Source code for lenstronomy.LensModel.Profiles.pemd

__author__ = 'sibirrer'

from lenstronomy.LensModel.Profiles.spp import SPP
from lenstronomy.LensModel.Profiles.spemd import SPEMD
from lenstronomy.LensModel.Profiles.base_profile import LensProfileBase

__all__ = ['PEMD']


[docs]class PEMD(LensProfileBase): """ class for power law ellipse mass density profile. This class effectively calls the class SPEMD_SMOOTH with a fixed and very small central smoothing scale to perform the numerical integral using the FASTELL code by Renan Barkana. The Einstein ring parameter converts to the definition used by GRAVLENS as follow: (theta_E / theta_E_gravlens) = sqrt[ (1+q^2) / (2 q) ] """ param_names = ['theta_E', 'gamma', 'e1', 'e2', 'center_x', 'center_y'] lower_limit_default = {'theta_E': 0, 'gamma': 1.5, 'e1': -0.5, 'e2': -0.5, 'center_x': -100, 'center_y': -100} upper_limit_default = {'theta_E': 100, 'gamma': 2.5, 'e1': 0.5, 'e2': 0.5, 'center_x': 100, 'center_y': 100} def __init__(self, suppress_fastell=False): """ :param suppress_fastell: bool, if True, does not raise if fastell4py is not installed """ self._s_scale = 0.0001 # smoothing scale as used to numerically compute a power-law profile self.spp = SPP() self.spemd_smooth = SPEMD(suppress_fastell=suppress_fastell) super(PEMD, self).__init__()
[docs] def function(self, x, y, theta_E, gamma, e1, e2, center_x=0, center_y=0): """ :param x: x-coordinate (angle) :param y: y-coordinate (angle) :param theta_E: Einstein radius (angle), pay attention to specific definition! :param gamma: logarithmic slope of the power-law profile. gamma=2 corresponds to isothermal :param e1: eccentricity component :param e2: eccentricity component :param center_x: x-position of lens center :param center_y: y-position of lens center :return: lensing potential """ return self.spemd_smooth.function(x, y, theta_E, gamma, e1, e2, self._s_scale, center_x, center_y)
[docs] def derivatives(self, x, y, theta_E, gamma, e1, e2, center_x=0, center_y=0): """ :param x: x-coordinate (angle) :param y: y-coordinate (angle) :param theta_E: Einstein radius (angle), pay attention to specific definition! :param gamma: logarithmic slope of the power-law profile. gamma=2 corresponds to isothermal :param e1: eccentricity component :param e2: eccentricity component :param center_x: x-position of lens center :param center_y: y-position of lens center :return: deflection angles alpha_x, alpha_y """ return self.spemd_smooth.derivatives(x, y, theta_E, gamma, e1, e2, self._s_scale, center_x, center_y)
[docs] def hessian(self, x, y, theta_E, gamma, e1, e2, center_x=0, center_y=0): """ :param x: x-coordinate (angle) :param y: y-coordinate (angle) :param theta_E: Einstein radius (angle), pay attention to specific definition! :param gamma: logarithmic slope of the power-law profile. gamma=2 corresponds to isothermal :param e1: eccentricity component :param e2: eccentricity component :param center_x: x-position of lens center :param center_y: y-position of lens center :return: Hessian components f_xx, f_xy, f_yx, f_yy """ return self.spemd_smooth.hessian(x, y, theta_E, gamma, e1, e2, self._s_scale, center_x, center_y)
[docs] def mass_3d_lens(self, r, theta_E, gamma, e1=None, e2=None): """ computes the spherical power-law mass enclosed (with SPP routine) :param r: radius within the mass is computed :param theta_E: Einstein radius :param gamma: power-law slope :param e1: eccentricity component (not used) :param e2: eccentricity component (not used) :return: mass enclosed a 3D radius r """ return self.spp.mass_3d_lens(r, theta_E, gamma)
[docs] def density_lens(self, r, theta_E, gamma, e1=None, e2=None): """ computes the density at 3d radius r given lens model parameterization. The integral in the LOS projection of this quantity results in the convergence quantity. :param r: radius within the mass is computed :param theta_E: Einstein radius :param gamma: power-law slope :param e1: eccentricity component (not used) :param e2: eccentricity component (not used) :return: mass enclosed a 3D radius r """ return self.spp.density_lens(r, theta_E, gamma)