
SigProfilerSimulator
Sept 26, 2018

INTRODUCTION
The purpose of this document is to provide a guide for using the SigProfilerSimulator for
simulating mutational signatures in cancer. This tool allows for realistic simulations of single
point mutations, double point mutations, and insertions/deletions with the goal of providing a
background model for statistical analysis. The simulations are performed in an unbiased fashion,
relying on random chance as the main distribution and can be performed across the entire
genome or limited to user-provided ranges. This tool currently supports the GRCh37, GRCh38,
mm9, and mm10 assemblies, however, additional genomes may be installed (see Simulating
Additional Genomes). In addition, this tool makes use of SigProfilerMatrixGenerator and
SigProfilerPlotting.

PREREQUISITES
The framework is written in PYTHON, however, it also requires the following additional
software with the given versions (or newer) and access to BASH:

PYTHON version 3.4 or newer
FASTRAND Python module:

https://github.com/lemire/fastrand/blob/master/README.md

WGET version 1.19
SigProfilerMatrixGenerator current version from GitHub:

https://github.com/AlexandrovLab/SigProfilerMatrixGenerator

While the code was developed for application on a local computer, access to a cluster with
greater computational power may be required for simulating a large number of mutations.

QUICK START GUIDE
This section will guide you through the minimum steps required to begin simulating mutations:

1. Install SigProfilerMatrixGenerator following the README file given in the link above.

2. Place the SigProfilerSimulator repository within the same folder as the
SigProfilerMatrixGenerator.

3. Run the install_simulator_ref.py script using python3.

4. A) IF WORKING WITH VCF/MAF/SIMPLE TEXT FILES:

a) Create a folder with a unique name for your project (ex: BRCA, ncRCC, etc.)

within the vcf_files folder. Under this project, create an SNV and INDEL folder.

b) Place your vcf/maf/simple text files into this newly created project/[mut_type]/
folder. If you are dealing with vcf files, ensure that you have an individual file for
each sample of interest. Separate INDELs from SNVS and place in the
appropriate folder under your project directory.

B) IF WORKING WITH MUTATIONAL MATRICES:
 a) Place the matrix for the given context under the references/matrix/[project]/
 folder. The file name must follow the given format:

“[project].[type][context].[region]”

BRCA.SBS96.exome

 Types: SBS (single base substitutions), DBS94 (INDELs), and DBS78 (DINUCs)
 Contexts: 96 (trinucleotides), 192 (TSB trinucleotides), 1536 (pentanucleotides),

 3072 (TSB pentanucleotides), DINUC (dinucleotides), and INDEL
 Regions: exome, region (specified by BED file), all (entire genome)

5. From a command prompt run the mutation_simulation.py script as follows:  
	

python3 mutation_simulation.py –g GRCh37 –p BRCA –c 96 INDEL –s 100 **  

6. The script will begin generating any missing reference files or will instruct you if there
are certain folders missing (First time users only).  

7. Simulated samples are saved within the output folder. Log files are saved within the log
folder.  

**NOTE: See commands below for list of all available parameters.

COMMANDS
-g or --genome -> required: Followed by the reference genome (ex: GRCh37, GRCh38,

 mm10).
-p or --project -> required: Followed by a unique project name (ex: BRCA).
-c or --context -> required: Followed by the desired contexts to simulate. Only one type

 of single point mutations may be provided (96, 192, 1536, or 3072)
 along with DINUCs or INDELs (ex: -c 192 DINUC INDEL).

-e or --exome  -> optional: Simulates based solely on the exome regions of the genome.
-s or --simulations -> optional: Followed by the desired number of iterated simulations per

 sample. The default number of iterations is 1 (ex: -s 100 will produce
 100 iterations per sample).

-u or --update -> optional: Updates the chromosomes as each mutation is assigned.
-b or --bed -> optional: Followed by the file name of the BED file. Allows for

 simulations within a set of ranges. (ex: -b regions_for_sim.txt).
-i or --indel  -> optional: Creates the matrix for the limited list of INDELs (classifies

 insertions at micro-homologies as insertions at repeats of 0).

-ie or –extended_indel -> optional: Creates the matrix for the complete list of INDELs.
-S or --Signatures -> optional: Simulates based upon a matrix that consists of a set of

mutational signatures with their respective activities for each sample.
This parameter requires that a file is saved within the references/matrix/
folder with the following extension: “.mutSignatures”.

FOLDER STRUCTURE
The framework contains three folders (scripts, references, output), the main simulator code, and
this readme file [include pictures snapshot]. The scripts folder contains all code required to
generate the necessary input files, reference files, and mutational matrix catalogues. The
references file contains a vcf_files folder, matrix folder, and chromosomes folder. The vcf_files
folder is where the user must place their input files (must be in vcf, maf, or simple text file
format). The matrix folder will contain all of the generated mutational matrix catalogues. The
user may upload their own matrix as long as it follows the format given in the examples folder,
otherwise the simulation code will generate the necessary matrices. The chromosomes folder
contains a chrom_string folder, context_distributions folder, exome folder, fasta folder,
transcripts folder, and tsb folder. NOTE: ALL OF THESE FILES MUST BE PLACED UNDER
THE GENOME NAME WITHIN EACH SUBDIRECTORY. The output folder is where all
simulated data will be stored after completion.

INPUT FILE FORMAT
This tool currently supports maf, vcf, and simple text file formats (See the examples folder for
examples of each format). The user must provide variant data adhering
to one of these three formats. If the user’s files are in vcf format, each sample must be saved as a
separate file.

DESCRIPTION OF PROVIDED EXAMPLES
An example_test folder is provided that contains 10 test samples. This folder can be placed
within the references/vcf_files/ folder and run on the command line as follows:

python mutation_simulation.py –g GRCh37 –p example_test –c 192 DINUC –s 10

**The SNV context can be changed to 96, 192, 1536, or 3072, and the simulation
parameter can be changed to any value.

The final simulated output will be saved within the
simulation_output/example_test_simulations_GRCh37_[context]/ folder.

SIMULATING ADDITIONAL GENOMES
If the user desires to use a genome other than those currently supported (GRCh37, GRCh38,
mm9, or mm10), they must:

1)Download the individual FASTA files for each chromosome 
2)Place them into the references/chromosomes/fasta folder 
3)Download the transcriptional data following the format presented in the
 transcripts_original folder. 

4)Place this file within the transcripts_original folder 
5)Download the exome ranges for the given genome and place in the
 references/chromosomes/exome folder.

ADDITIONAL DATA AND EXAMPLES

COPYRIGHT
This software and its documentation are copyright 2018 as a part of the sigProfiler project. The
sigProfilerMatrixGenerator framework is free software and is distributed in the hope that it will
be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details [change to whatever group we should include.

CONTACT INFORMATION
Please address any queries or bug reports to Erik Bergstrom at ebergstr@eng.ucsd.edu

