function);
      __pyx_t_5 = 1;
    }
  }
  #endif
  {
    PyObject *__pyx_callargs[2] = {__pyx_t_4, __pyx_t_3};
    __pyx_t_1 = __Pyx_PyObject_FastCall(__pyx_t_2, __pyx_callargs+1-__pyx_t_5, 1+__pyx_t_5);
    __Pyx_XDECREF(__pyx_t_4); __pyx_t_4 = 0;
    __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
    if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 36, __pyx_L1_error)
    __Pyx_GOTREF(__pyx_t_1);
    __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
  }
  if (!(likely(((__pyx_t_1) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_1, __pyx_ptype_5numpy_ndarray))))) __PYX_ERR(0, 36, __pyx_L1_error)
  __pyx_t_7 = ((PyArrayObject *)__pyx_t_1);
  {
    __Pyx_BufFmt_StackElem __pyx_stack[1];
    if (unlikely(__Pyx_GetBufferAndValidate(&__pyx_pybuffernd_inv_C_VALUES.rcbuffer->pybuffer, (PyObject*)__pyx_t_7, &__Pyx_TypeInfo_nn___pyx_t_8inverter_DTYPE_t, PyBUF_FORMAT| PyBUF_STRIDES| PyBUF_WRITABLE, 1, 0, __pyx_stack) == -1)) {
      __pyx_v_inv_C_VALUES = ((PyArrayObject *)Py_None); __Pyx_INCREF(Py_None); __pyx_pybuffernd_inv_C_VALUES.rcbuffer->pybuffer.buf = NULL;
      __PYX_ERR(0, 36, __pyx_L1_error)
    } else {__pyx_pybuffernd_inv_C_VALUES.diminfo[0].strides = __pyx_pybuffernd_inv_C_VALUES.rcbuffer->pybuffer.strides[0]; __pyx_pybuffernd_inv_C_VALUES.diminfo[0].shape = __pyx_pybuffernd_inv_C_VALUES.rcbuffer->pybuffer.shape[0];
    }
  }
  __pyx_t_7 = 0;
  __pyx_v_inv_C_VALUES = ((PyArrayObject *)__pyx_t_1);
  __pyx_t_1 = 0;
 37: 
+38:     cdef Py_ssize_t row = 0
  __pyx_v_row = 0;
+39:     cdef Py_ssize_t column = 0
  __pyx_v_column = 0;
+40:     cdef DTYPE_t temp = 0
  __pyx_v_temp = 0.0;
 41: 
+42:     cdef Py_ssize_t i = 0
  __pyx_v_i = 0;
+43:     cdef DTYPE_t val = 1
  __pyx_v_val = 1.0;
+44:     cdef DTYPE_t previous = 1
  __pyx_v_previous = 1.0;
 45: 
+46:     C_VALUES[0] = diag_c[0]
  __pyx_t_8 = 0;
  __pyx_t_9 = 0;
  *__Pyx_BufPtrStrided1d(__pyx_t_8inverter_DTYPE_t *, __pyx_pybuffernd_C_VALUES.rcbuffer->pybuffer.buf, __pyx_t_9, __pyx_pybuffernd_C_VALUES.diminfo[0].strides) = (*((__pyx_t_8inverter_DTYPE_t const  *) ( /* dim=0 */ (__pyx_v_diag_c.data + __pyx_t_8 * __pyx_v_diag_c.strides[0]) )));
+47:     inv_C_VALUES[0] = 1/C_VALUES[0]
  __pyx_t_8 = 0;
  __pyx_t_9 = 0;
  *__Pyx_BufPtrStrided1d(__pyx_t_8inverter_DTYPE_t *, __pyx_pybuffernd_inv_C_VALUES.rcbuffer->pybuffer.buf, __pyx_t_9, __pyx_pybuffernd_inv_C_VALUES.diminfo[0].strides) = (1.0 / (*__Pyx_BufPtrStrided1d(__pyx_t_8inverter_DTYPE_t *, __pyx_pybuffernd_C_VALUES.rcbuffer->pybuffer.buf, __pyx_t_8, __pyx_pybuffernd_C_VALUES.diminfo[0].strides)));
 48: 
+49:     for i in range(1, x_max):
  __pyx_t_10 = __pyx_v_x_max;
  __pyx_t_11 = __pyx_t_10;
  for (__pyx_t_12 = 1; __pyx_t_12 < __pyx_t_11; __pyx_t_12+=1) {
    __pyx_v_i = __pyx_t_12;
+50:         C_VALUES[i] =  diag_c[i] - diag_offset[i-1]**2/C_VALUES[i-1]
    __pyx_t_8 = __pyx_v_i;
    __pyx_t_9 = (__pyx_v_i - 1);
    __pyx_t_13 = (__pyx_v_i - 1);
    __pyx_t_14 = __pyx_v_i;
    *__Pyx_BufPtrStrided1d(__pyx_t_8inverter_DTYPE_t *, __pyx_pybuffernd_C_VALUES.rcbuffer->pybuffer.buf, __pyx_t_14, __pyx_pybuffernd_C_VALUES.diminfo[0].strides) = ((*((__pyx_t_8inverter_DTYPE_t const  *) ( /* dim=0 */ (__pyx_v_diag_c.data + __pyx_t_8 * __pyx_v_diag_c.strides[0]) ))) - (pow(((__pyx_t_8inverter_DTYPE_t)(*((__pyx_t_8inverter_DTYPE_t const  *) ( /* dim=0 */ (__pyx_v_diag_offset.data + __pyx_t_9 * __pyx_v_diag_offset.strides[0]) )))), 2.0) / (*__Pyx_BufPtrStrided1d(__pyx_t_8inverter_DTYPE_t *, __pyx_pybuffernd_C_VALUES.rcbuffer->pybuffer.buf, __pyx_t_13, __pyx_pybuffernd_C_VALUES.diminfo[0].strides))));
+51:         inv_C_VALUES[i] = 1/C_VALUES[i]
    __pyx_t_13 = __pyx_v_i;
    __pyx_t_9 = __pyx_v_i;
    *__Pyx_BufPtrStrided1d(__pyx_t_8inverter_DTYPE_t *, __pyx_pybuffernd_inv_C_VALUES.rcbuffer->pybuffer.buf, __pyx_t_9, __pyx_pybuffernd_inv_C_VALUES.diminfo[0].strides) = (1.0 / (*__Pyx_BufPtrStrided1d(__pyx_t_8inverter_DTYPE_t *, __pyx_pybuffernd_C_VALUES.rcbuffer->pybuffer.buf, __pyx_t_13, __pyx_pybuffernd_C_VALUES.diminfo[0].strides)));
  }
 52: 
+53:     for row in prange(x_max, nogil=True, num_threads=n_threads):
  {
      #ifdef WITH_THREAD
      PyThreadState *_save;
      _save = NULL;
      Py_UNBLOCK_THREADS
      __Pyx_FastGIL_Remember();
      #endif
      /*try:*/ {
        __pyx_t_10 = __pyx_v_x_max;
        {
            #if ((defined(__APPLE__) || defined(__OSX__)) && (defined(__GNUC__) && (__GNUC__ > 2 || (__GNUC__ == 2 && (__GNUC_MINOR__ > 95)))))
                #undef likely
                #undef unlikely
                #define likely(x)   (x)
                #define unlikely(x) (x)
            #endif
            __pyx_t_12 = (__pyx_t_10 - 0 + 1 - 1/abs(1)) / 1;
            if (__pyx_t_12 > 0)
            {
                #ifdef _OPENMP
                #pragma omp parallel
                #endif /* _OPENMP */
                {
                    #ifdef _OPENMP
                    #pragma omp for lastprivate(__pyx_v_column) lastprivate(__pyx_v_i) lastprivate(__pyx_v_previous) firstprivate(__pyx_v_row) lastprivate(__pyx_v_row) lastprivate(__pyx_v_val)        __pyx_t_10 = __pyx_v_x_max;
        {
            #if ((defined(__APPLE__) || defined(__OSX__)) && (defined(__GNUC__) && (__GNUC__ > 2 || (__GNUC__ == 2 && (__GNUC_MINOR__ > 95)))))
                #undef likely
                #undef unlikely
                #define likely(x)   (x)
                #define unlikely(x) (x)
            #endif
            __pyx_t_12 = (__pyx_t_10 - 0 + 1 - 1/abs(1)) / 1;
            if (__pyx_t_12 > 0)
            {
                #ifdef _OPENMP
                #pragma omp parallel
                #endif /* _OPENMP */
                {
                    #ifdef _OPENMP
                    #pragma omp for lastprivate(__pyx_v_column) lastprivate(__pyx_v_i) lastprivate(__pyx_v_previous) firstprivate(__pyx_v_row) lastprivate(__pyx_v_row) lastprivate(__pyx_v_val) num_threads(__pyx_v_n_threads)
                    #endif /* _OPENMP */
                    for (__pyx_t_11 = 0; __pyx_t_11 < __pyx_t_12; __pyx_t_11++){
                        {
                            __pyx_v_row = (Py_ssize_t)(0 + 1 * __pyx_t_11);
                            /* Initialize private variables to invalid values */
                            __pyx_v_column = ((Py_ssize_t)0xbad0bad0);
                            __pyx_v_i = ((Py_ssize_t)0xbad0bad0);
                            __pyx_v_previous = ((__pyx_t_8inverter_DTYPE_t)__PYX_NAN());
                            __pyx_v_val = ((__pyx_t_8inverter_DTYPE_t)__PYX_NAN());
/* … */
      /*finally:*/ {
        /*normal exit:*/{
          #ifdef WITH_THREAD
          __Pyx_FastGIL_Forget();
          Py_BLOCK_THREADS
          #endif
          goto __pyx_L7;
        }
        __pyx_L7:;
      }
  }
 54:     #for row in range(x_max):
+55:         previous = 1
                            __pyx_v_previous = 1.0;
+56:         for column in range(row+1, x_max):
                            __pyx_t_15 = __pyx_v_x_max;
                            __pyx_t_16 = __pyx_t_15;
                            for (__pyx_t_17 = (__pyx_v_row + 1); __pyx_t_17 < __pyx_t_16; __pyx_t_17+=1) {
                              __pyx_v_column = __pyx_t_17;
 57:             # non diagonal terms, without accounting for w_ii
+58:             val = previous * diag_offset[column-1]*inv_C_VALUES[column-1] * (-1)
                              __pyx_t_13 = (__pyx_v_column - 1);
                              __pyx_t_9 = (__pyx_v_column - 1);
                              __pyx_v_val = (((__pyx_v_previous * (*((__pyx_t_8inverter_DTYPE_t const  *) ( /* dim=0 */ (__pyx_v_diag_offset.data + __pyx_t_13 * __pyx_v_diag_offset.strides[0]) )))) * (*__Pyx_BufPtrStrided1d(__pyx_t_8inverter_DTYPE_t *, __pyx_pybuffernd_inv_C_VALUES.rcbuffer->pybuffer.buf, __pyx_t_9, __pyx_pybuffernd_inv_C_VALUES.diminfo[0].strides))) * -1.0);
+59:             previous = val
                              __pyx_v_previous = __pyx_v_val;
+60:             output[row, column] = val
                              __pyx_t_9 = __pyx_v_row;
                              __pyx_t_13 = __pyx_v_column;
                              *((__pyx_t_8inverter_DTYPE_t *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_output.data + __pyx_t_9 * __pyx_v_output.strides[0]) ) + __pyx_t_13 * __pyx_v_output.strides[1]) )) = __pyx_v_val;
+61:             output[column, row] = val
                              __pyx_t_13 = __pyx_v_column;
                              __pyx_t_9 = __pyx_v_row;
                              *((__pyx_t_8inverter_DTYPE_t *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_output.data + __pyx_t_13 * __pyx_v_output.strides[0]) ) + __pyx_t_9 * __pyx_v_output.strides[1]) )) = __pyx_v_val;
                            }
 62: 
+63:         output[row, row] = inv_C_VALUES[row]
                            __pyx_t_9 = __pyx_v_row;
                            __pyx_t_13 = __pyx_v_row;
                            __pyx_t_8 = __pyx_v_row;
                            *((__pyx_t_8inverter_DTYPE_t *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_output.data + __pyx_t_13 * __pyx_v_output.strides[0]) ) + __pyx_t_8 * __pyx_v_output.strides[1]) )) = (*__Pyx_BufPtrStrided1d(__pyx_t_8inverter_DTYPE_t *, __pyx_pybuffernd_inv_C_VALUES.rcbuffer->pybuffer.buf, __pyx_t_9, __pyx_pybuffernd_inv_C_VALUES.diminfo[0].strides));
+64:         if row != x_max - 1: # compute main diagonal values!
                            __pyx_t_18 = (__pyx_v_row != (__pyx_v_x_max - 1));
                            if (__pyx_t_18) {
/* … */
                            }
                        }
                    }
                }
            }
        }
        #if ((defined(__APPLE__) || defined(__OSX__)) && (defined(__GNUC__) && (__GNUC__ > 2 || (__GNUC__ == 2 && (__GNUC_MINOR__ > 95)))))
            #undef likely
            #undef unlikely
            #define likely(x)   __builtin_expect(!!(x), 1)
            #define unlikely(x) __builtin_expect(!!(x), 0)
        #endif
      }
+65:             val = 0
                              __pyx_v_val = 0.0;
+66:             for i in range(row+1, x_max):
                              __pyx_t_15 = __pyx_v_x_max;
                              __pyx_t_16 = __pyx_t_15;
                              for (__pyx_t_17 = (__pyx_v_row + 1); __pyx_t_17 < __pyx_t_16; __pyx_t_17+=1) {
                                __pyx_v_i = __pyx_t_17;
+67:                 val = val + (inv_C_VALUES[i]) * output[row, i]**2
                                __pyx_t_9 = __pyx_v_i;
                                __pyx_t_8 = __pyx_v_row;
                                __pyx_t_13 = __pyx_v_i;
                                __pyx_v_val = (__pyx_v_val + ((*__Pyx_BufPtrStrided1d(__pyx_t_8inverter_DTYPE_t *, __pyx_pybuffernd_inv_C_VALUES.rcbuffer->pybuffer.buf, __pyx_t_9, __pyx_pybuffernd_inv_C_VALUES.diminfo[0].strides)) * pow((*((__pyx_t_8inverter_DTYPE_t *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_output.data + __pyx_t_8 * __pyx_v_output.strides[0]) ) + __pyx_t_13 * __pyx_v_output.strides[1]) ))), 2.0)));
                              }
 68:             #output[row, row] = output[row, row] + np.dot(1/C_VALUES[row+1:], np.square(output[row, row+1:]))
+69:             output[row, row] = output[row, row] + val
                              __pyx_t_13 = __pyx_v_row;
                              __pyx_t_8 = __pyx_v_row;
                              __pyx_t_9 = __pyx_v_row;
                              __pyx_t_14 = __pyx_v_row;
                              *((__pyx_t_8inverter_DTYPE_t *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_output.data + __pyx_t_9 * __pyx_v_output.strides[0]) ) + __pyx_t_14 * __pyx_v_output.strides[1]) )) = ((*((__pyx_t_8inverter_DTYPE_t *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_output.data + __pyx_t_13 * __pyx_v_output.strides[0]) ) + __pyx_t_8 * __pyx_v_output.strides[1]) ))) + __pyx_v_val);
 70: 
+71:     for row in prange(x_max, nogil=True, num_threads=n_threads):
  {
      #ifdef WITH_THREAD
      PyThreadState *_save;
      _save = NULL;
      Py_UNBLOCK_THREADS
      __Pyx_FastGIL_Remember();
      #endif
      /*try:*/ {
        __pyx_t_12 = __pyx_v_x_max;
        {
            #if ((defined(__APPLE__) || defined(__OSX__)) && (defined(__GNUC__) && (__GNUC__ > 2 || (__GNUC__ == 2 && (__GNUC_MINOR__ > 95)))))
                #undef likely
                #undef unlikely
                #define likely(x)   (x)
                #define unlikely(x) (x)
            #endif
            __pyx_t_10 = (__pyx_t_12 - 0 + 1 - 1/abs(1)) / 1;
            if (__pyx_t_10 > 0)
            {
                #ifdef _OPENMP
                #pragma omp parallel
                #endif /* _OPENMP */
                {
                    #ifdef _OPENMP
                    #pragma omp for lastprivate(__pyx_v_column) firstprivate(__pyx_v_row) lastprivate(__pyx_v_row)        __pyx_t_12 = __pyx_v_x_max;
        {
            #if ((defined(__APPLE__) || defined(__OSX__)) && (defined(__GNUC__) && (__GNUC__ > 2 || (__GNUC__ == 2 && (__GNUC_MINOR__ > 95)))))
                #undef likely
                #undef unlikely
                #define likely(x)   (x)
                #define unlikely(x) (x)
            #endif
            __pyx_t_10 = (__pyx_t_12 - 0 + 1 - 1/abs(1)) / 1;
            if (__pyx_t_10 > 0)
            {
                #ifdef _OPENMP
                #pragma omp parallel
                #endif /* _OPENMP */
                {
                    #ifdef _OPENMP
                    #pragma omp for lastprivate(__pyx_v_column) firstprivate(__pyx_v_row) lastprivate(__pyx_v_row) num_threads(__pyx_v_n_threads)
                    #endif /* _OPENMP */
                    for (__pyx_t_11 = 0; __pyx_t_11 < __pyx_t_10; __pyx_t_11++){
                        {
                            __pyx_v_row = (Py_ssize_t)(0 + 1 * __pyx_t_11);
                            /* Initialize private variables to invalid values */
                            __pyx_v_column = ((Py_ssize_t)0xbad0bad0);
/* … */
      /*finally:*/ {
        /*normal exit:*/{
          #ifdef WITH_THREAD
          __Pyx_FastGIL_Forget();
          Py_BLOCK_THREADS
          #endif
          goto __pyx_L21;
        }
        __pyx_L21:;
      }
  }
 72:         # add the diagonal value to the non-diagonal values
 73:         # this is done this way to avoid problems when re-using output[i,j] to store 
 74:         # data until it is needed further ahead
+75:         for column in range(row+1, x_max):
                            __pyx_t_15 = __pyx_v_x_max;
                            __pyx_t_16 = __pyx_t_15;
                            for (__pyx_t_17 = (__pyx_v_row + 1); __pyx_t_17 < __pyx_t_16; __pyx_t_17+=1) {
                              __pyx_v_column = __pyx_t_17;
+76:             output[row, column] =  output[row, column] * output[column,column]
                              __pyx_t_8 = __pyx_v_row;
                              __pyx_t_13 = __pyx_v_column;
                              __pyx_t_14 = __pyx_v_column;
                              __pyx_t_9 = __pyx_v_column;
                              __pyx_t_19 = __pyx_v_row;
                              __pyx_t_20 = __pyx_v_column;
                              *((__pyx_t_8inverter_DTYPE_t *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_output.data + __pyx_t_19 * __pyx_v_output.strides[0]) ) + __pyx_t_20 * __pyx_v_output.strides[1]) )) = ((*((__pyx_t_8inverter_DTYPE_t *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_output.data + __pyx_t_8 * __pyx_v_output.strides[0]) ) + __pyx_t_13 * __pyx_v_output.strides[1]) ))) * (*((__pyx_t_8inverter_DTYPE_t *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_output.data + __pyx_t_14 * __pyx_v_output.strides[0]) ) + __pyx_t_9 * __pyx_v_output.strides[1]) ))));
+77:             output[column, row] = output[column, row] * output[column,column]
                              __pyx_t_9 = __pyx_v_column;
                              __pyx_t_14 = __pyx_v_row;
                              __pyx_t_13 = __pyx_v_column;
                              __pyx_t_8 = __pyx_v_column;
                              __pyx_t_20 = __pyx_v_column;
                              __pyx_t_19 = __pyx_v_row;
                              *((__pyx_t_8inverter_DTYPE_t *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_output.data + __pyx_t_20 * __pyx_v_output.strides[0]) ) + __pyx_t_19 * __pyx_v_output.strides[1]) )) = ((*((__pyx_t_8inverter_DTYPE_t *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_output.data + __pyx_t_9 * __pyx_v_output.strides[0]) ) + __pyx_t_14 * __pyx_v_output.strides[1]) ))) * (*((__pyx_t_8inverter_DTYPE_t *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_output.data + __pyx_t_13 * __pyx_v_output.strides[0]) ) + __pyx_t_8 * __pyx_v_output.strides[1]) ))));
                            }
                        }
                    }
                }
            }
        }
        #if ((defined(__APPLE__) || defined(__OSX__)) && (defined(__GNUC__) && (__GNUC__ > 2 || (__GNUC__ == 2 && (__GNUC_MINOR__ > 95)))))
            #undef likely
            #undef unlikely
            #define likely(x)   __builtin_expect(!!(x), 1)
            #define unlikely(x) __builtin_expect(!!(x), 0)
        #endif
      }