SPECS

Nanonis TCP Protocol

TCP Programming Interface

October 2022 (R5.1.12136)

SPECS

Table of Contents

LCT=T o 1= o 1 OSSP P PP PPTPRPTOPPTRPRONS 10
ATCRITECEUIE .ttt ettt e sttt esab e e s bt e s be e e sabeeebeeesabeesabeeesabeesabeeeaneeesanenesareesn 10
DL T Y 01T ST PPPPPPPTPRPPPNt 10
REQUEST MESSAZE .eeiiiiiiiiiiiiiiiiiiieiete ittt ettt ettt e et ee et eetete e et et et et e te s et e e e s e s et e s e s et e s e e et eeeeeeeeeaeseseeeaeaeaeenes 12

[[T [o L= O OO TSP PRSPPI 12
2 To Yo YRS 12
=] oo] 1=l 0 0 (=TT T PPNt 12
HEABT .t ettt e sttt esa e s bt e e hbe e e be e e s bt e sttt e bte e s be e e nabeesabeeebteesabaeenes 12
BOOY .ottt et ee et et et et et e eeseee e et et et e e et ee e e et ee e e e e ee et ee e e e e ee et seee et en et eseeseeeeeeseeeesees e eeneeeenees 12
T L Y1 [T SRSt 13
Read limits of Step Channel 1N 3D SWEEPETuuii ittt ettt e e et e e e e ebee e e e bee e e earaeas 14
Change limits of Step Channel 1 1N 3D SWEEPETuuiii ettt e et e e e e ette e e e eeree e e e e raaeeeeanes 16
B ge 0] o] 1T oo To 1 4 o= UPPPPRRRY 19

FUNCHIONS ettt e e e sb e e s ba e sbe e nn s 21

3D S P e ee s e s e e e s e e e e e e e aaanaaaaaaaaaaaaaaaaeaeaereaerenns 21
T DY T Y oI Yol [a3 Y] RSP URRE 21
1Dy T Y o I Yol [s 1 =] USSP URRt 21
R ID N IV =10 o] o] T Y= SRR 22
3DSWP.SAVEOPTIONSGEL ... e e s e e e e e e e e e e e s e s e s e e e e e e e e eeeaaeeesaasasaasaasaaananannns 22
R 1D Y I -] o S T T T T T TP PP PP 23
R 1D Y I o] o P T T TP TP 23
R 1D VY T 0 o =Y o [SRR RR 23
R ID YN I =) U [C =] SRR 23
3DSWP.SWPCNSIGNAISEL....ccceeeeeee e e e e e e e e e e e s e rr e e e e e e e e nraraaeeaaas 24
3DSWP.SWPCNSIZNAIGELeieiieiieeeceee e e e e e e rtte e e s e bte e e s ebteeeesbaeeeeesaaeeeanees 24
3DSWP.SWPCHLIMIESSETE ...vvieiiiiiie ettt et e e e et e e e s bt e e e e sbteeesebteeeeeseseeesseneesannes 24
3DSWP. SWPCHLIMIESGEL .. .eiiiiciiiie ettt e et e e st e e e e e tte e e e sbteeeesabteeesebteeeeeseseeesseneenanses 25

Page 2

3D SWP. SWPCINPIOPSSELueeiiiiiiee ettt ettt et e et e e e et e e e e e bt e e e s ebteeesebteeesebteeeesseeeeesareneaeannes 25
3DSWP.SWPCIPIOPSGEL ...uveiiiiiiiie et ettt e e et e e e ette e e e e bte e e s e sbtaeessbteeeesabteeeessteeesssenaeessseneesanses 26
3DSWP.SWPCHTIMINGSEL ..eeeiiiiiiie ettt e e st e e s s bt e e e e sbaeeesebeeeesssseeeessseneessnses 26
3DSWP.SWPCHTIMINGGEL ..eeeiiiiiie ittt st e e et e e s s b e e e s sebte e e e sbteeessbeeeessaseeeessseneessnses 26
3DSWP.SWPCHIMOUESEL ..oeeiiiiiiie ettt st e e st e e s sebte e e s sbaeeessbteeessbeeeessseneessnses 27
3DSWP.SWPCHIMOUEGEL.....ccciiiiieciiiee ettt e et e e e tte e e e e bte e e s e bteeeeebteeeesbtaeeesnseeaeeeseneeeanses 27
BDSWP.SWPCIIMILSSEL ...ttt ettt e et e e et e e e e et e e e e e bta e e s sbteeeseabeeeesenbteeeesnsanaeesseneenanses 27
3DSWP.SWPCHIMLSGEL ..o e e ee e s s eeeseeeeeees s e seeeeeeseeseseesessesessesseeenesseneses 28
3DSWP.SEPCRLSIGNAISEL ...ttt e et e e e st e e e s bt e e e e b te e e e sbteeeesraaeeeanres 28
3DSWP.SEPCRLSIZNAIGET ..oeeeiiiieee ettt e e et e e e s bt e e e e sbteeesebeeeeesbeeeeesreneeeanres 28
3D SWP. STPCRLLIMIESSEL ...vveei it cciee ettt e et e e et e e e et e e e e e ebte e e s ebteeeeenbeeeesebtasaeesssaeeaseneesannes 29
T D YT o] o o1 o} T oY1 £ G- PSRNt 29
3D SWP.STPCRLPIOPSSEL ...veeeiiiieee ettt ettt e et e e e et e e e e ettt e e e e e btaeesebtaeeseabaeeesestaeeeasesaeeanseneanannes 29
R 1D YT o I o 1@ o N ad oY o T =Y TP PPPUPRRN 30
R TN o] o1 o 1 T 01T = Y=Y PPN 30
1Dy T Y o] o o1 o 1 T 1T = =Y TP PPPPRRR 30
BDSWP.STPCR2SIGNAISET ...ttt e e et e e e et e e e e e bt e e e e ebereeeebteeeeebteeaeeraaeaeaares 31
3DSWP.STPCR2SIGNAIGET ..ottt e e e et e e e et e e e e e bte e e e ebeeeeeebteeaeebeeeeeereeeaeaanes 31
3D SWP.STPCR2LIMITSSEL ...veeeiiiiiee ettt et e e et ee e e e ebte e e e e bteeeeebteeeeebteeeeesteeaeessseaeaseneanases 31
3DSWP.STPCR2LIMIESGEL ..vveiiiiiiiie ettt et e et e e e e bte e e s s bt e e e e sbeeeesebtaeessnseeaeesseneesanses 32
3D SWP.SEPCR2PIOPSSEL ..etiiiiiiieee ettt ettt e et e e e et e e e st ta e e s e bte e e e ebtaee e e bteeeeabteeeearaaeeeanres 32
R 1Dy T Y o I 1 018 g 14 ad oY o T =Y U PPPRPRRN 32
1D IV o I o o1 A8 T ' 1T =Y SR 33
1D IV o I o o1 728 T ' 11 = = PR 33
3DSWP.TIMINGROWLIMIESET ... 33
3DSWP.TIMINEGROWLIMITGET ..o e e e e e e e e e e e e e e e e s e e e e e e e e e e e eeenenes 34
3DSWP.TIMINGROWMETNOUSSEL ...ttt e e e e e bre e e e s bae e e e sraaeeeennes 34
3DSWP.TIMINGROWMETNOUSGEL.......viiiiiciiiee ittt e s eber e e e s bre e e e sbae e e e eraaeeesnnes 35
3DSWP.TIMINGROWVAISSEL ... et e e e e e s e st e e e e e e s e nsbeeeeeeeeeennsnreneeeens 35
3DSWP.TIMINGROWVAISGEL........eiiiiieie ettt e e e et e e e e e e e st re e e e e e e s essassteeeeeeeeeeanssreneeaens 36
1DV o T T g 1T T={ S0 F=1 o] 1 U UP PR 36
1DV o TN T g 1T =Y =T o Vo ISP SRR 36

Page 3

TN o I a1 U= o= o o Y €= PSPPI 37
1D Y=L =T o 1= P PPPPPPPRTPPPPRE 38
BB R Y I A ol [5 Y= PR 38
BB R N oI A ol [5 T = PR 38
IDSWP.SWPSIBNAISEL ... ittt e e et e e s et e e e s sbee e e e b e e e e e nabe e e e eanbaee e enbeeeeenareeas 38
IDSWP.SWPSIZNAIGETvieiiiiiee ettt ettt e e e et e e e e et e e e e eebae e e eeabaeeeeeateeeeennsaeeeennseeeeennrenas 39
B RV o T8 T3 = RN 39
DN o T g1 £ = P PP PP OTPOPPPPTTTN 39
BT Y oI o foT oL <] TN 40
IDSWP.PIOPSGET ...t n s s nnnnnnannnnnan 40
BT Y7 ¢ TR Y 41
BT IS Y7 ¢ TR o o 41
BT 1S Y7 o T 0 o 7= o N 41
YT 0 =1 PRSP 42
YT e{ g N T 1T C = PR 42
SIBNAIS. RANGEGEL ... tiiii ettt e e et e e et e e e e ta e e e e tae e e et b e ee e e ntaeeeeantaaee e araaeeenanreeeaan 42
YT ={a Y A1 =] SRR 43
YT ={ g Y AT X G RS 43
SiNAIS.IMEASNAMESGETveiiieiiiee ettt ettt e e et e e e ette e e e e te e e e e ateeeeeataeeeeassaeeesssaseeennsaneesansreeannn 44
YT e{a =AY [|2 =] RPN 44
YT g Yo [|2 Y =T PP 45
USEI INMPULS ittt ettt ettt ettt e ee et e e et eeeeteee et e et e ee e et e e e s e e e e et e s e s e s e s et e se s e s e s e s et e seseaeaeseseaeeeeeeeeeaeeeeseeeeesannnes 46
USEIIN.CAlIBISEE ..ttt s e b e e s b e e sae e e sar e e sneeesareeenees 46
L Y=Y @ LU o T | £ 47
USEIOUL.IMOTESET ...ttt st e st s e e s b e e nee e s b e e smeeesareesaneeesaneeenees 47
USEIOULIMOTEGET ...ttt st sttt et s e st et et e bt e s seesmnesanesaneereenns 47
USErOUL.MONITOICRSET ...ttt sttt et neene 47
USErOUL.MONITOICRGET.....ceiieeieeeeee ettt et et e ene e 48
USEIOUL.VAISEL ...ttt st e st e e ae e s b e s b e e s be e e s neeesareesaneeesareeennes 48
USEIOUL.CAlIDISEL ...ttt et e st e s e e s b e e saee e sabeesneeesareesnees 48
UserOut.CalcSiZNalNAMESELcccuiiie ettt e e e e tre e e et a e e e e eabe e e e esnbaee s esabeeeeenarenas 49
UserOut.CalcSigNalNAMEGELccuvviei ettt e e e e e etae e e et re e e e eabr e e e esabaee s enabeeesenareeas 49

Page 4

UserOut.CalcSignalConfigSeto it e e e e e e ebe e e s e ree e e enareeas 50
UserOut.CalcSignalCoN igGeE.....cccuiii ettt e e e e e e etr e e e e eabae e e e ree e e eeareeas 51
USErOUL.LIMITSSEL ..ot e s st e e s s e e s e e e s e emre e e s s mreees 52
USErOUL.LIMITSGEL ..ottt et e s s e e s s e e e s enr e e e s e smreeesenneees 52
USEIrOUL.SIBWRATESET ...ttt et sttt e e st e st e s bee e s bee e sabeesabeesaneeesareeenees 52
USErOUL.SIEWRALEGET ...ttt st sttt ettt e s bt e sbe e saee st e eabe e b enes 53
7= =1 I I o 1= S UUPRNE 54
DIGLINES. PrOPSSEL.....eeiiiiiieitete ettt e e e e e ettt e e e e s e s bbbt e e e e e e e e s abebeeeeeeeeasanraraeeeeeeeanns 54
DigLINES. OUESTATUSSEL ..ttt e e s s s bt e e e e e s e s sabtbaeeeeessssanseneaeeessnnnns 54
(D=4 M o T I W AV - | (=Y SRR 54
(D T=d W] o T Y N o] £ TSRS 55
D) I o === PPNt 56
(D F= Y | 0 = O o 1Y o N 56
(DY | Mo <0 =T AN 56
(DY | W00 o o TN 56
Datalog.StatUSGETueiiiiieiiii bbbt an i tanannennnnnnas 57
[DF 1 =] Mo T O s Y =] USRS 57
[DF 1 =] Mo T O s 1 =] SRS 58
DataL O PrOPSSEE ... ittt —— 58
Datalog.PrOPSGET ... bbbt aannannnanntanannennnnnnan 59
IO Mo = (=T ST P OO OR RO 60
IO Mo =20 = o TSP OROR PR PPN 60
1L e =20] o N 60
IO 2 I T -1 o T3] L SR EUPROE 60
TCPLOZ.OVEISAMPISELeeiiiiieee ettt e e e e e e e e st e e e e e e e e s sanbaeeeeaesesanstteseaeaesesanrnnns 61
IO Mo =20 =) U 1 C L= TSSOSO PPN 61
OsCilloscope High RESOIULIONeiiiiiiieiciiie ettt et e et e e e s tbee e e et e e e e e abeeessnnbaeesenreeas 62
OSCIHR.CNSET ...ttt sttt et et e st e s bt e st e s et e bt e b e e s beesbeesateeateebeenneesanenas 62
OSCIHR.CNGET ...ttt ettt sttt e sat e e st e s b e e s bt e e ane e e s s e e sabeeesaseesabeesneeesareeesnnes 62
OSCIHR.OVEISAMPISEL .oeeieiiiieeciiieeee et e e et ee e e e e e e e et re e e e e e e e e e s aabteaeeeeeesasasstaeaeeaeeeensnsnreneeaens 62
OSCIHR.OVEISAMPIGEL......viieiiiiiee ettt ettt e et e et te e e e ettt e e e e e bta e e s ebtaeeeeabaeeeeebteeeesnseseeesseneenanses 63
OSCIHR.CAlIDIIMOTESEL ...ttt st sttt be e b st e et e b e nneesaee e 63

Page 5

OSCIHR.CAlIDIIMOTAEGET ...ttt st sttt be e b st et e b e e sneesaeenas 63
OSCIHR.SAMPIESSEL ..ttt et e et e e e et te e e e e bt e e e s ebteeeseabteeeeenbteeeeenseeeeeaseneasanses 63
OSCIHR.SAMIPIESGEL....ciiiiiiee ittt e e et e e e s bee e e s s bte e e s sbeeeessnbeeeesssseeeessnseenessnses 64
OSCIHR.PIETIIGSET ...ttt ettt e e e e ettt e e e e e s e s aab bt e e e e e e s s asbeeaeeeeseeaannneaaeeens 64
(O ol 1o |28 o =0 T ={ G- PP PPPPRRPPPRTPP 64
OSCIHR.RUN ...ttt s e e s sba e e e s sba e e e s sraaeessanes 65
OSCIHR.OSCIDAtAGET....ci ittt e st sra e e s sra e e e s 65
(O 1Yol | | W g7 =4 1Y/ o e 1= TP PPPPRRR 65
(O LYol | | 0 W 74 1Y/ o e 1T =Y T PPPPUPRRR 66
OSCIHR.TIIGLEVCNSEL ..ttt et e e e ettt e e s bt e e e e sbteeessbteeeessseeeessseneeesnnes 66
OSCIHR.TIIGLEVCNGEL ...ttt ettt e e et e e e ettt e e e e e bt e e e s ebteeeeeabaeeesenbtaeaeensenaeeaseneanannes 66
OSCIHR.TIIGLEVVAISET ...ttt e e e e e et e e e e bt e e e e ebtaeeseabaeeesenbtaeaeenseseeeeseneasannes 66
OSCIHR.TIIGLEVVAIGET.......eeiei ettt ettt e et e e et e e e e bte e e s ebteeeeeabeeeesebteeesensesaeesseneaeannes 67
OSCIHR.TTILEVHYSTSET ..ciiiiiiiiiiiiieeee ettt s st e e e e s s e st e e e e e e s s s s ssabbeaeeeeesssssnsnreaeeeens 67
OSCIHR.TTILEVHYSTGET .oeiiiiiieiiiiieeee ettt ettt e e e e st ee e e e s s e sttt te e e e e e s s sasabbeaeeeeessssssnneaeeeens 67
OSCIHR.TFIGLEVSIOPESEL ..ottt ettt e et e e e s bte e e e e bt e e e e sbeeeesebteeeesaseeaessseneesanses 67
OSCIHR.TIIGLEVSIOPEGETceiceiiee ettt ettt ettt e e et e e e e ba e e e e e bteeeeebteeeeeabteeasebtaeaeesssaaeaassasanases 68
(O LYol W = BT ={ 0§ R Y=Y U RUTURORt 68
(O LYol 0 W = BT ={ 0l LT =] USSRt 68
OSCIHR.THIGAIMIMOUESEL ...ttt ettt e e et e e e e bte e e e e bt e e e e sbeeeesebtaeeessseeeeesseneeeannes 69
OSCIHR. THIGAIMIMOUEGET........eiieei ettt ettt ere e e e et e e e s bte e e s s ebteeeesbeeeessbeeeeesseeeeesnseneeeanses 69
OSCIHR.TIIGDIZSIOPESEL ... tteee ittt e et e e e st e e e e sebte e e s sbteeesebtaeeesseeeessseeeessnses 69
(O LYol 1 2 W T o BT a) (oY o 1T =] SRR 69
(O ol 2O N g =4 =TT o o SRR 70
OSCIHR.PSDSNOWeeiiiiiiiitieetee ettt ettt ettt e sa e st e e sbe e e s bt e sas e e s aseesbeeesareesaneeeneeesareeenees 70
OSCIHR.PSDWEIGNTSEL......vieiiciiee ettt et e et e e e e bte e e e e bte e e e eabaeeeesbteeaesnseeeeesseneananees 70
OSCIHR.PSDWEIGNTGELvviiiiiiiee ettt ettt ettt e e tte e e e e bte e e e e bte e e e eabteeeesbtaeeesnseeeeesseneasanses 70
OSCIHR.PSDWINAOWSET ..ottt sttt ettt st st e b e b e sseesaeeeaneebeesneesanenas 71
OSCIHR.PSDWINGOWGETeeeiieeiiie it ettt ettt ste et sit e st e s sie e e st e e sne e e saseesneeesaneesareeeneeesaneeennees 71
(O ol | I Y B YNV = RV o 1Y =] R 71
OSCIHR PSS D AV G TYPEGET. et eeeeeasasaseaesanssenesnnnns 71
OSCIHR.PSDAVIZCOUNTSEL ... e s eeeeesenaenns 72

Page 6

OSCIHR. PSDAVIECOUNTGEE...cciiiieeeeeeeeeeeeeeeeeeeeee e e s e e e e e e e e e e e e e e e e e e s e e e eeeeeseassesenanens 72
OSCIHR . PSD AVIERESTAI . .. eeeeeeaeeeeeaeasesensenens 72
OSCIHR.PSDDATAGET ...cceiiiieeeiiiee ettt ettt st e e st e e s e b e e s sbe e e e s sabeeeesaaneeeesaareeeesaneneesannes 73
Y 4] o AT P PO PTRPPPPPTTIN 74
Y 1o 9 o Y- o [PO 74
Yol 4 o1 BT 1V SRRt 74
Y g1 A B L=T o] Lo VU 74
Yo g1 U1 T 1=T o] [1 RPN 75
Yol g1 o1 1 2 (U1 o OO PP PP PP UPPPPPRRE 75
Y0l] o1 0] (o TP P PP PP PTUPPPPPTRIRE 75
Yo 1o B 0 Y =] RSP 76
Yo T A O 3] <] U 76
Yol] o1 D | = C = RNt 77
SCTIPEAULOSAVE ettt ettt e ettt et e e s s sttt a e e e e e s s s s st abaeeeeesessasnbbbaaeeeessssasssbbaaaeesssnsasrnnns 77
ool o D O U T OO T T TP PRSP PP P PP PPTPPRTOP 78
LOCKIN. IMOAONOFFSEL.....cneieeeeeee ettt st st et e r e s e saee s s e neenee 78
LOCKIN. IMOAONOFFGEL ...ttt ettt st sttt e bt e sae e saeesateeabeebeeaes 78
(e Yol L g 1Y FoTe Ny 7= g =Y R Y=Y SRR UR 78
[WeYol L g 1Y FoTe Ny 7= o =1 (=Y RS 79
[WeYol L g 1Y oTe | ad a = T 2= o Y =] SRR 79
[WeYol L g 1Y/ oTe | ad o = 1] 2= o =] PP 80
LOCKIN. MOAHAIMONICSEL ... ittt st sttt nee 80
LOCKIN.MOAHAIMONICGELceiiiiiiieeeiie ettt s e s b e e sme e e sar e e sneeesareeeneas 81
LOCKIN.MOOPRASSEL.......eiiiiie ettt st e s e s e e s b e e sae e e sar e e sneeesareeeneas 81
(ool T MY ToTe | o - T Gl TSP UPR RO 81
(ool L g T8\ oTe 1N 30T o K= PSR 82
(ool [g T8\ oTe VoY 0T o €= AU 82
[WeYol [g 1Y oTe | ad o = 1] o g =To 1] A PSP 82
[WeYol 4T a WY/ oTe | o o = 1Y B Yo [=] S SRPRN 83
(e Yol 4 o T D 1<T0 g T Yo RYT =g 1 KT USSP 83
[WeYol [g W =T 10 oo K] T={ g =1 [Ty PR 83
LOckIN. DEMOAHArMONICSETeiiiiiiiiiieie ettt 84

Page 7

LockIN. DEMOAHArMONICGET.......coiiiiiiiiiiiiieee ettt sttt b e 84
LOCKIN. DEMOAHPFIIEEISEL ...ttt sttt ettt e b e s sae e st s b e 85
LOCKIN. DEMOAHPFIIEEIGEL...ccueiieieeeiie ettt sttt e e e esb e snee e sareeenees 85
LOCKIN. DEMOALPFIILEISELceneiieiiieeiee ettt ettt et ettt aee e s b e e sate e sabeesnaeesareeenees 86
LOCKIN. DEMOALPFIILEIGET ...ceiueiieiieeeiie ettt ettt ettt et st e e s b e e sate e s b e e sneeesareeenees 86
[WeYo L W D =T oo | ad o = T 2T = Y=Y SR 87
[WeYo L W D =T oo | ad o =T 2T ={ CT=] SRR 87
LOCKIN. DEMOAPNASSEL...cceutiiiiiieiite ettt sttt et st ettt e e st e st e s aee e sbeeesaeeesabeesnaeesareeenees 88
LOCKIN. DEMOAPNASGELuutiiiiiiiiiee ettt ettt ettt ettt et e sttt e st e s bt e sabe e sbeeesabeesabeesneeesabaeennees 88
LOCKIN.DEMOASYNCFIIEEISEL ...oeeieiieee ettt e e e e et e e e e sabee e s esabeeeeenareeas 88
LOCKIN. DEMOASYNCFIEEIGETeii ettt e e e et e e e s e bae e e et e e e e eeabaee e eenbaeeeenrenas 89
LOCKIN. DEMOARTSIGNAISSELeviieetiiee ettt e et e e e ee e e e etae e e e et a e e e e enbe e e e eeabaeesennbaeesennrenas 89
[WeYo L W D =T oo |28 AT T =g =Y Y = R 90
LOCK-IN FrEQUENCY SWEEP . .uvviiiieiiiee ittt e ettt e s ettt e e e ettt e e s e bte e e s sabaeeeesabteeeesbeeeessasteeesssteeessnssneessnsseeensnsen 91
[WeYol a1 R =To RNV o T o 1T o ISP 91
(ool a1 =T R Y] o T - [o SRR 91
LOCKINFreqSWP.SIZNAISELot e et e e et e e e et e e e e eabe e e e esabaeeeesnbaeeeenrenas 92
(e Yol a1 e =To RN By Fed o F= 1] SRR 92
(e Yol a1 =10 RNV o T M 411 43 =] RS 92
(e Yol a1 R =To RNV o T A 411 4 =] PR 92
LOCKINFIrEOSWP . PIrOPSSEL...c it ettt e et e et e e e e st e e e e et ee e e ssabeeesesabeeeeenaseeeeenareeas 93
[WeYol a1 e =To RN o T e o 1 C] PP 93
LU 1] AT TSP TSR PR 94
Util.SESSIONPAtRGEL ... e e e 94
Util.SESSIONPAtRSEL ... e s s e s 94
03| Y= g T=4] o =T PP 94
LU | Y=t 0= 23T Y PSS 95
03| I 1Yo YU o Y- Yo PSS 95
L0 LY T UL Y- 1RSSR 95
LU 1 o Yol TSP PUPO TP 96
UL UNLOCK ettt ettt ettt s bt s bt st e bt et e e s b e e sseesaeesmnesaneeneenes 96
L0 | Yo R Y=Y PSR 96

Page 8

LU | Yo Y PR 96
LU | I Yol | =T g o Yo KTy AU R 97
L0 | 1ol | =T g e Yo [=] PR 97
0| O YT - o a1 o] K= PP 97
0| L@ YT - o a1 o] [= PRSP 97
UL QUIT. ottt et et s e st et e bt e bt e s bt e she e s st e et e et e e ebe e eheesabeeabe e be e reenes 98
Il e bt h et bt s e e e et e bt e b e e e b e e e he e e ab e et e e bt e be e beeabeesheeeneeenrean 99
1T 1o Mo =T FO T TSRS PPPTO PP 99

Page 9

SPECS

TCP Protocol

General

Architecture

The Nanonis software works as a TCP Server, and a remote application works as a TCP Client. The TCP Server
listens at the ports specified in the Options window (under the System menu). The Client can open one, two, three or
four different connections to the Server at these ports.

Each individual connection handles commands serially (one command after another) guaranteeing synchronized
execution. These connections can be found and configured in the Options window (under the System menu).

Every message sent from the client to the server (request message), and viceversa (response message) when Send
response back is set to True in the request message (see Request message>Header section), consists of header and
body.

All numeric values are sent in binary form (e.g. a 32 bit integer is encoded in 4 bytes). The storage method of binary
encoded numbers is big-endian, that is, the most significant byte is stored at the lowest address.

Data Types

There are thirteen data types which appear in the header and body of both request message and response message:

string

This is an array of characters, where every character has a size of one byte. In the header, the strings have a fixed
size (Command name is 32 bytes), and in the body, the strings have a variable size which is always prepended as an
integer 32.

int
32 bit signed integer. Its range is -2147483648 to 2147483647.

unsigned int16
16 bit unsigned integer. Its range is 0 to 65535.

unsigned int32
32 bit unsigned integer. Its range is 0 to 4294967295.

float32
32 bit (single precision) floating point number.

float64
64 bit (double precision) floating point number.

1D array string

This is a unidimensional array of strings. The array size (number of elements) and its size in bytes are sent as
independent arguments right before the array. Each element of the array is obviously a string, preceded by its size.
See Functions for more details.

Page 10

SPECS

1D array int
This is a unidimensional array of 32 bit signed integers. The array size (number of elements) is usually sent as an
independent argument right before the array. See Functions for more details.

1D array unsigned int8
This is a unidimensional array of 8 bit unsigned integers. The array size (number of elements) is usually sent as an
independent argument right before the array. See Functions for more details.

1D array unsigned int32
This is a unidimensional array of 32 bit unsigned integers. The array size (number of elements) is usually sent as an
independent argument right before the array. See Functions for more details.

1D array float32
This is a unidimensional array of 32 bit floating point numbers. The array size (number of elements) is usually sent
as an independent argument right before the array. See Functions for more details.

1D array float64
This is a unidimensional array of 64 bit floating point numbers. The array size (number of elements) is usually sent
as an independent argument right before the array. See Functions for more details.

2D array float32
This is a bi-dimensional array of 32 bit floating point numbers. The array size (number of rows and columns) is
usually sent as two independent arguments right before the array. See Functions for more details.

2D array string

This is a bi-dimensional array of strings. The array size (humber of rows and columns) is usually sent as two
independent arguments right before the array. Each element of the array is obviously a string, preceded by its size.
See Functions for more details

Page 11

SPECS

Request message

This is the message sent from the client to the server.

Header

Header size is fixed to 40 bytes (last 2 bytes are currently not used and they should be set to zero) and contains the
following elements:

- Command name (string) (32 bytes) is the name of the executed command. It matches one of the function
names described in the Functions section of this document (i.e. BiasSpectr.Open). Maximum number of
characters is 32.

- Body size (int) (4 bytes) is the size of the message body in bytes.

- Send response back (unsigned int16) (2 bytes) defines if the server sends a message back to the client (=1)
or not (=0). All functions can return at least the error information returned after executing the specified
function.

Body

The body size is variable and contains the argument values (if any) sent to the server. Each function has its own
arguments described in detail in the Functions section.

Response message

This is only sent from the server to the client if the flag to send the response back (in the request message to the
server) is true.

Be aware that without the response message the order of execution between different TCP connections cannot be
guaranteed. On the other hand, the order of execution of commands sent through the same TCP connection is
guaranteed as the commands are serialized.

Header

Header size is fixed to 40 bytes (last 4 bytes are currently not used and they should be set to zero) and contains the
following elements:

- Command name (string) (32 bytes) is the name of the executed command. It matches one of the function
names described in the Functions section of this document (i.e. BiasSpectr.Open). Maximum number of
characters is 32.

- Body size (int) (4 bytes) is the size of the message body in bytes.

Body

The body size is variable and contains the argument values returned by the function (sent from the server to the
client). Each function has its own return arguments described in detail in the Functions section.
After the return arguments values, the body includes the error information containing the following elements:

- Error status (unsigned int32) (4 bytes) returns 1=True if there is an error when executing the function.
- Error description size (int) (4 bytes) returns the size of the error description which follows.
- Error description (string) (variable size) returns the description of the error.

Page 12

SPECS

Examples

The following examples show the encoded strings sent through TCP/IP in the request message to execute the desired
functions, i.e. from the client (remote application) to the server (Nanonis software).

It is also explained the encoded strings in the response message when the Send response back flag in the request
message is set to True, i.e. received by the client (remote application) from the server (Nanonis software).

The commands are displayed in hexadecimal (one hexadecimal number pair corresponds to one byte):

Page 13

SPECS

Read limits of Step Channel 1 in 3D Sweeper

This example reads the limits of Step Channel 1 in the 3D Sweeper module. It uses the function
3DSwp.StpCh1LimitsGet.

Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):
- Start (float32) defines the value where the sweep starts
- Stop (float32) defines the value where the sweep stops
- Error described in the Response message>Body section

REQUEST MESSAGE:
The Header is fixed always to 40 bytes (last 2 bytes not used), containing the following elements:

- Command name (string) (32 bytes) is the hexadecimal representation of the command name
3DSwp.StpChlLimitsGet padded with zeros to length 32:
3364 7377 702E 7374 7063 6831 6C69 6D69 7473 6765 7400 0000 0000 0000 0000 0000

- Body size (int) (4 bytes) is the hexadecimal representation of the big-endian encoded string corresponding
to the integer size of the message body in bytes (=0 because there are no arguments) padded with zeros to
length 4:
0000 0000

- Send response back (unsigned int16) (2 bytes) defines if the server sends a message back to the client. In
this example we set it to True (=1):
0001

- Not used (2 bytes):
0000

The Body is of variable size and contains the argument values (if any) sent to the server. In this example this
function has no arguments in the Request message.

Request message

Header Body
Command name B_ody S1z¢ Send Not Used -
in bytes | response back
Size (Bytes) Fixed (32) Fixed (4) Fixed (2) Fixed (2) -
Readable value
representation 3DSwp.StpChlLimitsGet 0 True - -
Hex representation of string 3364 7377 702E 7374 7063
o b t TCP 6831 6C69 6D69 7473 6765 | 1144 0000 0001 0000)
0 be sent over 7400 0000 0000 0000 0000
0000

Page 14

SPECS

RESPONSE MESSAGE:

The Header is fixed always to 40 bytes (last 4 bytes not used), containing the following elements:

Command name (string) (32 bytes) is the hexadecimal representation of the command name
3DSwp.StpCh1LimitsGet padded with zeros to length 32 (like in the request message):

3364 7377 702E 7374 7063 6831 6C69 6D69 7473 6765 7400 0000 0000 0000 0000 0000

Body size (int) (4 bytes) is the hexadecimal representation of the big-endian encoded string corresponding
to the integer size of the message body in bytes (=16 bytes of the arguments Start, Stop, Error status, and
Error size) padded with zeros to length 4:

0000 0010

Not used (4 bytes):

0000 0000

The Body is of variable size and contains the argument values (if any) sent from the server to the client. In this
example this function has the following arguments:

Start (float32) (4 bytes) is the hexadecimal representation of the big-endian encoded string corresponding
to -1mm:

BA83 126F

Stop (float32) (4 bytes) is the hexadecimal representation of the big-endian encoded string corresponding
to 2mm:

3B03 126F

Error status (unsigned int32) (4 bytes) is the hexadecimal representation of the big-endian encoded string
corresponding to 0 (no error):

0000 0000

Error size (int) (4 bytes) is the hexadecimal representation of the big-endian encoded string corresponding
to the integer size of the error description in bytes (=0 in this case because there is no error):

0000 0000

Error description (string) (variable) is the hexadecimal representation of the big-endian encoded string
corresponding to the integer size of the error description in bytes (=0 in this case because there is no error):
0000 0000

Response message

Header Body
I.30d.y Error I_Erro_r Error
Command name size in Not Used | Start | Stop size in .
status description
bytes bytes
Size (Bytes) Fixed (32) Fixed (4) | Fixed (4) 4 4 4 4 0

Readable value

3DSwp.StpChlLim 16

representation itsGet - -1m 2m False 0 -
_ 3364 7377 702E
Hex representation 7374 7063 6831
of string to be sent | 6C69 6D69 7473 0000 0000 BA83 | 3B03 | 0000 | 0000)
over TCP 6765 7400 0000 0010 0000 126F | 126F | 0000 | 0000
0000 0000 0000
0000

Page 15

SPECS

Change limits of Step Channel 1 in 3D Sweeper

This example changes the limits of Step Channel 1 in the 3D Sweeper module. It uses the function
3DSwp.StpCh1LimitsSet.

Arguments:
- Start (float32) defines the value where the sweep starts
- Stop (float32) defines the value where the sweep stops

Return arguments (if Send response back flag is set to True when sending request message):
- Error described in the Response message>Body section

REQUEST MESSAGE:

The Header is fixed always to 40 bytes (last 2 bytes not used), containing the following elements:

- Command name (string) (32 bytes) is the hexadecimal representation of the command name
3DSwp.StpChlLimitsSet padded with zeros to length 32:
3364 7377 702E 7374 7063 6831 6C69 6D69 7473 7365 7400 0000 0000 0000 0000 0000

- Body size (int) (4 bytes) is the hexadecimal representation of the big-endian encoded string corresponding
to the integer size of the message body in bytes (=8 bytes of the arguments Start and Stop) padded with
zeros to length 4:
0000 0008

- Send response back (unsigned int16) (2 bytes) defines if the server sends a message back to the client. In
this example we set it to True (=1):
0001

- Not used (2 bytes):
0000

The Body is of variable size and contains the argument values (if any) sent to the server. In this example this
function has the following arguments:

- Start (float32) (4 bytes) is the hexadecimal representation of the big-endian encoded string corresponding
to -3mm:
BB44 9BA6

- Stop (float32) (4 bytes) is the hexadecimal representation of the big-endian encoded string corresponding
to 4mm:
3B83 126F

Page 16

SPECS

Request message

Header Body
Body Send
Command name size in response | Not Used | Start | Stop
bytes back
Size (Bytes) Fixed (32) Fixed (4) | Fixed (2) | Fixed (2) | -3m 4m
Readable
value 3DSwp.StpChiLimitsSet 8 True - 10n | 15n
representation
Hex
representation | 3364 7377 702E 7374 7063 6831
of string to be | 6C69 6D69 7473 736574000000 | o0 | 0001 | o000 | oot | 35
sent over TCP 0000 0000 0000 0000

Page 17

SPECS

RESPONSE MESSAGE:

The Header is fixed always to 40 bytes (last 4 bytes not used), containing the following elements:

Command name (string) (32 bytes) is the hexadecimal representation of the command name
3DSwp.StpCh1LimitsSet padded with zeros to length 32 (like in the request message):

3364 7377 702E 7374 7063 6831 6C69 6D69 7473 7365 7400 0000 0000 0000 0000 0000

Body size (int) (4 bytes) is the hexadecimal representation of the big-endian encoded string corresponding
to the integer size of the message body in bytes (=8 bytes of the arguments Error status, and Error size)
padded with zeros to length 4:

0000 0008

Not used (4 bytes):

0000 0000

The Body is of variable size and contains the argument values (if any) sent from the server to the client. In this
example this function has the following arguments:

Error status (unsigned int32) (4 bytes) is the hexadecimal representation of the big-endian encoded string
corresponding to 0 (no error):

0000 0000

Error size (int) (4 bytes) is the hexadecimal representation of the big-endian encoded string corresponding
to the integer size of the error description in bytes (=0 in this case because there is no error):

0000 0000

Error description (string) (variable) is the hexadecimal representation of the big-endian encoded string
corresponding to the integer size of the error description in bytes (=0 in this case because there is no error):

Response message

Header Body
I?%od_y Error I_Erro_r Error
Command name size in Not Used size in .
status description
bytes bytes
Size (Bytes) Fixed (32) Fixed (4) | Fixed (4) 4 4 0
Readable value
representation 3DSwp.StpChlLimitsSet 8 - False 0 -

Hex representation | 3364 7377 702E 7374 7063

of string to be sent | 6831 6C69 6D69 7473 7365 0000 0000 0000 0000 i
over TCP 7400 0000 0000 0000 0000 0008 0000 0000 0000
0000

Page 18

SPECS

Troubleshooting

1) Make sure that the TCP connections between the TCP client and the Nanonis software (TCP server) are
successfully established by using the corresponding remote ports specified in the Nanonis. The default
ports can be changed.

This is available in the TCP Programming Interface section of the Main Options under the System menu.
The displayed message shows if the connection has been established:

Layouts TCP Programming Interface
Settings
File Header VIs
Color Palette Connection 1
LV Programming Interface | coryerport Connection Status
Global Counter 6501 TCP Server ready, listening on port 6501
hrDAC
Connection 2

Server Port Connection Status
6502 TCP Server ready, listening on port 6502

Connection 3
Server Port Connection Status
6503 TCP Server ready, listening on port 6503

Connection 4
Server Port Connection Status
A504 TCP Server ready, listening on port 6504

Before a TCP Connection is established

Page 19

2) When sending the TCP commands, the strings (like the command names) should NOT be sent using their
hexadecimal representation.

3)

Layouts

Settings

File Header V1=

Color Palette

LV Programming Interface

Global Counter
hrDAC

In the examples we use the hexadecimal representation of a string as a way to explain the functions because

SPECS

TCP Programming Interface

Connection 1
Server Port Connection Status

B501 TCP dient-server connection established at port 6501

Connection 2
Server Port Connection Status

G502 TCP Server ready, listening on port 6502

Connection 3
Server Port Connection Status

6503 TCP Server ready, listening on port 6503

Connection 4
Server Port Connection Status

G504 TCF Server ready, listening on port 6504

After a TCP Connection is established

a string might contain non-printable characters.

In the Request message, set the “Send response back” always to true to get a Response message from the

Nanonis software.

If the formatting of the Request message is correct, you will get at least the error information (if any) when

executing the function in the Nanonis software.

Page 20

SPECS

Functions

3D Sweeper

3DSwp.AcqChsSet
Sets the list of recorded channels of the 3D Sweeper.

Arguments:

- Number of channels (int) is the number of recorded channels. It defines the size of the Channel indexes

array
- Channel indexes (1D array int) are the indexes of recorded channels. The indexes are comprised between 0

and 127, and it corresponds to the full list of signals available in the system.

To get the signal name and its corresponding index in the list of the 128 available signals in the Nanonis

Controller, use the Signal.NamesGet function, or check the RT Idx value in the Signals Manager module.

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

3DSwp.AcqChsGet
Returns the list of recorded channels of the 3D Sweeper.
Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):

- Number of channels (int) is the number of recorded channels. It defines the size of the Channel indexes
array

- Channel indexes (1D array int) are the indexes of the recorded channels. The indexes are comprised
between 0 and 127, and it corresponds to the full list of signals available in the system

- Channels names size (int) is the size in bytes of the channels names array

- Channels names number (int) is the number of elements of the channels names array

- Channels names (1D array string) returns an array of channel names strings, where each string comes
prepended by its size in bytes

- Error described in the Response message>Body section

Page 21

SPECS

3DSwp.SaveOptionsSet
Sets the saving options of the 3D Sweeper.
Arguments:

- Series name size (int) is the size (number of characters) of the series name string

- Series name (string) is the base name used for the saved sweeps. If empty string, there is no change

- Create Date&Time Folder (int) defines if this feature is active, where -1=no change, 0=0ff, 1=0n.
If On, it creates a subfolder within the Session folder whose name is a combination of the basename and
current date&time of the sweep, every time a sweep finishes.

- Comment size (int) is the size (number of characters) of the comment string

- Comment (string) is the comment saved in the header of the files. If empty string, there is no change

- Modules names size (int) is the size in bytes of the modules array. These are the modules whose
parameters are saved in the header of the files

- Modules names number (int) is the number of elements of the modules names array

- Modules names (1D array string) is an array of modules names strings, where each string comes
prepended by its size in bytes

Return arguments (if Send response back flag is set to True when sending request message to the server):

- Error described in the Response message>Body section

3DSwp.SaveOptionsGet
Returns the saving options of the 3D Sweeper.
Arguments: None

Return arguments (if Send response back flag is set to True when sending request message to the server):

- Series name size (int) is the size of the series name string

- Series name (string) is the base name used for the saved sweeps

- Create Date&Time Folder (unsigned int32) returns if this feature is active, where 0=0ff, 1=0n

- Fixed parameters size (int) is the size in bytes of the Fixed parameters string array

- Number of fixed parameters (int) is the number of elements of the Fixed parameters string array

- Fixed parameters (1D array string) returns the fixed parameters of the sweep. The size of each string item
comes right before it as integer 32.

- Comment size (int) is the size (number of characters) of the comment string

- Comment (string) is the comment saved in the header of the files

- Modules parameters size (int) is the size in bytes of the modules parameters array. These are the modules
parameters saved in the header of the files

- Modules parameters number (int) is the number of elements of the modules parameters array

- Modules parameters (1D array string) is an array of modules parameters strings, where each string comes
prepended by its size in bytes.
Each item displays the module name followed by the ‘> character followed by the parameter name
followed by the “=" character followed by the parameter value

- Error described in the Response message>Body section

Page 22

SPECS

3DSwp.Start

Starts a sweep in the 3D Sweeper module.

When Send response back is set to True, it returns immediately afterwards.
Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

3DSwp.Stop
Stops the sweep in the 3D Sweeper module.
Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

3DSwp.Open
Opens the 3D Sweeper module.
Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

3DSwp.StatusGet
Returns the status of the 3D Sweeper.
Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):

- Status (unsigned int32) is status of the 3D Sweep, where 0=Stopped, 1=Running, 2=Paused
- Error described in the Response message>Body section

Page 23

SPECS

3DSwp.SwpChSignalSet
Sets the Sweep Channel signal in the 3D Sweeper.
Arguments:

- Sweep channel index (int) is the index of the Sweep Channel, where -1 sets the Unused option
Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

3DSwp.SwpChSignalGet
Returns the selected Sweep Channel signal in the 3D Sweeper.
Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):

- Sweep channel index (int) is the index of the Sweep Channel, where -1 is the Unused option

- Channels names size (int) is the size in bytes of the Channels names string array

- Number of channels (int) defines the number of elements of the Channels names string array

- Channels names (1D array string) returns the list of channels names. The size of each string item comes
right before it as integer 32.

- Error described in the Response message>Body section

3DSwp.SwpChLimitsSet
Sets the limits of the Sweep Channel in the 3D Sweeper.
Arguments:

- Start (float32) defines the value where the sweep starts
- Stop (float32) defines the value where the sweep stops

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

Page 24

SPECS

3DSwp.SwpChLimitsGet
Returns the limits of the Sweep Channel in the 3D Sweeper.
Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):

- Start (float32) defines the value where the sweep starts
- Stop (float32) defines the value where the sweep stops
- Error described in the Response message>Body section

3DSwp.SwpChPropsSet
Sets the configuration of the Sweep Channel parameters in the 3D Sweeper.
Arguments:

- Number of points (int) sets the number of points of the sweep. 0 points means no change

- Number of sweeps (int) sets the total number of sweeps. 0 sweeps means no change

- Backward sweep (int) defines if the backward sweep is active, where -1=no change, 0=0ff, 1=0n

- End of sweep action (int) defines the behavior of the signal at the end of the sweep, where -1=no change,
0=no action, 1=reset signal to the original value, 2=go to arbitrary value

- End of sweep arbitrary value (float32) sets the arbitrary value to go at the end of the sweep if Go to
arbitrary value is configured

- Save all (int) defines if all the configured sweeps are saved or only the averaged sweep, where -1=no
change, 0=0ff, 1=0n

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

Page 25

SPECS

3DSwp.SwpChPropsGet
Returns the configuration of the Sweep Channel parameters in the 3D Sweeper.
Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):

- Number of points (int) returns the number of points of the sweep

- Number of sweeps (int) returns the total number of sweeps

- Backward sweep (unsigned int32) returns if the backward sweep is active, where 0=0ff, 1=0On

- End of sweep action (unsigned int32) returns the behavior of the signal at the end of the sweep, where
0=no action, 1=reset signal to the original value, 2=go to arbitrary value

- End of sweep arbitrary value (float32) returns the arbitrary value to go at the end of the sweep if Go to
arbitrary value is configured

- Save all (unsigned int32) returns if all the configured sweeps are saved or only the averaged sweep, where
0=0ff, 1=0On

- Error described in the Response message>Body section

3DSwp.SwpChTimingSet
Sets the timing parameters of the Sweep Channel in the 3D Sweeper.
Arguments:

- Initial settling time (s) (float32)

- Settling time (s) (float32)

- Integration time (s) (float32)

- End settling time (s) (float32)

- Maximum slew rate (units/s) (float32)

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

3DSwp.SwpChTimingGet
Returns the timing parameters of the Sweep Channel in the 3D Sweeper.
Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):

- Initial settling time (s) (float32)

- Settling time (s) (float32)

- Integration time (s) (float32)

- End settling time (s) (float32)

- Maximum slew rate (units/s) (float32)

- Error described in the Response message>Body section

Page 26

SPECS

3DSwp.SwpChModeSet

Sets the segments mode of the Sweep Channel signal in the 3D Sweeper.

Arguments:

Segments mode (int) is the number of characters of the segments mode string.
If the segments mode is Linear, this value is 6. If the segments mode is MLS, this value is 3
Segments mode (string) is Linear in Linear mode or MLS in MultiSegment mode

Return arguments (if Send response back flag is set to True when sending request message):

Error described in the Response message>Body section

3DSwp.SwpChModeGet

Returns the segments mode of the Sweep Channel signal in the 3D Sweeper.

Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):

Segments mode (int) is the number of characters of the segments mode string.

If the segments mode is Linear, this value is 6. If the segments mode is MLS, this value is 3
Segments mode (string) is Linear in Linear mode or MLS in MultiSegment mode

Error described in the Response message>Body section

3DSwp.SwpChMLSSet

Sets the MultiSegment values of the Sweep Channel in the 3D Sweeper.

Arguments:

Number of segments (int) is the total number of segments. It defines the size of the following arrays
Segment Start values (1D array float32) are the start values of the segments of the Sweep Channel
Segment Stop values (1D array float32) are the stop values of the segments of the Sweep Channel
Segment Settling times (1D array float32) are the settling times of the segments in seconds
Segment Integration times (1D array float32) are the integration times of the segments in seconds
Segment Number of steps (1D array int) are the number of steps of each segment

Last segment? array (1D array unsigned int32) defines if the segments are the last one (1) or not (0)

Return arguments (if Send response back flag is set to True when sending request message):

Error described in the Response message>Body section

Page 27

SPECS

3DSwp.SwpChMLSGet
Returns the MultiSegment values of the Sweep Channel in the 3D Sweeper.
Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):

- Number of segments (int) is the total number of segments. It defines the size of the following arrays
- Segment Start values (1D array float32) are the start values of the segments of the Sweep Channel

- Segment Stop values (1D array float32) are the stop values of the segments of the Sweep Channel

- Segment Settling times (1D array float32) are the settling times of the segments in seconds

- Segment Integration times (1D array float32) are the integration times of the segments in seconds

- Segment Number of steps (1D array int) are the number of steps of each segment

- Last segment? array (1D array unsigned int32) defines if the segments are the last one (1) or not (0)
- Error described in the Response message>Body section

3DSwp.StpChlSignalSet
Sets the Step Channel 1 signal in the 3D Sweeper.
Arguments:

- Step channel 1 index (int) is the index of the Step Channel 1, where -1 sets the Unused option
Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

3DSwp.StpChlSignalGet
Returns the selected Step Channel 1 signal in the 3D Sweeper.
Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):

- Step channel 1 index (int) is index of the Step Channel 1, where -1 is the Unused option
- Channels names size (int) is the size in bytes of the Channels names string array
- Number of channels (int) is the number of elements of the Channels names string array

- Channels names (1D array string) returns the list of channels names. The size of each string item comes

right before it as integer 32.
- Error described in the Response message>Body section

Page 28

SPECS

3DSwp.StpChlLimitsSet
Sets the limits of the Step Channel 1 in the 3D Sweeper.
Arguments:

- Start (float32) defines the value where the sweep starts
- Stop (float32) defines the value where the sweep stops

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

3DSwp.StpChlLimitsGet
Returns the limits of the Step Channel 1 in the 3D Sweeper.
Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):

- Start (float32) defines the value where the sweep starts
- Stop (float32) defines the value where the sweep stops
- Error described in the Response message>Body section

3DSwp.StpChlPropsSet
Sets the configuration of the Step Channel 1 parameters in the 3D Sweeper.
Arguments:

- Number of points (int) sets the number of points of the sweep. 0 points means no change

- Backward sweep (int) defines if the backward sweep is active, where -1=no change, 0=0ff, 1=0On

- End of sweep action (int) defines the behavior of the signal at the end of the sweep, where -1=no change,
0=no action, 1=reset signal to the original value, 2=go to arbitrary value

- End of sweep arbitrary value (float32) sets the arbitrary value to go at the end of the sweep if Go to
arbitrary value is configured

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

Page 29

SPECS

3DSwp.StpCh1PropsGet
Returns the configuration of the Step Channel 1 parameters in the 3D Sweeper.
Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):

- Number of points (int) returns the number of points of the sweep

- Backward sweep (unsigned int32) returns if the backward sweep is active, where 0=0ff, 1=0On

- End of sweep action (unsigned int32) returns the behavior of the signal at the end of the sweep, where
0=no action, 1=reset signal to the original value, 2=go to arbitrary value

- End of sweep arbitrary value (float32) returns the arbitrary value to go at the end of the sweep if Go to
arbitrary value is configured

- Error described in the Response message>Body section

3DSwp.StpChlTimingSet
Sets the timing parameters of the Step Channel 1 in the 3D Sweeper.
Arguments:

- Initial settling time (s) (float32)
- End settling time (s) (float32)
- Maximum slew rate (units/s) (float32)

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

3DSwp.StpChlTimingGet
Returns the timing parameters of the Step Channel 1 in the 3D Sweeper.
Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):

- Initial settling time (s) (float32)

- End settling time (s) (float32)

- Maximum slew rate (units/s) (float32)

- Error described in the Response message>Body section

Page 30

SPECS

3DSwp.StpCh2SignalSet
Sets the Step Channel 2 signal in the 3D Sweeper.
Arguments:

- Step Channel 2 name size (int) is the number of characters of the Step Channel 2 name string
- Step Channel 2 name (string) is the name of the signal selected for the Step Channel 2

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

3DSwp.StpCh2SignalGet
Returns the selected Step Channel 2 signal in the 3D Sweeper.
Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):

- Step Channel 2 name size (int) is the number of characters of the Step Channel 2 name string

- Step Channel 2 name (string) is the name of the signal selected for the Step Channel 2

- Channels names size (int) is the size in bytes of the Channels names string array

- Number of channels (int) is the number of elements of the Channels names string array

- Channels names (1D array string) returns the list of channels names. The size of each string item comes
right before it as integer 32.

- Error described in the Response message>Body section

3DSwp.StpCh2LimitsSet
Sets the limits of the Step Channel 2 in the 3D Sweeper.
Arguments:

- Start (float32) defines the value where the sweep starts
- Stop (float32) defines the value where the sweep stops

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

Page 31

SPECS

3DSwp.StpCh2LimitsGet
Returns the limits of the Step Channel 2 in the 3D Sweeper.
Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):

- Start (float32) defines the value where the sweep starts
- Stop (float32) defines the value where the sweep stops
- Error described in the Response message>Body section

3DSwp.StpCh2PropsSet
Sets the configuration of the Step Channel 2 parameters in the 3D Sweeper.
Arguments:

- Number of points (int) sets the number of points of the sweep. 0 points means no change

- Backward sweep (int) defines if the backward sweep is active, where -1=no change, 0=0ff, 1=0On

- End of sweep action (int) defines the behavior of the signal at the end of the sweep, where -1=no change,
0=no action, 1=reset signal to the original value, 2=go to arbitrary value

- End of sweep arbitrary value (float32) sets the arbitrary value to go at the end of the sweep if Go to
arbitrary value is configured

Return arguments (if Send response back flag is set to True when sending request message):

Error described in the Response message>Body section

3DSwp.StpCh2PropsGet
Returns the configuration of the Step Channel 2 parameters in the 3D Sweeper.
Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):

- Number of points (int) returns the number of points of the sweep

- Backward sweep (unsigned int32) returns if the backward sweep is active, where 0=0ff, 1=On

- End of sweep action (unsigned int32) returns the behavior of the signal at the end of the sweep, where
0=no action, 1=reset signal to the original value, 2=go to arbitrary value

- End of sweep arbitrary value (float32) returns the arbitrary value to go at the end of the sweep if Go to
arbitrary value is configured

- Error described in the Response message>Body section

Page 32

SPECS

3DSwp.StpCh2TimingSet
Sets the timing parameters of the Step Channel 2 in the 3D Sweeper.
Arguments:

- Initial settling time (s) (float32)
- End settling time (s) (float32)
- Maximum slew rate (units/s) (float32)

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

3DSwp.StpCh2TimingGet
Returns the timing parameters of the Step Channel 2 in the 3D Sweeper.
Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):

- Initial settling time (s) (float32)

- End settling time (s) (float32)

- Maximum slew rate (units/s) (float32)

- Error described in the Response message>Body section

3DSwp.TimingRowLimitSet

Sets the maximum time (seconds) and channel of the selected row in the Advanced Timing section of the 3D
Sweeper.

Arguments:

- Row index (int) starting from 0 index

- Maximum time (seconds) (float32) defines the ultimate stop condition which is required since certain
signal types can result in a target SNR or StdDev never being reached (infinite integration).
Setting it to the minimum essentially switches off that set (limits to a single RT Cycle). NaN means no
change

- Channel index (int) defines the channel to which the advanced configuration of the selected row is applied.
-1 means no change

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

Page 33

SPECS

3DSwp.TimingRowLimitGet

Returns the maximum time (seconds) and channel of the selected row in the Advanced Timing section of the 3D
Sweeper.

Arguments:

- Row index (int) starting from 0 index
Return arguments (if Send response back flag is set to True when sending request message):

- Maximum time (seconds) (float32) defines the ultimate stop condition which is required since certain
signal types can result in a target SNR or StdDev never being reached (infinite integration).

- Setting it to the minimum essentially switches off that set (limits to a single RT Cycle).

- Channel index (int) defines the channel to which the advanced configuration of the selected row is applied

- Channels names size (int) is the size in bytes of the Channels names string array

- Number of channels (int) is the number of elements of the Channels names string array

- Channels names (1D array string) returns the list of channels names. The size of each string item comes
right before it as integer 32.

- Error described in the Response message>Body section

3DSwp.TimingRowMethodsSet

Sets the methods of the selected row in the Advanced Timing section of the 3D Sweeper.

The possible values are -1=no change, 0=None, 1=Time, 2=Standard Deviation, 3=Signal to Noise Ratio.
Arguments:

- Row index (int) starting from 0 index

- Method lower (int) defines the method in the lower range of the selected row

- Method middle (int) defines the method in the middle range of the selected row

- Method upper (int) defines the method in the upper range of the selected row

- Method alternative (int) defines the method in the alternative range of the selected row

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

Page 34

SPECS

3DSwp.TimingRowMethodsGet

Returns the methods of the selected row in the Advanced Timing section of the 3D Sweeper.
The possible values are 0=None, 1=Time, 2=Standard Deviation, 3=Signal to Noise Ratio.
Arguments:

- Row index (int) starting from 0 index
Return arguments (if Send response back flag is set to True when sending request message):

- Method lower (int) gets the method in the lower range of the selected row

- Method middle (int) gets the method in the middle range of the selected row

- Method upper (int) gets the method in the upper range of the selected row

- Method alternative (int) gets the method in the alternative range of the selected row
- Error described in the Response message>Body section

3DSwp.TimingRowValsSet
Sets the ranges of the selected row in the Advanced Timing section of the 3D Sweeper.
Arguments:

- Row index (int) starting from 0 index

- Middle range: from (float64) is the upper limit of the lower range of the selected row

- Lower range: value (float64) is the value in the lower range of the selected row

- Middle range: value (float64) is the value in the middle range of the selected row

- Middle range: to (float64) is the lower limit of the upper range of the selected row

- Upper range: value (float64) is the value of the upper range of the selected row

- Alternative range: value (float64) is the value of the alternative range of the selected row

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

Page 35

SPECS

3DSwp.TimingRowValsGet
Returns the ranges of the selected row in the Advanced Timing section of the 3D Sweeper.
Arguments:

- Row index (int) starting from 0 index
Return arguments (if Send response back flag is set to True when sending request message):

- Middle range: from (float64) is the upper limit of the lower range of the selected row

- Lower range: value (float64) is the value in the lower range of the selected row

- Middle range: value (float64) is the value in the middle range of the selected row

- Middle range: to (float64) is the lower limit of the upper range of the selected row

- Upper range: value (float64) is the value of the upper range of the selected row

- Alternative range: value (float64) is the value of the alternative range of the selected row
- Error described in the Response message>Body section

3DSwp.TimingEnable
Enables/disables the Advanced Timing in the 3D Sweeper module.
Arguments:

- Enable (unsigned int32) where 0=Disable, 1=Enable
Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

3DSwp.TimingSend
Sends the Advanced Timing configuration of the 3D Sweeper module to the real time controller.
Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

Page 36

SPECS

3DSwp.FilePathsGet

Returns the list of file paths for the data saved by one single measurement (i.e. 1D and 2D sweeps save one single
file, whereas a 3D sweep saves as many files as points configured for Step Channel 2).

Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):

- File paths size (int) is the size in bytes of the File paths string array

- Number of file paths (int) defines the number of elements of the File paths string array

- File paths (1D array string) returns the list of file paths. The size of each string item comes right before it
as integer 32.

- Error described in the Response message>Body section

Page 37

SPECS

1D Sweeper

1DSwp.AcqChsSet

Arguments:

- Number of channels (int) is the number of recorded channels. It defines the size of the Channel indexes

array
- Channel indexes (1D array int) are the indexes of recorded channels. The indexes correspond to the list of

Measurement in the Nanonis software.
To get the Measurements names use the Signals.MeasNamesGet function

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

1DSwp.AcqChsGet
Returns the list of recorded channels of the 1D Sweeper.
Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):

- Number of channels (int) is the number of recorded channels. It defines the size of the Channel indexes

array
- Channel indexes (1D array int) are the indexes of the recorded channels. The indexes correspond to the list

of Measurement in the Nanonis software.
To get the Measurements names use the Signals.MeasNamesGet function
- Error described in the Response message>Body section

1DSwp.SwpSignalSet
Sets the Sweep signal in the 1D Sweeper.

Arguments:

- Sweep channel name size (int) is the number of characters of the sweep channel name string
- Sweep channel name (string) is the name of the signal selected for the sweep channel

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

Page 38

SPECS

1DSwp.SwpSignalGet
Returns the selected Sweep signal in the 1D Sweeper.
Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):

- Sweep channel name size (int) is the number of characters of the sweep channel name string

- Sweep channel name (string) is the name of the signal selected for the sweep channel

- Channels names size (int) is the size in bytes of the Channels names string array

- Number of channels (int) is the number of elements of the Channels names string array

- Channels names (1D array string) returns the list of channels names. The size of each string item comes
right before it as integer 32

- Error described in the Response message>Body section

1DSwp.LimitsSet
Sets the limits of the Sweep signal in the 1D Sweeper.
Arguments:

- Lower limit (float32) defines the lower limit of the sweep range
- Upper limit (float32) defines the upper limit of the sweep range

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

1DSwp.LimitsGet
Returns the limits of the Sweep signal in the 1D Sweeper.
Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):

- Lower limit (float32) defines the lower limit of the sweep range
- Upper limit (float32) defines the upper limit of the sweep range
- Error described in the Response message>Body section

Page 39

SPECS

1DSwp.PropsSet
Sets the configuration of the parameters in the 1D Sweeper.
Arguments:

- Initial Settling time (ms) (float32)

- Maximum slew rate (units/s) (float32)

- Number of steps (int) defines the number of steps of the sweep. 0 points means no change

- Period (ms) (unsigned int16) where 0 means no change

- Autosave (int) defines if the sweep is automatically saved, where -1=no change, 0=0ff, 1=0On

- Save dialog box (int) defines if the save dialog box shows up or not, where -1=no change, 0=0ff, 1=0On
- Settling time (ms) (float32)

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

1DSwp.PropsGet
Returns the configuration of the parameters in the 1D Sweeper.
Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):

- Initial Settling time (ms) (float32)

- Maximum slew rate (units/s) (float32)

- Number of steps (int) defines the number of steps of the sweep

- Period (ms) (unsigned int16)

- Autosave (unsigned int32) defines if the sweep is automatically saved, where 0=Off, 1=0n

- Save dialog box (unsigned int32) defines if the save dialog box shows up or not, where 0=0ff, 1=0n
- Settling time (ms) (float32)

- Error described in the Response message>Body section

Page 40

SPECS

1DSwp.Start

Starts the sweep in the 1D Sweeper.

Arguments:
- Get data (unsigned int32) defines if the function returns the sweep data (1=True) or not (O=False)
- S_W(_eep direction (unsigned int32) defines if the sweep starts from the lower limit (=1) or from the upper
- ISI;nvI; (b_a(l)s)e name string size (int) defines the number of characters of the Save base name string

- Save base name (string) is the basename used by the saved files. If empty string, there is no change
- Reset signal (unsigned int32) where 0=0Off, 1=0On

Return arguments (if Send response back flag is set to True when sending request message):

- Channels names size (int) is the size in bytes of the Channels names string array

- Number of channels (int) is the number of elements of the Channels names string array

- Channels names (1D array string) returns the list of channels names. The size of each string item comes
right before it as integer 32

- Data rows (int) defines the numer of rows of the Data array

- Data columns (int) defines the numer of columns of the Data array

- Data (2D array float32) returns the sweep data

- Error described in the Response message>Body section

1DSwp.Stop
Stops the sweep in the 1D Sweeper module.
Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

1DSwp.Open

Opens the 1D Sweeper module.
Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

Page 41

SPECS

Signals

Signals.NamesGet
Returns the signals names list of the 128 signals available in the software.

The 128 signals are physical inputs, physical outputs and internal channels. By searching in the list the channel’s
name you are interested in, you can get its index (0-127).

Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):

- Signals names size (int) is the size in bytes of the signals names array

- Signals names number (int) is the number of elements of the signals names array

- Signals names (1D array string) returns an array of signals names strings, where each string comes
prepended by its size in bytes

- Error described in the Response message>Body section

Signals.CalibrGet
Returns the calibration and offset of the selected signal.

Arguments:

- Signal index (int) is comprised between 0 and 127
Return arguments (if Send response back flag is set to True when sending request message):

- Calibration per volt (float32)
- Offset in physical units (float32)
- Error described in the Response message>Body section

Signals.RangeGet

Returns the range limits of the selected signal.

Arguments:
- Signal index (int) is comprised between 0 and 127

Return arguments (if Send response back flag is set to True when sending request message):
- Maximum limit (float32)

- Minimum limit (float32)
- Error described in the Response message>Body section

Page 42

SPECS

Signals.ValGet
Returns the current value of the selected signal (oversampled during the Acquisition Period time, Tap).
Signal measurement principle:

The signal is continuously oversampled with the Acquisition Period time, Tap, specified in the TCP receiver
module. Every Tap second, the oversampled data is "published". This VI function waits for the next oversampled
data to be published and returns its value. Calling this function does not trigger a signal measurement; it waits for
data to be published! Thus, this function returns a value 0 to Tap second after being called.

An important consequence is that if you change a signal and immediately call this function to read a measurement
you might get "old" data (i.e. signal data measured before you changed the signal). The solution to get only new data
is to set Wait for newest data to True. In this case, the first published data is discarded and only the second one is
returned.

Arguments:

- Signal index (int) is comprised between 0 and 127

- Wait for newest data (unsigned int32) selects whether the function returns the next available signal value
or if it waits for a full period of new data. If False, this function returns a value 0 to Tap seconds after being
called. If True, the function discard the first oversampled signal value received but returns the second value
received. Thus, the function returns a value Tap to 2*Tap seconds after being called. It could be O=False or
1=True

Return arguments (if Send response back flag is set to True when sending request message):

- Signal value (float32) is the value of the selected signal in physical units
- Error described in the Response message>Body section

Signals.ValsGet
Returns the current values of the selected signals (oversampled during the Acquisition Period time, Tap).
Arguments:

- Signals indexes size (int) is the size of the Signals indexes array

- Signals indexes (1D array int) sets the selection of signals indexes, comprised between 0 and 127

- Wait for newest data (unsigned int32) selects whether the function returns the next available signal value
or if it waits for a full period of new data. If False, this function returns a value 0 to Tap seconds after being
called. If True, the function discard the first oversampled signal value received but returns the second value
received. Thus, the function returns a value Tap to 2*Tap seconds after being called. It could be O=False or
1=True

Return arguments (if Send response back flag is set to True when sending request message):
- Signals values size (int) is the size of the Signals values array

- Signals values (1D array float32) returns the values of the selected signals in physical units
- Error described in the Response message>Body section

Page 43

SPECS

Signals.MeasNamesGet
Returns the list of measurement channels names available in the software.

Important Note: The Measurement channels don't correspond to the Signals. Measurement channels are used in
sweepers whereas the Signals are used by the graphs and other modules.

By searching in the list the channels's names you are interested in, you can know its index. This index is then used
e.g. to get/set the recorded channels in Sweepers, for example by using the GenSwp.ChannelsGet and
GenSwp.ChannelsSet functions for the 1D Sweeper.

Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):

- Measurement channels list size (int) is the size in bytes of the Measurement channels list array

- Number of Measurement channels (int) is the number of elements of the Measurement channels list array

- Measurement channels list (1D array string) returns an array of names, where each array element is
preceded by its size in bytes

- Error described in the Response message>Body section

Signals.AddRTGet

Returns the list of names of additional RT signals available, and the names of the signals currently assigned to the
Internal 23 and 24 signals.

This can be found in the Signals Manager.
Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):

- Additional RT signals names size (int) is the size in bytes of the Additional RT signals names array

- Number of Additional RT signals (int) is the number of elements of the Additional RT signals names
array

- Additional RT signals names (1D array string) returns the list of additional RT signals which can be
assigned to Internal 23 and 24. Each array element is preceded by its size in bytes

- Additional RT signal 1 (string) is the name of the RT signal assigned to the Internal 23 signal

- Additional RT signal 2 (string) is the name of the RT signal assigned to the Internal 24 signal

- Error described in the Response message>Body section

Page 44

SPECS

Signals.AddRTSet
Assigns additional RT signals to the Internal 23 and 24 signals in the Signals Manager.
This function links advanced RT signals to Internal 23 and Internal 24.

Arguments:

- Additional RT signal 1 (int) is the index of the RT signal assigned to the Internal 23 signal
- Additional RT signal 2 (int) is the index of the RT signal assigned to the Internal 24 signal

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

Page 45

SPECS

User Inputs

UserIn.CalibrSet

Sets the calibration of the selected user input.

Arguments:

- Input index (int) sets the input to be used, where index could be any value from 1 to the available inputs

- Calibration per volt (float32)
- Offset in physical units (float32)

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

Page 46

SPECS

User Outputs

UserOut.ModeSet
Sets the mode (User Output, Monitor, Calculated signal) of the selected user output channel.
Arguments:

- Output index (int) sets the output to be used, where index could be any value from 1 to the number of
available outputs

- Output mode (unsigned int16) sets the output mode of the selected output, where 0=User Output,
1=Monitor, 2=Calc.Signal

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

UserOut.ModeGet
Returns the mode (User Output, Monitor, Calculated signal) of the selected user output channel.
Arguments:

- Output index (int) sets the output to be used, where index could be any value from 1 to the number of
available outputs

Return arguments (if Send response back flag is set to True when sending request message):

- Output mode (unsigned int16) returns the output mode of the selected output, where 0=User Output,
1=Monitor, 2=Calc.Signal, 3=Override
- Error described in the Response message>Body section

UserOut.MonitorChSet
Sets the monitor channel of the selected output channel.
Arguments:

- Output index (int) sets the output to be used, where index could be any value from 1 to the number of
available outputs

- Monitor channel index (int) sets the index of the channel to monitor. The index is comprised between 0
and 127 for the physical inputs, physical outputs, and internal channels. To see which signal has which
index, see Signals.NamesGet function

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

Page 47

SPECS

UserOut.MonitorChGet
Returns the monitor channel of the selected output channel.
Arguments:

- Output index (int) sets the output to be used, where index could be any value from 1 to the number of
available outputs

Return arguments (if Send response back flag is set to True when sending request message):

- Monitor channel index (int) returns the index of the channel to monitor. The index is comprised between 0
and 127 for the physical inputs, physical outputs, and internal channels. To see which signal has which
index, see Signals.NamesGet function

- Error described in the Response message>Body section

UserOut.ValSet
Sets the value of the selected user output channel.
Arguments:

- Output index (int) sets the output to be used, where index could be any value from 1 to the number of
available outputs
- Output value (float32) is the value applied to the selected user output in physical units

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

UserOut.CalibrSet
Sets the calibration of the selected user output or monitor channel.
Arguments:

- Output index (int) sets the output to be used, where index could be any value from 1 to the number of
available outputs

- Calibration per volt (float32)

- Offset in physical units (float32)

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

Page 48

SPECS

UserOut.CalcSignalNameSet
Sets the Calculated Signal name of the selected output channel.
Arguments:

- Output index (int) sets the output to be used, where index could be any value from 1 to the number of
available outputs

- Calculated signal name size (int) is the number of characters of the Calculated signal name string

- Calculated signal name (string) is the name of the calculated signal configured for the selected output

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

UserOut.CalcSignalNameGet
Returns the Calculated Signal name of the selected output channel.
Arguments:

- Output index (int) sets the output to be used, where index could be any value from 1 to the number of
available outputs

Return arguments (if Send response back flag is set to True when sending request message):
- Calculated signal name size (int) is the number of characters of the Calculated signal name string

- Calculated signal name (string) is the name of the calculated signal configured for the selected output
- Error described in the Response message>Body section

Page 49

SPECS

UserOut.CalcSignalConfigSet
Sets the configuration of the Calculated Signal for the selected output channel.

The configuration is a combination of 4 parts that creates a formula. Each part of the formula is a parameter/math
operation and a value (which depending on the parameter/math operation is applicable or not).

The possible values for the parameter/math operation of part 1 are:
0=None, 5=Constant, 10=Signal Index

The possible values for the parameter/math operation of parts 2, 3 and 4 are:
0=None, 1=Add Constant, 1=Subtract Constant, 3=Multiply Constant, 4=Divide Constant, 6=Add Signal,
7=Subtract Signal, 8=Multiply Signal, 9=Divide Signal, 11=Exponent, 12=Absolute, 13= Negate, 14= Log

There is no mathematical operator precedence in operation here; the equations are executed in a strict left-to-right
(part 1 to part 4) fashion.
This is equivalent to defining the calculations as ((((Part 1) Part 2) Part 3) Part 4).

For example:

The average of Input 1 and Input 2 is defined as “Input 1 + Input 2 / 2.
The sum of Input 1 plus half of Input 2 is defined as “Input 2 / 2 + Input 1”.
The reciprocal of Input 1 is defined as “1 / Input 1.

Arguments:

- Output index (int) sets the output to be used, where index could be any value from 1 to the number of
available outputs

- Operation 1 (unsigned int16) is the parameter or math operation selected as the 1% part of the configuration
formula.

- Value 1 (float32) is a constant value or signal index, depending on the precedent operation

- Operation 2 (unsigned int16) is the parameter or math operation selected as the 2nd part of the
configuration formula.

- Value 2 (float32) is a constant value or signal index, depending on the precedent operation

- Operation 3 (unsigned int16) is the parameter or math operation selected as the 3rd part of the
configuration formula.

- Value 3 (float32) is a constant value or signal index, depending on the precedent operation

- Operation 4 (unsigned int16) is the parameter or math operation selected as the 4th part of the
configuration formula.

- Value 4 (float32) is a constant value or signal index, depending on the precedent operation

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

Page 50

SPECS

UserOut.CalcSignalConfigGet
Returns the configuration of the Calculated Signal for the selected output channel.

The configuration is a combination of 4 parts that creates a formula. Each part of the formula is a parameter/math
operation and a value (which depending on the parameter/math operation is applicable or not).

The possible values for the parameter/math operation of part 1 are:
0=None, 5=Constant, 10=Signal Index

The possible values for the parameter/math operation of parts 2, 3 and 4 are:
0=None, 1=Add Constant, 1=Subtract Constant, 3=Multiply Constant, 4=Divide Constant, 6=Add Signal,
7=Subtract Signal, 8=Multiply Signal, 9=Divide Signal, 11=Exponent, 12=Absolute, 13= Negate, 14= Log

There is no mathematical operator precedence in operation here; the equations are executed in a strict left-to-right
(part 1 to part 4) fashion.
This is equivalent to defining the calculations as ((((Part 1) Part 2) Part 3) Part 4).

For example:

The average of Input 1 and Input 2 is defined as “Input 1 + Input 2 / 2.
The sum of Input 1 plus half of Input 2 is defined as “Input 2 / 2 + Input 1”.
The reciprocal of Input 1 is defined as “1 / Input 1.

Arguments:

- Output index (int) sets the output to be used, where index could be any value from 1 to the number of
available outputs

Return arguments (if Send response back flag is set to True when sending request message):

- Operation 1 (unsigned int16) is the parameter or math operation selected as the 1% part of the configuration
formula.

- Value 1 (float32) is a constant value or signal index, depending on the precedent operation

- Operation 2 (unsigned int16) is the parameter or math operation selected as the 2nd part of the
configuration formula.

- Value 2 (float32) is a constant value or signal index, depending on the precedent operation

- Operation 3 (unsigned int16) is the parameter or math operation selected as the 3rd part of the
configuration formula.

- Value 3 (float32) is a constant value or signal index, depending on the precedent operation

- Operation 4 (unsigned int16) is the parameter or math operation selected as the 4th part of the
configuration formula.

- Value 4 (float32) is a constant value or signal index, depending on the precedent operation

- Error described in the Response message>Body section

Page 51

SPECS

UserOut.LimitsSet
Sets the physical limits (in calibrated units) of the selected output channel.
Arguments:

- Output index (int) sets the output to be used, where index could be any value from 1 to the number of
available outputs

- Upper limit (float32) defines the upper physical limit of the user output

- Lower limit (float32) defines the lower physical limit of the user output

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

UserOut.LimitsGet
Returns the physical limits (in calibrated units) of the selected output channel.
Arguments:

- Output index (int) sets the output to be used, where index could be any value from 1 to the number of
available outputs

Return arguments (if Send response back flag is set to True when sending request message):

- Upper limit (float32) defines the upper physical limit of the user output
- Lower limit (float32) defines the lower physical limit of the user output
- Error described in the Response message>Body section

UserOut.SlewRateSet
Sets the slew rate (in calibrated units) of the selected output channel.
Arguments:

- Output index (int) sets the output to be used, where index could be any value from 1 to the number of
available outputs
- Slew Rate (float64) defines the calibrated slew rate of the user output

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

Page 52

SPECS

UserOut.SlewRateGet
Returns the slew rate (in calibrated units) of the selected output channel.
Arguments:

- Output index (int) sets the output to be used, where index could be any value from 1 to the number of
available outputs

Return arguments (if Send response back flag is set to True when sending request message):

- Slew Rate (float64) is the calibrated slew rate of the user output
- Error described in the Response message>Body section

Page 53

SPECS

Digital Lines

DigLines.PropsSet
Configures the properties of a digital line.
Arguments:

- Digital line (unsigned int32) defines the line to configure, from 1 to 8

- Port (unsigned int32) selects the digital port, where 0=Port A, 1=Port B, 2=Port C, 3=Port D

- Direction (unsigned int32) is the direction of the selected digital line, where 0=Input, 1=Output
- Polarity (unsigned int32), where O=Low active, 1=High active

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

DigLines.OutStatusSet
Sets the status of a digital output line.
Arguments:

- Port (unsigned int32) selects the digital port, where 0=Port A, 1=Port B, 2=Port C, 3=Port D
- Digital line (unsigned int32) defines the output line to configure, from 1 to 8
- Status (unsigned int32) sets whether the output is active or inactive, where O=Inactive, 1=Active

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

DigLines.TTLValGet
Reads the actual TTL voltages present at the pins of the selected port.
Arguments:

- Port (unsigned int16) selects the digital port, where 0=Port A, 1=Port B, 2=Port C, 3=Port D
Return arguments (if Send response back flag is set to True when sending request message):

- TTL voltages size (int) is the size of the TTL voltages array

- TTL voltages (1D array unsigned int32) sets whether the output is active or inactive, where O=Inactive,
1=Active

- Error described in the Response message>Body section

Page 54

SPECS

DigLines.Pulse
Configures and starts the pulse generator on the selected digital outputs.
Arguments:

- Port (unsigned int16) selects the digital port, where 0=Port A, 1=Port B, 2=Port C, 3=Port D

- Digital lines size (int) is the size of the Digital lines array

- Digital lines (1D array unsigned int8) defines the output lines to pulse, from 1 to 8

- Pulse width (s) (float32) defines how long the outputs are active

- Pulse pause (s) (float32) defines how long the outputs are inactive

- Number of pulses (int) defines how many pulses to generate, where valid values are from 1 to 32767

- Wait until finished (unsigned int32), if True this function waits until all pulses have been generated before
the response is sent back, where 0=False, 1=True

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

Page 55

SPECS

Data Logger

DatalLog.Open
Opens the Data Logger module.
Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

DatalLog.Start

Starts the acquisition in the Data Logger module.

Before using this function, select the channels to record in the Data Logger.
Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

DatalLog.Stop
Stops the acquisition in the Data Logger module.
Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

Page 56

SPECS

Datalog.StatusGet
Returns the status parameters from the Data Logger module.
Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):

- Start time size (int) returns the number of bytes corresponding to the Start time string

- Start time (string) returns a timestamp of the moment when the acquisition started

- Acquisition elapsed hours (unsigned int16) returns the number of hours already passed since the
acquisition started

- Acquisition elapsed minutes (unsigned int16) returns the number of minutes displayed on the Data Logger

- Acquisition elapsed seconds (float32) returns the number of seconds displayed on the Data Logger

- Stop time size (int) returns the number of bytes corresponding to the Stop time string

- Stop time (string) returns a timestamp of the moment when the acquisition Stopped

- Saved file path size (int) returns the number of bytes corresponding to the Saved file path string

- Saved file path (string) returns the path of the last saved file

- Points counter (int) returns the number of points (averaged samples) to save into file.
This parameter updates while running the acquisition

- Error described in the Response message>Body section

DatalLog.ChsSet
Sets the list of recorded channels in the Data Logger module.
Arguments:

- Number of channels (int) is the number of recorded channels. It defines the size of the Channel indexes
array

- Channel indexes (1D array int) are the indexes of recorded channels. The index are comprised between 0
and 127, and it corresponds to the full list of signals available in the system.
To get the signal name and its corresponding index in the list of the 128 available signals in the Nanonis
Controller, use the Signal.NamesGet function, or check the RT ldx value in the Signals Manager module

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

Page 57

SPECS

DatalLog.ChsGet
Returns the list of recorded channels in the Data Logger module.
Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):

- Number of channels (int) is the number of recorded channels. It defines the size of the Channel indexes
array

- Channel indexes (1D array int) are the indexes of recorded channels. The indexes are comprised between 0
and 127, and it corresponds to the full list of signals available in the system.
To get the signal name and its corresponding index in the list of the 128 available signals in the Nanonis
Controller, use the Signal.NamesGet function, or check the RT Idx value in the Signals Manager module

- Error described in the Response message>Body section

DatalLog.PropsSet
Sets the acquisition configuration and the save options in the Data Logger module.
Arguments:

- Acquisition mode (unsigned int16) means that if Timed (=2), the selected channels are acquired during the
acquisition duration time or until the user presses the Stop button.
If Continuous (=1), the selected channels are acquired continuously until the user presses the Stop button.
If 0, the is no change in the acquisition mode.
The acquired data are saved every time the averaged samples buffer reaches 25.000 samples and when the
acquisition stops

- Acquisition duration(hours) (int) sets the number of hours the acquisition should last. Value -1 means no
change

- Acquisition duration (minutes) (int) sets the number of minutes. Value -1 means no change

- Acquisition duration (seconds) (float32) sets the number of seconds. Value -1 means no change

- Averaging (int) sets how many data samples (received from the real-time system) are averaged for one
data point saved into file. By increasing this value, the noise might decrease, and fewer points per seconds
are recorded.
Use 0 to skip changing this parameter

- Basename size (int) is the size in bytes of the Basename string

- Basename (string) is base name used for the saved images

- Comment size (int) is the size in bytes of the Comment string

- Comment (string) is comment saved in the file

- Size of the list of moduless (int) is the size in bytes of the List of modules string array

- Number of modules (int) is the number of elements of the List of modules string array

- List of modules (1D array string) sets the modules names whose parameters will be saved in the header of
the files. The size of each string item should come right before it as integer 32

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

Page 58

SPECS

Datalog.PropsGet
Returns the acquisition configuration and the save options in the Data Logger module.
Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):

- Acquisition mode (unsigned int16) means that if Timed (=1), the selected channels are acquired during the
acquisition duration time or until the user presses the Stop button.
If Continuous (=0), the selected channels are acquired continuously until the user presses the Stop button.
The acquired data are saved every time the averaged samples buffer reaches 25.000 samples and when the
acquisition stops

- Acquisition duration(hours) (int) returns the number of hours the acquisition lasts

- Acquisition duration (minutes) (int) returns the number of minutes

- Acquisition duration (seconds) (float32) returns the number of seconds

- Averaging (int) returns how many data samples (received from the real-time system) are averaged for one
data point saved into file

- Basename size (int) returns the size in bytes of the Basename string

- Basename (string) returns the base name used for the saved images

- Comment size (int) returns the size in bytes of the Comment string

- Comment (string) returns the comment saved in the file

- Error described in the Response message>Body section

Page 59

SPECS

TCP Logger

TCPLog.Start

Starts the acquisition in the TCP Logger module.

Before using this function, select the channels to record in the TCP Logger.
Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

TCPLog.Stop
Stops the acquisition in the TCP Logger module.
Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

TCPLo0g.ChsSet
Sets the list of recorded channels in the TCP Logger module.
Arguments:

- Number of channels (int) is the number of recorded channels. It defines the size of the Channel indexes
array

- Channel indexes (1D array int) are the indexes of recorded channels. The indexes are comprised between 0
and 127, and it corresponds to the full list of signals available in the system.
To get the signal name and its corresponding index in the list of the 128 available signals in the Nanonis
Controller, use the Signal.NamesGet function, or check the RT Idx value in the Signals Manager module

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

Page 60

SPECS

TCPLog.OversamplSet
Sets the oversampling value in the TCP Logger.
Arguments:
- Oversampling value (int) sets the oversampling index, where index could be any value from 0 to 1000

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

TCPLog.StatusGet

Returns the current status of the TCP Logger.
Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):

- Status (int) returns an index which corresponds to one of the following status: 0=disconnected, 1=idle,
2=start, 3=stop, 4=running, 5=TCP connect, 6=TCP disconnect, 7=buffer overflow

- Error described in the Response message>Body section

Page 61

SPECS

Oscilloscope High Resolution

OsciHR.ChSet
Sets the channel index of the Oscilloscope High Resolution.
Arguments:

- Channel index (int) sets the channel to be used, where index could be any value from 0 to 15
Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

OsciHR.ChGet
Returns the channel index of the Oscilloscope High Resolution.
Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):

- Channel index (int) returns the channel used in the Oscilloscope High Resolution
- Error described in the Response message>Body section

OsciHR.OversamplSet
Sets the oversampling index of the Oscilloscope High Resolution.

Choosing to acquire data at lower rate than the maximum 1MS/s allows for an improved S/N ratio and also increases
the time window for the acquisition for a given number of samples.

Arguments:

- Oversampling index (int) sets the oversampling index, where index could be any value from 0 to 10
Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

Page 62

SPECS

OsciHR.OversamplGet
Returns the oversampling index of the Oscilloscope High Resolution.
Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):

- Oversampling index (int) gets the oversampling index, where index could be any value from 0 to 10
- Error described in the Response message>Body section

OsciHR.CalibrModeSet
Sets the calibration mode of the Oscilloscope High Resolution.

Select between Raw Values or Calibrated Values. This setting affects the data displayed in the graph, and trigger
level and hysteresis values.

Arguments:

- Calibration mode (unsigned int16), where 0=Raw values and 1=Calibrated values
Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

OsciHR.CalibrModeGet
Returns the calibration mode of the Oscilloscope High Resolution.
Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):
- Calibration mode (unsigned int16), where 0=Raw values and 1=Calibrated values

- Error described in the Response message>Body section

OsciHR.SamplesSet
Sets the number of samples to acquire in the Oscilloscope High Resolution.
Arguments:

- Number of samples (int)
Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

Page 63

SPECS

OsciHR.SamplesGet
Returns the number of samples to acquire in the Oscilloscope High Resolution.
Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):

- Number of samples (int)
- Error described in the Response message>Body section

OsciHR.PreTrigSet

Sets the Pre-Trigger Samples or Seconds in the Oscilloscope High Resolution.

If Pre-Trigger (s) is NaN or Inf or below 0, Pre-Trigger Samples is taken into account instead of seconds.
Arguments:

- Pre-Trigger samples (unsigned int32)
- Pre-Trigger (s) (float64)

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

OsciHR.PreTrigGet

Returns the Pre-Trigger Samples in the Oscilloscope High Resolution.

If Pre-Trigger (s) is NaN or Inf or below 0, Pre-Trigger Samples is taken into account instead of seconds.
Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):

- Pre-Trigger samples (int)
- Error described in the Response message>Body section

Page 64

SPECS

OsciHR.Run

Starts the Oscilloscope High Resolution module.

The Oscilloscope High Resolution module does not run when its front panel is closed. To automate measurements it
might be required to run the module first using this function.

Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

OsciHR.OsciDataGet

Returns the graph data from the Oscilloscope High Resolution.
Arguments:

- Data to get (unsigned int16), where 0=Current returns the currently displayed data and 1=Next trigger
waits for the next trigger to retrieve data
- Timeout (s) (float64), where -1 means waiting forever

Return arguments (if Send response back flag is set to True when sending request message):

- Data tO0 size (int) is the number of characters of the Data t0 string

- Data tO (string) is the timestamp of the 1 acquired point

- Data dt (float64) is the time distance between two acquired points

- Data Y size (int) is the number of data points in Data Y

- Data Y (1D array float32) is the data acquired in the oscilloscope

- Timeout (unsigned int32) is 0 when no timeout occurred, and 1 when a timeout occurred
- Error described in the Response message>Body section

OsciHR.TrigModeSet
Sets the trigger mode in the Oscilloscope High Resolution.
Arguments:

- Trigger mode (unsigned int16), O=Immediate means triggering immediately whenever the current data set
is received by the host software, 1=Level where the trigger detection is performed on the non-averaged raw
channel data (1MS/s), and 2=Digital where the trigger detection on the LS-DIO channels is performed at
500kS/s. Trigger detection on the HS-DIO channels is performed at 10MS/s

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

Page 65

SPECS

OsciHR.TrigModeGet
Returns the trigger mode in the Oscilloscope High Resolution.
Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):

- Trigger mode (unsigned int16), where O=Immediate, 1=Level, and 2=Digital
- Error described in the Response message>Body section

OsciHR.TrigLevChSet
Sets the Level Trigger Channel index in the Oscilloscope High Resolution.
Trigger detection is performed on the non-averaged raw channel data.
Arguments:

- Level trigger channel index (int)

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

OsciHR.TrigLevChGet

Returns the Level Trigger Channel index in the Oscilloscope High Resolution.
Trigger detection is performed on the non-averaged raw channel data.
Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):
- Level trigger channel index (int)

- Error described in the Response message>Body section

OsciHR.TrigLevValSet
Sets the Level Trigger value in the Oscilloscope High Resolution.
Arguments:

- Level trigger value (float64)
Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

Page 66

SPECS

OsciHR.TrigLevValGet
Returns the Level Trigger value in the Oscilloscope High Resolution.
Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):
- Level trigger value (float64)

- Error described in the Response message>Body section

OsciHR.TrigLevHystSet
Sets the Level Trigger Hysteresis in the Oscilloscope High Resolution.
Arguments:

- Level trigger Hysteresis (float64)
Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

OsciHR.TrigLevHystGet

Returns the Level Trigger Hysteresis in the Oscilloscope High Resolution.
Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):
- Level trigger Hysteresis (float64)

- Error described in the Response message>Body section

OsciHR.TrigLevSlopeSet
Sets the Level Trigger Slope in the Oscilloscope High Resolution.
Arguments:

- Level trigger slope (unsigned int16), where 0=Rising and 1=Falling
Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

Page 67

SPECS

OsciHR.TrigLevSlopeGet
Returns the Level Trigger Slope in the Oscilloscope High Resolution.
Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):

- Level trigger slope (unsigned int16), where 0=Rising and 1=Falling
- Error described in the Response message>Body section

OsciHR.TrigDigChSet
Sets the Digital Trigger Channel in the Oscilloscope High Resolution.

Trigger detection on the LS-DIO channels is performed at 500kS/s. Trigger detection on the HS-DIO channels is
performed at 10MS/s.

Arguments:

- Digital trigger channel index (int), where index can be any value from 0 to 35. Low Speed Port A lines
are indexes 0 to 7, Low Speed Port B lines are indexes 8 to 15, Low Speed Port C lines are indexes 16 to
23, Low Speed Port D lines are indexes 24 to 31, and High Speed Port lines are indexes 32 to 35

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

OsciHR.TrigDigChGet
Returns the Digital Trigger Channel in the Oscilloscope High Resolution.
Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):

- Digital trigger channel index (int), where index can be any value from 0 to 35. Low Speed Port A lines
are indexes 0 to 7, Low Speed Port B lines are indexes 8 to 15, Low Speed Port C lines are indexes 16 to
23, Low Speed Port D lines are indexes 24 to 31, and High Speed Port lines are indexes 32 to 35

- Error described in the Response message>Body section

Page 68

SPECS

OsciHR.TrigArmModeSet
Sets the Trigger Arming Mode in the Oscilloscope High Resolution.
Arguments:

- Trigger arming mode (unsigned int16), where 0=Single shot means recording the next available data and
stopping acquisition. and 1=Continuous means recording every available data and automatically re-triggers
the acquisition

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

OsciHR.TrigArmModeGet
Returns the Trigger Arming Mode in the Oscilloscope High Resolution.
Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):

- Trigger arming mode (unsigned int16), where 0=Single shot means recording the next available data and
stopping acquisition. and 1=Continuous means recording every available data and automatically re-triggers
the acquisition

- Error described in the Response message>Body section

OsciHR.TrigDigSlopeSet
Sets the Digital Trigger Slope in the Oscilloscope High Resolution.
Arguments:
- Digital trigger slope (unsigned int16), where 0=Rising and 1=Falling
Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

OsciHR.TrigDigSlopeGet
Returns the Digital Trigger Slope in the Oscilloscope High Resolution.
Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):

- Digital trigger slope (unsigned int16), where 0=Rising and 1=Falling
- Error described in the Response message>Body section

Page 69

SPECS

OsciHR.TrigRearm
Rearms the trigger in the Oscilloscope High Resolution module.
Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

OsciHR.PSDShow
Shows or hides the PSD section of the Oscilloscope High Resolution.
Arguments:

- Show PSD section (unsigned int32), where 0=Hide and 1=Show
Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

OsciHR.PSDWeightSet
Sets the PSD Weighting in the Oscilloscope High Resolution.
Arguments:

- PSD Weighting (unsigned int16), where O=Linear means that the averaging combines Count spectral
records with equal weighting and then stops, whereas 1=Exponential means that the averaging process is
continuous and new spectral data have a higher weighting than older ones

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

OsciHR.PSDWeightGet
Returns the PSD Weighting in the Oscilloscope High Resolution.
Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):

- PSD Weighting (unsigned int16), where O=Linear means that the averaging combines Count spectral
records with equal weighting and then stops, whereas 1=Exponential means that the averaging process is
continuous and new spectral data have a higher weighting than older ones

- Error described in the Response message>Body section

Page 70

SPECS

OsciHR.PSDWindowSet
Sets the PSD Window Type in the Oscilloscope High Resolution.
Arguments:

- PSD window type (unsigned int16) is the window function applied to the timed signal before calculating
the power spectral density, where 0=None, 1=Hanning, 2=Hamming, etc

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section
OsciHR.PSDWindowGet
Returns the PSD Window Type in the Oscilloscope High Resolution.
Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):

- PSD window type (unsigned int16) is the window function applied to the timed signal before calculating
the power spectral density, where 0=None, 1=Hanning, 2=Hamming, etc
- Error described in the Response message>Body section

OsciHR.PSDAvrgTypeSet
Sets the PSD Averaging Type in the Oscilloscope High Resolution.
Arguments:
- PSD averaging type (unsigned int16), where 0=None, 1=Vector, 2=RMS, 3=Peak hold

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

OsciHR.PSDAvrgTypeGet
Returns the PSD Averaging Type in the Oscilloscope High Resolution.
Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):

- PSD averaging type (unsigned int16), where 0=None, 1=Vector, 2=RMS, 3=Peak hold
- Error described in the Response message>Body section

Page 71

SPECS

OsciHR.PSDAvrgCountSet

Sets the PSD Averaging Count used by the RMS and Vector averaging types in the Oscilloscope High Resolution.
Arguments:

- PSD averaging count (int)
Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

OsciHR.PSDAvrgCountGet

Returns the PSD Averaging Count used by the RMS and Vector averaging types in the Oscilloscope High
Resolution.

Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):
- PSD averaging count (int)

- Error described in the Response message>Body section

OsciHR.PSDAvrgRestart
Restarts the PSD averaging process in the Oscilloscope High Resolution module.
Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

Page 72

SPECS

OsciHR.PSDDataGet

Returns the Power Spectral Density data from the Oscilloscope High Resolution.
Arguments:

- Data to get (unsigned int16), where 0=Current returns the currently displayed data and 1=Next trigger
waits for the next trigger to retrieve data
- Timeout (s) (float64), where -1 means waiting forever

Return arguments (if Send response back flag is set to True when sending request message):

- Data 0 (float64) is the x coordinate of the 1% acquired point

- Data df (float64) is the frequency distance between two acquired points

- Data Y size (int) is the number of data points in Data Y

- Data Y (1D array float64) is the PSD data acquired in the oscilloscope

- Timeout (unsigned int32) is 0 when no timeout occurred, and 1 when a timeout occurred
- Error described in the Response message>Body section

Page 73

SPECS

Script

Script.Load
Loads a script in the script module.
Arguments:

- Script file path size (int) is the number of characters of the script file path string

- Script file path (string) is the path of the script file to load

- Load session (unsigned int32) automatically loads the scripts from the session file bypassing the script file
path argument, where 0=False and 1=True

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

Script.Save
Saves the current script in the specified .ini file.
Arguments:

- Script file path size (int) is the number of characters of the script file path string

- Script file path (string) is the path of the script file to save

- Save session (unsigned int32) automatically saves the current script into the session file bypassing the
script file path argument, where O=False and 1=True

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

Script.Deploy
Deploys a script in the script module.
Arguments:

- Script index (int) sets the script to deploy and covers a range from 0 (first script) to the total number of
scripts minus one. A value of -1 sets the currently selected script to deploy.

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

Page 74

SPECS

Script.Undeploy
Undeploys a script in the script module.
Arguments:

- Script index (int) sets the script to undeploy and covers a range from 0 (first script) to the total number of
scripts minus one. A value of -1 sets the currently selected script to undeploy.

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

Script.Run
Runs a script in the script module.
Arguments:

- Script index (int) sets the script to run and covers a range from 0 (first script) to the total number of scripts
minus one. A value of -1 sets the currently selected script to run.
- Wait until script finishes (unsigned int32), where O=False and 1=True

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

Script.Stop
Stops the running script in the script module.
Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

Page 75

SPECS

Script.ChsGet
Returns the list of acquired channels in the Script module.
Arguments:

- Acquire buffer (unsigned int16) sets the Acquire Buffer number from which to read the list of channels.
Valid values are 1 (=Acquire Buffer 1) and 2 (=Acquire Buffer 2).

Return arguments (if Send response back flag is set to True when sending request message):

- Number of channels (int) is the number of recorded channels. It defines the size of the Channel indexes
array

- Channel indexes (1D array int) are the indexes of recorded channels. The indexes are comprised between 0
and 127, and it corresponds to the full list of signals available in the system.
To get the signal name and its corresponding index in the list of the 128 available signals in the Nanonis
Controller, use the Signal.NamesGet function, or check the RT ldx value in the Signals Manager module

- Error described in the Response message>Body section

Script.ChsSet
Sets the list of acquired channels in the Script module.
Arguments:

- Acquire buffer (unsigned int16) sets the Acquire Buffer number from which to set the list of channels.
Valid values are 1 (=Acquire Buffer 1) and 2 (=Acquire Buffer 2).

- Number of channels (int) is the number of recorded channels. It defines the size of the Channel indexes
array

- Channel indexes (1D array int) are the indexes of recorded channels. The indexes are comprised between 0
and 127, and it corresponds to the full list of signals available in the system.
To get the signal name and its corresponding index in the list of the 128 available signals in the Nanonis
Controller, use the Signal.NamesGet function, or check the RT Idx value in the Signals Manager module

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

Page 76

SPECS

Script.DataGet
Returns the data acquired in the Script module.
Arguments:

- Acquire buffer (unsigned int16) sets the Acquire Buffer number from which to read the acquired data.
Valid values are 1 (=Acquire Buffer 1) and 2 (=Acquire Buffer 2).

- Sweep number (int) selects the sweep this function will return the data from. Each sweep is configured as
such in the script and it corresponds to each plot displayed in the graphs of the Script module. The sweep
numbers start at 0.

Return arguments (if Send response back flag is set to True when sending request message):

- Data rows (int) defines the number of rows of the Data array

- Data columns (int) defines the number of columns of the Data array
- Data (2D array float32) returns the script data

- Error described in the Response message>Body section

Script.Autosave
Saves automatically to file the data stored in the Acquire Buffers after running a script in the Script module.
Arguments:

- Acquire buffer (unsigned int16) sets the Acquire Buffer number from which to save the data.
Valid values are 0 (=Acquire Buffer 1 & Acquire Buffer 2), 1 (=Acquire Buffer 1), and 2 (=Acquire Buffer
2).

- Sweep number (int) selects the sweep this function will save the data for.
Each sweep is configured as such in the script and it corresponds to each plot displayed in the graphs of the
Script module.
The sweep numbers start at 0. A value of -1 saves all acquired sweeps.

- All sweeps to same file (unsigned int32) decides if all sweeps defined by the Sweep number parameter are
saved to the same file (=1) or not (=0).

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

Page 77

SPECS

Lock-In

Lockin.ModOnOffSet
Turns the specified Lock-In modulator on or off.
Arguments:

- Modulator number (int) is the number that specifies which modulator to use. It starts from number 1
(=Modulator 1)
- Lock-In On/Off (unsigned int32) turns the specified modulator on or off, where 0=Off and 1=0n

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

Lockin.ModOnOffGet
Returns if the specified Lock-In modulator is turned on or off.
Arguments:

- Modulator number (int) is the number that specifies which modulator to use. It starts from number 1
(=Modulator 1)

Return arguments (if Send response back flag is set to True when sending request message):

- Lock-In On/Off (unsigned int32) returns if the specified modulator is turned on or off, where 0=Off and
1=0On
- Error described in the Response message>Body section

Lockin.ModSignalSet
Selects the modulated signal of the specified Lock-In modulator.
Arguments:

- Modulator number (int) is the number that specifies which modulator to use. It starts from number 1
(=Modulator 1)

- Modulator Signal Index (int) is the signal index out of the list of 128 signals available in the software.
To get a list of the available signals, use the Signals.NamesGet function.

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

Page 78

SPECS

Lockin.ModSignalGet
Returns the modulated signal of the specified Lock-In modulator.
Arguments:

- Modulator number (int) is the number that specifies which modulator to use. It starts from number 1
(=Modulator 1)

Return arguments (if Send response back flag is set to True when sending request message):

- Modulator Signal Index (int) is the signal index out of the list of 128 signals available in the software.
To get a list of the available signals, use the Signals.NamesGet function
- Error described in the Response message>Body section

Lockin.ModPhasRegSet

Sets the phase register index of the specified Lock-In modulator.

Each modulator can work on any phase register (frequency). Use this function to assign the modulator to one of the
8 available phase registers (index 1-8).

Use the Lockin.ModPhaFregSet function to set the frequency of the phase registers.
Arguments:

- Modulator number (int) is the number that specifies which modulator to use. It starts from number 1
(=Modulator 1)

- Phase Register Index (int) is the index of the phase register of the specified Lock-In modulator. Valid
values are index 1 to 8.

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

Page 79

SPECS

Lockin.ModPhasRegGet

Returns the phase register index of the specified Lock-In modulator.

Each modulator can work on any phase register (frequency generator).

Use the Lockin.ModPhaseRegFreqGet function to get the frequency of the phase registers.
Arguments:

- Modulator number (int) is the number that specifies which modulator to use. It starts from number 1
(=Modulator 1)

Return arguments (if Send response back flag is set to True when sending request message):

- Phase Register Index (int) is the index of the phase register of the specified Lock-In modulator. Valid
values are index 1 to 8
- Error described in the Response message>Body section

Lockin.ModHarmonicSet
Sets the harmonic of the specified Lock-In modulator.

The modulator is bound to a phase register (frequency generator), but it can work on harmonics. Harmonic 1 is the
base frequency (the frequency of the frequency generator).

Arguments:

- Modulator number (int) is the number that specifies which modulator to use. It starts from number 1
(=Modulator 1)

- Harmonic (int) is the harmonic of the specified Lock-In modulator. Valid values start from 1 (=base
frequency)

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

Page 80

SPECS

Lockin.ModHarmonicGet
Returns the harmonic of the specified Lock-In modulator.

The modulator is bound to a phase register (frequency generator), but it can work on harmonics. Harmonic 1 is the
base frequency (the frequency of the frequency generator).

Arguments:

- Modulator number (int) is the number that specifies which modulator to use. It starts from number 1
(=Modulator 1)

Return arguments (if Send response back flag is set to True when sending request message):

- Harmonic (int) is the harmonic of the specified Lock-In modulator. Valid values start from 1 (=base
frequency)

- Error described in the Response message>Body section

Lockin.ModPhasSet
Sets the modulation phase offset of the specified Lock-In modulator.
Arguments:

- Modulator number (int) is the number that specifies which modulator to use. It starts from number 1
(=Modulator 1)
- Phase (deg) (float32) is the modulation phase offset of the specified Lock-In modulator

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

Lockin.ModPhasGet
Returns the modulation phase offset of the specified Lock-In modulator.
Arguments:

- Modulator number (int) is the number that specifies which modulator to use. It starts from number 1
(=Modulator 1)

Return arguments (if Send response back flag is set to True when sending request message):

- Phase (deg) (float32) is the modulation phase offset of the specified Lock-In modulator

- Error described in the Response message>Body section

Page 81

SPECS

Lockin.ModAmpSet
Sets the modulation amplitude of the specified Lock-In modulator.
Arguments:

- Modulator number (int) is the number that specifies which modulator to use. It starts from number 1
(=Modulator 1)
- Amplitude (float32) is the modulation amplitude of the specified Lock-In modulator

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

Lockin.ModAmpGet
Returns the modulation amplitude of the specified Lock-In modulator.
Arguments:

- Modulator number (int) is the number that specifies which modulator to use. It starts from number 1
(=Modulator 1)

Return arguments (if Send response back flag is set to True when sending request message):

- Amplitude (float32) is the modulation amplitude of the specified Lock-In modulator

- Error described in the Response message>Body section

Lockin.ModPhasFreqSet
Sets the frequency of the specified Lock-In phase register/modulator.

The Lock-in module has a total of 8 frequency generators / phase registers. Each modulator and demodulator can be
bound to one of the phase registers.

This function sets the frequency of one of the phase registers.
Arguments:

- Modulator number (int) is the number that specifies which phase register/modulator to use. It starts from
number 1 (=Modulator 1)
- Frequency (Hz) (float64) is the frequency of the specified Lock-In phase register

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

Page 82

SPECS

Lockin.ModPhasFregGet

Returns the frequency of the specified Lock-In phase register/modulator.

The Lock-in module has a total of 8 frequency generators / phase registers. Each modulator and demodulator can be
bound to one of the phase registers.

This function gets the frequency of one of the phase registers.
Arguments:

- Modulator number (int) is the number that specifies which phase register/modulator to use. It starts from
number 1 (=Modulator 1)

Return arguments (if Send response back flag is set to True when sending request message):

- Frequency (Hz) (float64) is the frequency of the specified Lock-In phase register
- Error described in the Response message>Body section

Lockin.DemodSignalSet
Selects the demodulated signal of the specified Lock-In demodulator.
Arguments:

- Demodulator number (int) is the number that specifies which demodulator to use. It starts from number 1
(=Demodulator 1)

- Demodulator Signal Index (int) is the signal index out of the list of 128 signals available in the software.
To get a list of the available signals, use the Signals.NamesGet function.

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

Lockin.DemodSignalGet
Returns the demodulated signal of the specified Lock-In demodulator.
Arguments:

- Demodulator number (int) is the number that specifies which demodulator to use. It starts from number 1
(=Demodulator 1)

Return arguments (if Send response back flag is set to True when sending request message):

- Demodulator Signal Index (int) is the signal index out of the list of 128 signals available in the software.
To get a list of the available signals, use the Signals.NamesGet function

- Error described in the Response message>Body section

Page 83

SPECS

Lockin.DemodHarmonicSet
Sets the harmonic of the specified Lock-In demodulator.

The demodulator demodulates the input signal at the specified harmonic overtone of the frequency generator.
Harmonic 1 is the base frequency (the frequency of the frequency generator).

Arguments:

- Demodulator number (int) is the number that specifies which demodulator to use. It starts from number 1
(=Demodulator 1)

- Harmonic (int) is the harmonic of the specified Lock-In demodulator. Valid values start from 1 (=base
frequency)

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

Lockin.DemodHarmonicGet
Returns the harmonic of the specified Lock-In demodulator.

The demodulator demodulates the input signal at the specified harmonic overtone of the frequency generator.
Harmonic 1 is the base frequency (the frequency of the frequency generator).

Arguments:

- Demodulator number (int) is the number that specifies which demodulator to use. It starts from number 1
(=Demodulator 1)

Return arguments (if Send response back flag is set to True when sending request message):
- Harmonic (int) is the harmonic of the specified Lock-In demodulator. Valid values start from 1 (=base

frequency)
- Error described in the Response message>Body section

Page 84

SPECS

Lockin.DemodHPFilterSet
Sets the properties of the high-pass filter applied to the demodulated signal of the specified demodulator.

The high-pass filter is applied on the demodulated signal before the actual demodulation. It is used to get rid of DC
or low-frequency components which could result in undesired components close to the modulation frequency on the
demodulator output signals (X,Y).

Arguments:

- Demodulator number (int) is the number that specifies which demodulator to use. It starts from number 1
(=Demodulator 1)

- HP Filter Order (int) is the high-pass filter order. Valid values are from -1 to 8, where -1=no change,
O=filter off.

- HP Filter Cutoff Frequency (Hz) (float32) is the high-pass filter cutoff frequency in Hz, where 0 = no
change.

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

Lockin.DemodHPFilterGet
Returns the properties of the high-pass filter applied to the demodulated signal of the specified demodulator.

The high-pass filter is applied on the demodulated signal before the actual demodulation. It is used to get rid of DC
or low-frequency components which could result in undesired components close to the modulation frequency on the
demodulator output signals (X,Y).

Arguments:

- Demodulator number (int) is the number that specifies which demodulator to use. It starts from number 1
(=Demodulator 1)

Return arguments (if Send response back flag is set to True when sending request message):
- HP Filter Order (int) is the high-pass filter order. Valid values are from 0 to 8, where O=filter off

- HP Filter Cutoff Frequency (Hz) (float32) is the high-pass filter cutoff frequency in Hz
- Error described in the Response message>Body section

Page 85

SPECS

Lockin.DemodLPFilterSet
Sets the properties of the low-pass filter applied to the demodulated signal of the specified demodulator.

The low-pass filter is applied on the demodulator output signals (X,Y) to remove undesired components. Lower cut-
off frequency means better suppression of undesired frequency components, but longer response time (time
constant) of the filter.

Arguments:

- Demodulator number (int) is the number that specifies which demodulator to use. It starts from number 1
(=Demodulator 1)

- LP Filter Order (int) is the low-pass filter order. Valid values are from -1 to 8, where -1=no change,
O=filter off.

- LP Filter Cutoff Frequency (Hz) (float32) is the low-pass filter cutoff frequency in Hz, where 0 = no
change.

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

Lockin.DemodLPFilterGet
Returns the properties of the low-pass filter applied to the demodulated signal of the specified demodulator.

The low-pass filter is applied on the demodulator output signals (X,Y) to remove undesired components. Lower cut-
off frequency means better suppression of undesired frequency components, but longer response time (time
constant) of the filter.

Arguments:

- Demodulator number (int) is the number that specifies which demodulator to use. It starts from number 1
(=Demodulator 1)

Return arguments (if Send response back flag is set to True when sending request message):

- LP Filter Order (int) is the low-pass filter order. Valid values are from -1 to 8, where -1=no change,
O=filter off.

- LP Filter Cutoff Frequency (Hz) (float32) is the low-pass filter cutoff frequency in Hz, where 0 = no
change.

- Error described in the Response message>Body section

Page 86

SPECS

Lockin.DemodPhasRegSet
Sets the phase register index of the specified Lock-In demodulator.

Each demodulator can work on any phase register (frequency). Use this function to assign the demodulator to one of
the 8 available phase registers (index 1-8).

Use the LockIn.ModPhaFreqSet function to set the frequency of the phase registers.
Arguments:

- Demodulator number (int) is the number that specifies which demodulator to use. It starts from number 1
(=Demodulator 1)

- Phase Register Index (int) is the index of the phase register of the specified Lock-In demodulator. Valid
values are index 1 to 8.

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

Lockin.DemodPhasRegGet
Returns the phase register index of the specified Lock-In demodulator.

Each demodulator can work on any phase register (frequency). Use the Lockin.ModPhaFreqSet function to set the
frequency of the phase registers.

Arguments:

- Demodulator number (int) is the number that specifies which demodulator to use. It starts from number 1
(=Demodulator 1)

Return arguments (if Send response back flag is set to True when sending request message):
- Phase Register Index (int) is the index of the phase register of the specified Lock-In demodulator. Valid

values are index 1 to 8.
- Error described in the Response message>Body section

Page 87

SPECS

Lockin.DemodPhasSet
Sets the reference phase of the specified Lock-In demodulator.
Arguments:

- Demodulator number (int) is the number that specifies which demodulator to use. It starts from number 1
(=Demodulator 1)
- Phase (deg) (float32) is the reference phase of the specified Lock-In demodulator

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

Lockin.DemodPhasGet
Returns the reference phase of the specified Lock-In demodulator.
Arguments:

- Demodulator number (int) is the number that specifies which demodulator to use. It starts from number 1
(=Demodulator 1)

Return arguments (if Send response back flag is set to True when sending request message):

- Phase (deg) (float32) is the reference phase of the specified Lock-In demodulator
- Error described in the Response message>Body section

Lockin.DemodSyncFilterSet
Switches the synchronous (Sync) filter of the specified demodulator On or Off.

The synchronous filter is applied on the demodulator output signals (X,Y) after the low-pass filter. It is very good in
suppressing harmonic components (harmonics of the demodulation frequency), but does not suppress other
frequencies.

The sync filter does not output a continuous signal, it only updates the value after each period of the demodulation
frequency.

Arguments:

- Demodulator number (int) is the number that specifies which demodulator to use. It starts from number 1
(=Demodulator 1)

- Sync Filter (unsigned int32) switches the synchronous filter of the specified demodulator on or off, where
0=0ff and 1=On

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

Page 88

SPECS

Lockin.DemodSyncFilterGet
Returns the status (on/off) of the synchronous (Sync) filter of the specified demodulator.

The synchronous filter is applied on the demodulator output signals (X,Y) after the low-pass filter. It is very good in
suppressing harmonic components (harmonics of the demodulation frequency), but does not suppress other
frequencies.

The sync filter does not output a continuous signal, it only updates the value after each period of the demodulation
frequency.

Arguments:

- Demodulator number (int) is the number that specifies which demodulator to use. It starts from number 1
(=Demodulator 1)

Return arguments (if Send response back flag is set to True when sending request message):

- Sync Filter (unsigned int32) is the synchronous filter of the specified demodulator, where 0=Off and
1=0On
- Error described in the Response message>Body section

Lockin.DemodRTSignalsSet

Sets the signals available for acquisition on the real-time system from the specified demodulator.

Arguments:

- Demodulator number (int) is the number that specifies which demodulator to use. It starts from number 1
(=Demodulator 1)

- RT Signals (unsigned int32) sets which signals from the specified demodulator should be available on the
Real-time system. 0 sets the available RT Signals to X/Y, 1 sets them to R/phi.

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

Page 89

SPECS

Lockin.DemodRTSignalsGet
Returns which the signals are available for acquisition on the real-time system from the specified demodulator.

Arguments:

Demodulator number (int) is the number that specifies which demodulator to use. It starts from number 1
(=Demodulator 1)

Return arguments (if Send response back flag is set to True when sending request message):

RT Signals (unsigned int32) returns which signals from the specified demodulator are available on the
Real-time system. 0 means X/Y, and 1 means R/phi.

- Error described in the Response message>Body section

Page 90

SPECS

Lock-In Frequency Sweep

LockinFreqSwp.Open
Opens the Transfer function (Lock-In Frequency Sweep) module.

The transfer function does not run when its front panel is closed. To automate measurements it might be required to
open the module first using this V1.

Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

LockInFregSwp.Start
Starts a Lock-In frequency sweep.
Arguments:
- Get Data (unsigned int32) defines if the function returns the recorder channels and data

- Direction (unsigned int32) sets the direction of the frequency sweep. 0 means sweep down (from upper
limit to lower limit) and 1 means sweep up (from lower limit to upper limit)

Return arguments (if Send response back flag is set to True when sending request message):

- Channels names size (int) is the size in bytes of the recorder channels names array

- Channels names number (int) is the number of elements of the recorded channels names array

- Channels names (1D array string) returns the array of recorded channel names (strings), where each string
comes prepended by its size in bytes

- Data rows (int) is the number of rows of the returned data array (the first row is the swept frequency, and
each additional row contains the data of each recorded channel)

- Data columns (int) is the number of recorded points (number of steps plus 1)

- Data (2D array float32) returns the recorded data. The number of rows is defined by Data rows, and the
number of columns is defined by Data columns

- Error described in the Response message>Body section

Page 91

SPECS

LockinFreqSwp.SignalSet
Sets the sweep signal used in the Lock-In frequency sweep module.
Arguments:

- Sweep signal index (int) sets the sweep signal index out of the list of sweep signals to use, where -1 means
no signal selected

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

LockinFreqSwp.SignalGet
Returns the sweep signal used in the Lock-In frequency sweep module.
Arguments:

Return arguments (if Send response back flag is set to True when sending request message):

- Sweep signal index (int) is the sweep signal index selected out of the list of sweep signals, where -1 means
no signal selected
- Error described in the Response message>Body section

LockinFreqSwp.LimitsSet
Sets the frequency limits in the Lock-In frequency sweep module.
Arguments:

- Lower limit (Hz) (float32) sets the lower frequency limit in Hz
- Upper limit (Hz) (float32) sets the lower frequency limit in Hz

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

LockinFreqSwp.LimitsGet
Returns the frequency limits in the Lock-In frequency sweep module.
Arguments:

Return arguments (if Send response back flag is set to True when sending request message):

- Lower limit (Hz) (float32) is the lower frequency limit in Hz
- Upper limit (Hz) (float32) is the lower frequency limit in Hz
- Error described in the Response message>Body section

Page 92

SPECS

LockinFreqSwp.PropsSet
Sets the configuration of the Transfer Function (Lock-In frequency sweep) module.
Arguments:

- Number of steps (unsigned int16) is the number of frequency steps over the sweep range (logarithmic
distribution). The number of data points = number of steps + 1. If set to 0, the number of steps is left
unchanged

- Integration periods (unsigned int16) is the number of Lock in periods to average for one measurement.

- Minimum integration time (s) (float32) is the minimum integration time in seconds to average each
measurement

- Settling periods (unsigned int16) is the number of Lock in periods to wait before acquiring data at each
point of the sweep

- Minimum Settling time (s) (float32) is the minimum settling time in seconds to wait before acquiring data
at each point of the sweep

- Autosave (unsigned int32) automatically saves the data at end of sweep

- Save dialog (unsigned int32) will open a dialog box when saving the data

- Basename size (int) is the size (number of characters) of the basename string

- Basename (string) is the basename of the saved files

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

LockinFreqSwp.PropsGet
Returns the configuration of the Transfer Function (Lock-In frequency sweep) module.
Arguments:

Return arguments (if Send response back flag is set to True when sending request message):

- Number of steps (unsigned int16) is the number of frequency steps over the sweep range (logarithmic
distribution). The number of data points = number of steps + 1

- Integration periods (unsigned int16) is the number of Lock in periods to average for one measurement.

- Minimum integration time (s) (float32) is the minimum integration time in seconds to average each
measurement

- Settling periods (unsigned int16) is the number of Lock in periods to wait before acquiring data at each
point of the sweep

- Minimum Settling time (s) (float32) is the minimum settling time in seconds to wait before acquiring data
at each point of the sweep

- Autosave (unsigned int32) automatically saves the data at end of sweep

- Save dialog (unsigned int32) will open a dialog box when saving the data

- Basename size (int) is the size (number of characters) of the basename string

- Basename (string) is the basename of the saved files

- Error described in the Response message>Body section

Page 93

SPECS
Utilities
Util.SessionPathGet
Returns the session path.

Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):

- Session path size (int) is the number of characters of the Session path string
- Session path (string)
- Error described in the Response message>Body section

Util.SessionPathSet
Sets the session folder path.
Arguments:

- Session path size (int) is the number of characters of the Session path string

- Session path (string)

- Save settings to previous (unsigned int32) determines if the settings are saved to the previous session file
before changing it, where O=False and 1=True

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

Util.SettingsLoad
Loads the settings from the specified .ini file.
Arguments:

- Settings file path size (int) is the number of characters of the Settings file path string

- Settings file path (string) is the path of the settings file to load

- Load session settings (unsigned int32) automatically loads the current settings from the session file
bypassing the settings file path argument, where 0=False and 1=True

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

Page 94

SPECS

Util.SettingsSave
Saves the current settings in the specified .ini file.
Arguments:

- Settings file path size (int) is the number of characters of the Settings file path string

- Settings file path (string) is the path of the settings file to save

- Save session settings (unsigned int32) automatically saves the current settings into the session file
bypassing the settings file path argument, where 0=False and 1=True

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

Util.LayoutLoad
Loads a layout from the specified .ini file.
Arguments:

- Layout file path size (int) is the number of characters of the layout file path string

- Layout file path (string) is the path of the layout file to load

- Load session layout (unsigned int32) automatically loads the layout from the session file bypassing the
layout file path argument, where O=False and 1=True

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

Util.LayoutSave
Saves the current layout in the specified .ini file.
Arguments:

- Layout file path size (int) is the number of characters of the layout file path string
- Layout file path (string) is the path of the layout file to save

- Save session layout (unsigned int32) automatically saves the current layout into the session file bypassing

the layout file path argument, where O=False and 1=True
Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

Page 95

SPECS

Util.Lock
Locks the Nanonis software.

Launches the Lock modal window, preventing the user to interact with the Nanonis software until unlocking it
manually or through the Util.UnLock function.

Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

Util.UnLock

Unlocks the Nanonis software.

Closes the Lock modal window which prevents the user to interact with the Nanonis software.
Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):

Error described in the Response message>Body section

Uti.LRTFregSet
Sets the Real Time controller frequency.
Arguments:
- RT frequency (float32) is the Real Time frequency in Hz

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

Util.LRTFreqGet
Gets the Real Time controller frequency.
Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):

- RT frequency (float32) is the Real Time frequency in Hz
- Error described in the Response message>Body section

Page 96

SPECS

Util. AcgPeriodSet
Sets the Acquisition Period (s) in the TCP Receiver.
Arguments:

- Acquisition Period (s) (float32)

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

Util. AcqPeriodGet
Gets the Acquisition Period (s) in the TCP Receiver.
Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):

- Acquisition Period (s) (float32)
- Error described in the Response message>Body section

Uti.LRTOversamplSet
Sets the Real-time oversampling in the TCP Receiver.

The 24 signals are oversampled on the RT engine before they are sent to the host. The oversampling affects the
maximum Spectrum Analyzer frequency and other displays.

Arguments:
- RT oversampling (int)

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

Util. RTOversamplGet
Returns the Real-time oversampling in the TCP Receiver.
Arguments: None

Return arguments (if Send response back flag is set to True when sending request message):

- RT oversampling (int)
- Error described in the Response message>Body section

Page 97

SPECS

Util. Quit

Quits the Nanonis software with the option to save settings, layout and signals (same functionality provided by the
dialog window that pops-up when quitting the software through the File menu).

Arguments:

- Use the stored values (unsigned int32) automatically ignores the rest of the arguments (O=False and
1=True) and saves settings, layout, and signals according to the last time the software quit.
This configuration is stored in the Main-Options settings.ini file located in the Certificate folder.

- Settings name size (int) is the number of characters of the Settings name string

- Settings name (string) is the name of the settings file to save when quitting. The list of settings can be
found in the Settings section of the Main Options under the File menu.
If left empty, no settings are saved (unless the argument “Use the stored values” is 1).

- Layout name size (int) is the number of characters of the Layout name string

- Layout name (string) is the name of the layout file to save when quitting. The list of layouts can be found
in the Layouts section of the Main Options under the File menu.
If left empty, no layout is saved (unless the argument “Use the stored values” is 1).

- Save signals (unsigned int32) automatically saves (0=False and 1=True) the signal configuration currently
set in the Signals Manager if it has been changed.
The signals configuration is stored in the Signals settings.ini file located in the Certificate folder.

Return arguments (if Send response back flag is set to True when sending request message):

- Error described in the Response message>Body section

Page 98

SPECS

File
File.datLoad
Returns the contents (Channel names, Data, and Header) of a .dat file saved with the Nanonis software.

Arguments:

- File path size (int) is the number of characters of the File path string

- File path (string) is the path of the .dat file to load

- Read only header (unsigned int32) defines if only the Header is returned or if also the Channel names &
Data are returned, where 0O=False and 1=True

Return arguments (if Send response back flag is set to True when sending request message):

- Channels names size (int) is the size in bytes of the Channels names string array

- Number of channels (int) is the number of elements of the Channels names string array

- Channels names (1D array string) returns the list of channels names. The size of each string item comes
right before it as integer 32

- Data rows (int) defines the number of rows of the Data array

- Data columns (int) defines the number of columns of the Data array

- Data (2D array float32) returns the data stored in the file

- Header rows (int) defines the number of rows of the Header array

- Header columns (int) defines the number of columns of the Header array

- Header (2D array string) returns the header line by line and the attribute followed by its value (i.e.
Attribute 1->Value->Attribute 2->Value...).
The size of each string item comes right before it as integer 32

- Error described in the Response message>Body section

Page 99

