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Summary

There are generally four categories of trajectory data: mobility of people, mobility of trans-
portation vehicles, mobility of animals, and mobility of natural phenomena (Zheng, 2015).
The examples in this paper focus on animal motion, however it is useful for other domains.

Animal tracking is important for fields as diverse as ethology, optimal foraging theory, and
neuroscience. In recent years, advances in machinelearning have led to breakthroughs in
pattern recognition and data modeling (Arac et al., 2019). A tool that supports modeling
in the language of state-of-the-art predictive models (Amirian et al., 2019; Chandra et al.,
2019; Liang et al., 2019), and which provides researchers with a high-level AP for feature
extraction, modeling and visualization is needed.

Traja is a Python package for statistical analysis and computational modelling of trajectories.
Traja extends the familiar pandas (McKinney, 2010; team, 2020) methods by providing a
pandas accessor to the df .traja namespace upon import. The API for Traja was designed
to provide an object-oriented and user-friendly interface to common methods in analysis and
visualization of animal trajectories. Traja also interfaces well with relevant spatial analysis
packages in R (e.g., trajr (McLean & Volponi, 2018b), adehabitat (Calenge, 2006)), Shapely
(Gillies & others, 2007-), and MovingPandas (Graser, 2019) allowing rapid prototyping and
comparison of relevant methods in Python.

The library can be installed to the local Python environment by use of the provided setuptools
script (setup.py). It can also be downloaded from the Python Package Index by use of the
package manager pip:

pip install traja
or with the conda package manager using the conda-forge channel:

conda install -c conda-forge traja

A comprehensive source of documentation is provided on the home page (http://traja.readthedocs.io).

Statement of Need

The data used in this project includes animal trajectory data provided by Tecniplast S.p.A.!,
manufacturer of laboratory animal equipment based in Varese, Italy, and Radboud Univer-
sity, Nijmegen, Netherlands. Tecniplast provided the mouse locomotion data collected with
their Digital Ventilated Cages (DVC). The extracted coordinates of the mice requires further
analysis with external tools. Due to lack of access to equipment, mouse home cage data
is rather difficult to collect and analyze, thus few studies have been done onhomecage data.
Furthermore, researchers who are interested in developing novel algorithms must implement
from scratch much of the computational and algorithmic infrastructure for analysis and vi-
sualization. By packaging a library that is particularly useful for animal locomotion analysis,
future researchers can benefit from access to a high-level interface and clearly documented
methods for their work.

Thttp://www.tecniplast.it
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Design Principles

Traja targets Python because of its popularity with data scientists. The library leverages the
powerful pandas library, while adding methods specifically for trajectory analysis.

When importing traja, the traja namespace registers itself within the pandas dataframes
namespace via df . traja.

This lets traja work directly with panda’s internal objects:

>>> df = pd.DataFrame({'x':[0,1,2], 'y':[2,3,4]1})
>>> df.traja.center

(1.0, 3.0)

>>> df .traja.plot()

Data, e.g., x and y coordinates, are stored as one-dimensional labelled arrays as instances of
the pandas native Series class. Further, subclassing the pandas DataFrame allows creating
an API that mirrors the pandas API which is familiar to most data scientists, thus reducing
the barrier for entry while providing methods and properties specific to trajectories for rapid

prototyping.

Mouse Locomotion Data

The data samples presented throughout this paper” are in rectangular (x, y) Cartesian co-
ordinates, reflecting the mouse home-cage (25x12.5 cm) dimensions. Analytical methods
relevant to 2D rectilinear analysis of highly constrained spatial coordinates are thus primarily

considered.
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Figure 1: Traja package diagram

High volume data like animal trajectories has an increased tendency to be missing data due to
data collection issues or noise. Filling in the missing data values, referred to as data imputation,
is achieved with a wide variety of statistical or learning-based methods. As previously observed,
data science projects typically require at least 95% of the time to be spent on cleaning, pre-
processing and managing the data (Bosch et al., 2021). Therefore, several methods relevant
to preprocessing animal data are demonstrated throuhghout the following sections.

2This dataset has been collected for other studies of our laboratory (Shenk et al., 2020).
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Overview of the Library

The software is structured into several modules. This section surveys the structure of the
codebase and elaborates on implementation strategies, but does not constitute a full docu-
mentation. For a detailed API reference, the reader is referred to the HTML documentation®.
The import classes are the TrajaDataFrame class located in frame.py and TrajaAccessor
located in accessor.py. The root package diagram is shown in Figure 1.

A high-level accessor (TrajaAccessor) provides access to data stored within the pandas
dataframe, as well as methods within trajectory and plotting modules:

import pandas as pd

Q@pd.api.extensions.register_dataframe_accessor("traja")
class TrajaAccessor(object):

def __init__(self, pandas_obj):
self._validate(pandas_obj)
self._obj = pandas_obj

Additionally TrajaDataFrame is a subclass of the pandas DataFrame, allowing instantiation
of a TrajaDataFrame directly from an array of x,y coordinates:

import numpy as np
xy = np.array([[0,1,2],[1,2,3]1])
df = traja.TrajaDataFrame.from_xy (xy)

The trajectory module

The trajectory module contains the methods relevant to preprocessing, analysis and mod-
elling trajectories. A complete table of methods included as of writing are described in Table
1.

Table 1 traja.trajectory functionalities

Name

Function

angles
calc_derivatives
calc_displacement
calc_heading
calc_laterality
calc_turn_angle
calc_flow_angles
cartesian_to__polar
coords_to_ flow
distance__between

distance

generate

get_derivatives

Returns angles w.r.t. x-axis
Computes the step displacement % and displacement time
Computes the displacement % between consecutive indices
Computes the direction of travel for each step

Compute number of right and left turns

Computes the turn angle theta between time steps
Computes the average flow between grid indices

Converts x,y coordinates to polar coordinates v and 6
Computes the average flow between grid indices

Computes distance between trajectories with Hausdorff or
dynamic time warping methods

Computes the distance from start to end of trajectory, also
called net distance, displacement, or bee-line from start to
finish

Generate random walk with normally distributed step lengths
and turn angles

Computes the first and second-order derivatives of position

3https://traja.readthedocs.io
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Name

Function

grid__coordinates
length

polar_to_z
rediscretize__points
resample_time
rotate

smooth_sg
speed__intervals

step_lengths
to_shapely
transition__matrix
transitions

Bin trajectory into grid coordinates

Computes the cumulative length of trajectory

Converts polar coordinates v and 6 to complex number Z
Computes rediscretized points with given step length
Resamples time by given step_time

Rotate trajectory angle degrees in radians about origin
Smooth trajectory with Savitzky-Golay filtering

Computes intervals where speed is faster or slow than given
parameters

Calculate step length

Convert to Shapely object

Computes the transition matrix from binned trajectory
Computes the first-order Markov model for transitions between
grid cells

The plotting module

The plotting module contains all methods relevant to visualization of trajectories, features
and models. A complete table of methods included as of writing are described in Table

Table 2 traja.plotting functionalities

Name Function

animate Animate trajectory

bar_plot Create bar plot

color_dark Color dark periods (nighttime)

fill_ci Fill confidence intervals

find_runs Find runs of consecutive times in an array
plot Generic plotting method

plot_3d Plot 3D

plot_actogram
plot_autocorrelation
plot_collection
plot_contour
plot_clustermap

Plot actogram showing activity as spikes

Plot autocorrelation of coordinate (Figure 7)

Plot mulitple trajectories

Plot contour map

Plot clusterred actograms using hierarchical agglomerative
clustering

plot_{flow,quiver,stream,surface} Plot flow between grid coordinates

plot_periodogram

plot_transition_graph
plot_transition_matrix

polar_bar
plot_prediction

trip_grid

Plot power spectrum (Figure 8)

Plot transition graph between grid coordinates

Plot transition matrix (paragraph 2.1.11)

Plot polar bar chart with step lengths and turn angles
Plot and visualize neural network prediction of trajectory
(subsubsection 2.1.11)

Plot trip grid as heatmap (Figure 3)

The rutils module

The rutils module* contains all methods relevant to interfacing R packages. It includes
interfaces for: - moveHMM - adehabitat - trajr as well as respective plotting methods.

Table 3 R packages with interfaces in Traja

4rutils available in version 0.2 - 0.2.3 and is removed in version 0.2.4
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R Package Description

adehabitat A collection of tools for the analysis of habitat selection by animals.
moveHMM An R package for the analysis of animal movement data

trajr A toolkit for the numerical characterisation and analysis of the

trajectories of moving animals

Documentation

The entire codebase is liberally documented using the Sphinx documentation processor|[~5].
The documentation contains further documentation with a detailed user guide and installation
instructions. At the time of writing, the HTML documentation and API reference is hosted
at https://traja.readthedocs.io. [75]: http://www.sphinx-doc.org

Spatial Trajectory

A spatial trajectory is a trace generated by a moving object in geographical space. Trajectories
are traditionally modelled as a sequence of spatial points like:

Tk: = {Pk,h Pkg, }

where Py;(i > 1) is a point in the trajectory.

Generating spatial trajectory data via a random walk is possible by sampling from a distribution
of angles and step sizes McLean & Volponi (2018a). A correlated random walk (Figure 4) is
generated with:

from traja import generate
generate (n=1000) #1000 steps

Spatial Transformations

Transformation of trajectories can be useful for comparing trajectories from various geospatial
coordinates, data compression, or simply for visualization purposes.

Rotation Rotation of a 2D rectilinear trajectory is a coordinate transformation of orthonormal
bases x and y at angle 6 (in radians) around the origin defined by

] = [cosﬁ ism@} m

sind  cosl | |y

This is achieved with a clockwise angle of 20 degrees, for example, by
df .traja.rotate(angle=-20)
and angle 8 where 8 € R : § € [—180, 180].

Trip Grid

One strategy for compressing the representation of trajectories is binning the coordinates to
produce an image as shown in Figure [fig:tripgrid].
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Figure 2: Trip grid image generation from mouse trajectory.

[fig:tripgrid_gen]

Allowing computation on discrete variables rather than continuous ones has several advan-
tages stemming from the ability to store trajectories in a more memory efficient form.> The
advantage is that computation is generally faster, more data can fit in memory in the case of
complex models, and item noise can be reduced.

Creation of an M x N grid allows mapping trajectory T} onto uniform grid cells. Generalizing
the nomenclature of (Wang, 2017) to rectangular grids, Cpn(1 < m < M;1 < n < N)
denotes the cell in row m and column n of the grid. Each point Py; is assigned to a cell
C(m,n). The result is a two-dimensional image M * N image Ij, where the value of pixel
Ix(m,n)(1 < m,n < M) indicates the relative number of points assigned to cell C,,,.
Partionining of spatial position into separate grid cells is typically preceded by generation of
hidden Markov models (Jeung et al., 2007) (see below).

5In this experiment, for example, data can be reduced from single-precision floating point (32 bits) to
byteint (8 bits) format.
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Figure 3: Visualization of heat map from bins generated with df.trip_grid. Note regularly spaced
artifacts (bright yellow) in this sample due to a bias in the sensor data interpolation. This type of noise
can be minimized by thresholding or using a logarithmic scale (traja.trip_grid(trj, log=True),
as shown above.

Feature Scaling

Feature scaling is common practice for preprocessing data for machine learning (Grus, 2015)
and is essential for even application of methods to attributes. For example, a high dimensional
feature vector x € R™ where some attributes are in (0,100) and others are in (—1,1) would
lead to biases in the treatment of certain attributes. To limit the dynamic range for multiple
data instances simultaneously, scaling is applied to a feature matrix X = {x1,X2,...,XN} €
R™*N where n is the number of instances.
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Figure 4: Generation of a random walk

Min-Max Scaling
To guarantee that the algorithm applies equally to all attributes, the normalized feature matrix

X is rescaled into range (0,1) such that

v X=X
X - Xmaz—Xmin

Standardization

The result of standardization (or Z-score normalization) is that the features will be rescaled
to have the property of a standard normal distribution with 4 = 0 and 0 = 1 where p is the
mean (average) of the data and o is the standard deviation from the mean. Standard scores
(also known as z-scores are calculated as follows:

z =Lk
o

Scale
Scaling a trajectory is performed with
df .traja.scale(factor)

for factor f where f € R: f € (—o0,400).

Smoothing

Smoothing can also be achieved with traja using Savitzky-Golay filtering with smooth_sg
(Savitzky & Golay, 1964).
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Temporal Transformations
Resampling

Trajectories can be resampled by time or by step length. This can be useful for aligning
trajectories from various data sources and sampling rates or reducing the number of data
points to improve computational efficiency. Care must be taken to select a time interval
which maintains information on the significant behavior. If the minimal time interval observed
is selected for the points, calculations will be computationally intractable for some systems.
If too large of an interval is selected, we will fail to capture changes relevant to the target
behavior in the data.

Resampling by time is performed with resample_time. Rediscretizing by step length is
performed with rediscretize (Figure [fig:step]).
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Figure 5: Resampling x and y values over time by step length is performed with rediscretize().

For example, Fortasyn dataset (Shenk et al., 2020) which is demonstrated in this paper was
sampled at 4 Hz and converted to single-precision floating point data. Pandas dataframes
store this data in 4 bytes, thus there are approximately 4,147,200° bytes required to store data
for x and y dimensions plus an index reference for a single day. In the case of (Shenk et al.,
2020) were 24 mice observed over 35 days. This translates to 3.4 GB (10%) to 29 TB (10'?)
of storage capacity respectively, for the uncompressed datasets prior to feature engineering.
Thus resampling can be a useful way to reduce the memory footprint for memory constrained
processes that have to fit into a standard laptop with 8 GB memory space. A demonstration of
how resampling can reduce precision but still be useful for trajectory data analysis is provided
in Figure 5, applied to a sample from the Fortasyn experiment (Shenk et al., 2020). For
identifying broad effects such as cage crossings, for example, data can be downsampled to a
lower frequency such as 0.1 Hz, reducing the memory footprint by a factor of 40 (4 Hz/0.1
Hz) and providing significant speedups for processing.

64 x 4 Hz x 60 seconds x 60 minutes x 24 hours x 3 features (x,y, and time)
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Movement Analysis

Distance traveled

Distance traveled is a common metric in animal studies - it accounts for the total distance
covered by the animal within a given time interval. The distance traveled is typically quantified
by summing the square straight-line displacement between discretely sampled trajectories Solla
et al. (1999). Alternative distance metrics for the case of animal tracking are discussed in
(Noonan et al., 2019).

Let p(t) = [p.(t),py(t)] be a 2 x 1 vector of coordinates on the ground representing the
position of the animal at time t. Then, the distance traveled within the time interval ¢; and
to can be computed as a sum of step-wise Euclidean distances

p(t1,t2) = E?:tlJrld(t)?

where

() = /(e () = pa(t — D) + (py (£) — py(t — 1))?

is the Euclidean distance between two positions in adjacent time samples.
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Figure 6: Velocity histogram from one day of mouse activity.

Speed

Speed or velocity is the first derivative of centroids with respect to time. Peak velocity in a
home cage environment is perhaps less interesting than a distribution of velocity observations,
as in Figure 6. Additionally, noise can be eliminated from velocity calculations by using a
minimal distance moved threshold, as demonstrated in (Shenk et al., 2020). This allows
identifying broad-scale behaviors such as cage crossings.

Turn Angles

Turn angles are the angle between the movement vectors of two consecutive samples. They
can be calculated with calc_turn_angles.
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Laterality
Laterality is the preference for left or right turning and a /aterality index is defined as:

RT

Ll = ———
LT + RT

where RT is the number of right turns observed and LT is the number of left turns observed.
Turns are counted within a left turn angle € (0, 90) and right turn angle € (—6, —90). A turn
is considered to have a minimal step length. In Traja it is computed with

calc_laterality(trj, dist_thresh, angle_thresh)

and returns a 2-tuple of the number of right and left turns.

Advanced Techniques

Periodic Analysis

Periodic behaviors are a consequence of the circadian rhythm aswell as observing expression
of underlying cognitive traits. Some basic implementations of periodic analysis of mouse cage
data are presented.

Autocorrelation

Autocorrelation is the correlation of a signal with a delayed copy of itself as a function of the
decay. Basically, it is similarity of observations as a function of the time lag between them. It
is computed with autocorrelation and plotted with plot_autocorrelation, as in Figure 7.

Autocorrelation of Mouse Position in Y Dimension
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o
o
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0 2000 4000 6000 8000 10000 12000 14000
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Figure 7: Autocorrelation of the y-dimension reveals daily (1440 minutes) periodic behavior

Power Spectrum

Power spectrum of a time-series signal can be estimated with plot_periodogram (Figure 8).
This is useful for analyzing signals, for example, the influence of neuromotor noise on delays
in hand movement (Van Galen et al., 1990).
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Figure 8: Power Spectral Density. One day of activity reveals fairly smooth power spectral density.

Algorithms and Statistical Models

Machine Learning for Time Series Data

Machine learning methods enable researchers to solve tasks computationally without explicit
instructions by detecting patterns or relying on inference. Thus they are particularly relevant
for data exploration of high volume datasets such as spatial trajectories and other multivariate
time series.

Principal Component Analysis

The ability to identify patterns between groups and over time is often constrained by computa-
tional resources. Finding representations of the data which allow reducing the dimensionality
of the data is thus a valuable preprocessing step in exploratory data analysis as wel as machine
learning applications. A common method of reducing the dimensionality of high dimensional
data is to identify the directions which explain most of the variance via eigenvector decompo-
sition of the covariance matrix E.
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PCA of Mouse Trajectory (Fortasyn) Dataset
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Figure 9: PCA of Fortasyn trajectory data. Daily trajectories (day and night) were binned into 8x8
grids before applying PCA.

Principal Component Analysis projects the data into a linear subspace with a minimum loss
of information by multiplying the data by the eigenvectors of the covariance matrix.

This requires converting the trajectory to a trip grid (see Figure 3) and performing PCA on
the grid in 2D (Figure 9) or 3D (Figure 10). Structure in the data is visible if light and dark
time periods are compared.

Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is a method for identifying a manifold separating two or
more labelled groups. It searches for a linear transformation of the data by maximising the
between-class variance and minimising the within-class variance. It has been used to identify
symmetry of heavy object lifting trajectories (Jeong et al., 2016). LDA assumes normal
distribution of attributes, and identies the probability that a new set of inputs belong to a
given class. Since LDA takes into account class labels, and there are only binary labels in
the present dataset, it provides an identical view to PCA as shown in Figure 11. When the
X, y attributes are not normally distributed, which is often the case, methods such as logistic
regression are preferred, since it has fewer assumptions and restrictions (Hastie et al., 2001).
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Figure 10: 3D PCA of Fortasyn trajectory data. Daily trajectories (day and night) were binned into
8x8 grids before applying PCA.

LDA of Mouse Trajectory (Fortasyn) Dataset
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Figure 11: LDA of Fortasyn trajectory data.
Clustering

Clustering of trajectories is an extensive topic with applications in geospatial data, vehicle and
pedestrian classification, as well as molecular identification. K-Means clustering is an iterative
unsupervised learning method that assigns a label to data points based on a distance function
(Bishop, 2006). Clustering of trajectories is achieved with by first extracting displacements
with

traja.calc_displacements()

and wrapping seaborn's clustermap’ object:

Thttps://seaborn.pydata.org/generated /seaborn.clustermap.html
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K-Means Clustering on PCs
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Figure 12: K-Means clustering on the results of the PCA shown above reveals a high accuracy of
classification, with a few errors. Cluster labels are generated by the model.

plot_clustermap(displacements, ...)

Hierarchical Agglomerative Clustering

Clustering spatial trajectories has broad applications. For mice, hierarchical agglomerative
clustering can be used to identify similarities between groups, for example periodic activity
and location visit frequency. Clustering actograms is possible with df.traja.plot_cluster.

Gaussian Processes

Gaussian Processes is a non-parametric method which can be used to model spatial trajectories.
This method is not currently implemented in Traja and is thus outside the scope of the current
paper, however the interested reader is directed to the excellent text on Gaussian processes by
Rasmussen and Williams ((Rasmussen & Williams, 2006)) for a complete reference and (Cox
et al., 2012) for an application to spatial trajectories.

Other Methods
Graph Model

A graph is a pair G = (V, E) comprising a set of vertices and a set of connecting edges. A
probabilistic graphical model of a spatial occupancy grid can be used to identify probabilities
of state transitions between nodes. A basic example is given with hidden Markov models
below.
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Figure 13: Transition matrix. Rows and columns are flattened histogram of a grid 20 cells high and
10 cells wide. Spatially adjacent grid cells are visible at a spacing of -11, -10, -9, 1, 10, and 11 cells
from the diagonal. The intensity of pixels in the diagonal represents relative likelihood to stay in the
same position.

Hidden Markov Models

Transition probabilities are most commonly modelled with Hidden Markov Models (HMM)
because of their ability to capture spatial and temporal dependencies. A recent introduction
to these methods is available provided by (Patterson et al., 2017). HMMs have successfully
been used to analyze movement of caribou (Franke et al., 2004), fruit flies (Holzmann et al.,
2006), and tuna (Patterson et al., 2018), among others. Trajectories are typically modelled
as bivariate time series consisting of step length and turn angle, regularly spaced in time.

Traja implements the rectangular spatial grid version ofHMMwith transitions.

The probability of transition from each cell to another cell is stored as a probability within the
transition matrix. This can further be plotted (eg, Figure 13) with plot_transition_matr
ix.

Convex Hull

The convex hull of a subtrajectory is the set X of points in the Euclidean plane that is the
smallest convex set to include X. For computational efficiency, a geometric k-simplex can
be plotted covering the convex hull by converting to a Shapely object and using Shapely's
convex_hull method. plot_rolling_hull performs this. Plotting the convex hull in 3D
allows seeing the change of the range of motion over time via plot_rolling_hull_3d.

Recurrent Neural Networks

In recent years, deep learning has transformed the field of machine learning. For example, the
current state of the art models for a wide range of tasks, including computer vision, speech
to text, and pedestrian trajectory prediction, are achieved with deep neural networks. Neural
networks are essentially sequences of matrix operations and elementwise function application
based on a collection of computing units known as nodes or neurons 1.3. These units per-
form operations, such as matrix multiplication on input features of a dataset, followed by
backpropagation of errors, to identify parameters useful for approximating a function.
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Figure 14: Neural network architectures available in Traja

Recurrent Neural Networks (RNNs) are a special type of Neural Networks that use a state
S(‘t;—1‘) from the previous timestep ‘t;_1‘ alongside X($t_i$) as input. They output a
prediction Y (‘¢;¢) and a new state ‘S(t;)¢ at every step. Utilising previous states makes RNNs
particularly good at analyzing time series like trajectories, since they can process arbitrarily
long inputs. They remember information from previous time steps X (‘t;—‘), ..., X (‘t;—1°)
when processing the current time step X (‘¢;°).

Trajectory prediction lets researchers forecast the location and trajectory of animals. Where
this technique works well, it is also a sign that the trajectory is highly regular and, funda-
mentally, follows certain rules and patterns. When tracking an animal live, it would also let
researchers predict when it will arrive at a particular location, or where it will go, letting them
rig cameras and other equipment ahead of time.

A particularly interesting type of RNN is the Long Short Term Memory (LSTM) architecture.
Their layers use stacks of units, each with two hidden variables - one that quickly discards
old states and one that slowly does so - to consider relevant information from previous time
steps. They can thus look at a trajectory and determine a property of the animal — whether
it is sick or injured, say — something that is time-consuming and difficult to do by hand. They
can also predict future time steps based on past ones, letting researchers estimate where the
animal will go next. LSTMs can also classify trajectories, determining whether a trajectory
comes from an animal belonging in a specific category. This lets researchers determine how a
controlled or semi-controlled variable (e.g., pregnancy) changes the movement pattern of an
animal.

Traja implements neural networks by extending the widely used open source machine learning
library PyTorch, primarily developed by Facebook Al Research Group. Traja allows framework-
agnostic modeling through data loaders designed for time series. In addition, the Traja package
comes with several predefined model architectures which can be configured according to the
user’'s requirements.

Because RNNs work with time series, the trajectories require special handling. The traja.d
ataset.MultiModalDataLoader efficiently groups subsequent samples and into series and
splits these series into training and test data. It represents a Python iterable over the dataset
and extends the PyTorch Dataloader class, with support for = random, weighted sampling,
= data scaling, = data shuffling, = train/validation/test split.

MultiModalDataloader accepts several important configuration parameters and allows
batched sampling of the data. The two constructor arguments n_past and n_future specify
the number of samples that the network will be shown and the number that the network will
have to guess, respectively. batch_size is generally in the dozens and is used to regularise
the network. The MultiModalDataLoader has a signature:

MultiModalDatalLoader (df,
batch_size=10,
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n_past=10, # number of time steps to learn the time series

n_future=5, # number of time steps to predict

split_by_id=True) # whether to split data by trajectory id or
by time steps for each id

A sample implementation of LSTM for trajectory forecasting is as follows:

from traja.models.predictive_models.lstm import LSTM

# more LSTM layers learn more complex patterns but risk overfitting
num_layers = 2
# wider layers learn more complex patterns but risk overfitting
hidden_size = 32
# t1gnore some network comnections (improves generalization)
dropout = 0.1
model = LSTM(input_size=input_size,

hidden_size=hidden_size,

num_layers=num_layers,

output_size=output_size,

dropout=dropout,

batch_size=batch_size,

The RNNs also need to be trained - this is done by the high-level Trainer class below. It per-
forms nonlinear optimisation with a Stochastic Gradient Descent-like algorithm. The Trainer
class by default implements the Huber loss function (Huber, 1964), also known as smooth L;
loss, which is a loss function commonly used in robust regression:

Ls(a) 1a? for |a| <9,
a) =
0 6(lal — 36), otherwise.

In comparison to mean-squared error loss, Huber loss is less sensitive to outliers in data:
it is quadratic for small values of a, and linear for large values. It extends the PyTorch
SmoothL1Loss class, where the d parameter is set to 1[{"9]. Acommon optimization algorithm
is ADAM and is Traja's default, but several others are provided as well. Although training
with only a CPU is possible, a GPU can provide a 40 — 100z speedup (Arpteg et al., 2018).
[79]: https://pytorch.org/docs/stable/generated /torch.nn.SmoothL1Loss.html

Recurrent Autoencoder Networks

Traja can also train autoencoders to either predict the future position of a track or classify the
track into a number of categories. Autoencoders embed the time series into a time-invariant
latent space, allowing representation of each trajectory or sub-trajectory as a vector (Figure
15). A class of well-separated trajectories would then be restricted

Assign each point to Calculate 2D histogram

Mouse trajecto .
wn a trip grid cell from time spent Output: Image I

ground truth Sample trajectory

Hl> ‘‘‘‘‘‘ q> ------ q> ...... Hl>

Figure 15: Example of how autoencoders compress data such as an image to an embedding vector.
Source: Author's Towards Data Science post (Shenk, 2020).
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A sample implementation of high-level API for training neural networks for time-series data,
including autoencoders, variational autoencoder, and LSTMs is:

from traja.models.train import HybridTrainer
optimizer_type = 'Adam' # Nonlinear optimiser with momentum
loss_type = 'huber'

# Trainer

trainer = HybridTrainer (model=model,
optimizer_type=optimizer_type,
loss_type=loss_type)

# Train the model to forecast the trajectory
trainer.fit(data_loaders,

model_save_path,

epochs=10,

training_mode='forecasting')

to a region of the latent space. The technique is similar to Word2vec (Mikolov et al., 2013),
where words are converted to a 100+ dimensional vector. In this approach, forecasting and
classification are both preceded by training the data in an autoencoder, which learns an
efficient representation of the data for further computation of the target function.
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Figure 16: LSTM implementation for trajectory prediction

Traja can train a classifier that works directly on the latent space output; since each class of
trajectories converges to a distinct region in the latent space, this technique is often superior
to classifying the trajectory itself. Traja trains classifiers for both Autoencoderstyle and Varia-
tional Autoencoder-style RNNs. When investigating whether animals’ behaviors have changed,
or whether two experimental categories of animals behave differently, this unstructured data
mining can suggest fruitful avenues for investigation.

A sample usage of multimodal autoencoder combining training for both forecasting and clas-
sification tasks follows:
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from traja.models.generative_models.ae import MultiModelAE
from traja.models.train import HybridTrainer

# Because we will also train a classtifier,
# we need to provide extra parameters.
num_classifier_layers=4,
classifier_hidden_size=32,

num_classes=9

model = MultiModelAE(input_size=2,
num_past=num_past,
batch_size=batch_size,
num_future=num_future,
lstm_hidden_size=32,
num_lstm_layers=2,
output_size=2,
latent_size=10,
batch_first=True,
dropout=0.1,
reset_state=True,
bidirectional=False,
num_classifier_layers=num_classifier_layers,
classifier_hidden_size=classifier_hidden_size,
num_classes=num_classes)

optimizer_type = 'Adam' # Nonlinear optimiser with momentum
loss_type = 'huber'

# Trainer

trainer = HybridTrainer (model=model,
optimizer_type=optimizer_type,
loss_type=loss_type)

# Train the model to forecast the trajectory, so we have a valid
# latent space
trainer.fit(data_loaders,
model_save_path,
epochs=10,
training mode='forecasting')
# Now optimise the classification head
trainer.fit(data_loaders,
model_save_path,
epochs=10,
training mode='classification')
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