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1 Introduction

Consider the problem

min 1 Z <yZ loglog (1 + ewTI") —log (1+ ewai)) = l(w), (1)

weRd N “ A
i=1
where A > 0 is a fixed constant. To ease notation, let y; := g;/A. Let

li(w) == ¢(w ' x;), where ¢;(a):=log(1+e*) —y;loglog (1 +e%).

2 Bounding second derivative

Here we will show that the second derivative of f(w) and the fj(w)’s has an
upper bound.

Lemma 2.1. Let
X = [x1,...,24]
1
D(a) := a x diag(y1,...,yn) + ZI.
Numerically we can show (and probably prove with difficulty) that for

a=0.17

=1,...,

1
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Failing that, we can prove the above for a = 1.0

Proof. First note that
Vali(w) = ziz) ¢ (w' ;)
where
y;e2® — y;e®log(1 + e®) 4 e*log?(1 + e®)
(1+ e*)2log?(1 + e®)
e (ea —log(l—i-ea))) N e
=Y (14 e2)? log2(1 + e0) (1+ex)2”
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The second part is easier to bound with

I5; 1
17 < — =
= B0 (1+8)2 4
As for the I, it is much harder to bound. We can show through numeric
experiments that

B (B—log(1+5))
rema iy (Chgi e ) <O

Indeed, numerically the above has only one stationary point at 8 ~ 1.64047
which is a local maxima, and thus the global maxima. Thus in practice I
suggest using the bounds

IV ()| < yillwl|? x I+ [l:|® x 11 (4)
<  max, {||a:i|y2 (0.17 X yi + i) } =: Liax (5)
Furthermore, let
X = [x1,...,2p]
®(w) := diag(¢](w z1), ..., ¢ (w @)
D :=0.17 x diag(y1, .. -, yn) + %I.
We have that
IV E(w)| = [ X®(w) X || (6)
<||IXDXT| =L, (7)



which follows since ®(w) < D. To compute the right hand side of (7), I rec-
ommend a few steps of the power method. This way, you need only imple-
ment a function that computes the matrix vector product v — X ®(w)X To,
without ever forming the matrix X ®(w)X .

For a more algebraic proof, we have the following looser bound on I.

Lemma 2.2.

1<1.0
Proof. First note that
2«
1< e i 1
(14 e)? log?(1 + e®)
2
< max <1

I

=520 (14 8)%1log?(1+ B)

where it remains to prove that the above is less than 1. The proof is as
follows. First, we show that the function

B 1
(14 8)%log*(1 + B)

has only on stationary point at § — oco. At this limit we can show that

ﬂlglgog(ﬂ) =0.

9(B) :==

The other candidate for the global maxima is at the boundary of our con-
straint set, which is 8 = 0, for which we can show that

Jim g(5) = 1.

Consequently the maxima is attained at 5 = 0. O

3 Lower bounds

Consider instead the more general model given by

1
min - Zl (f(w ) = yilog (F(w ) ) = f(w). (8)



Let u; = f(w'x;) > 0 and note that u; — u; —y; log(u;) is convex for y; > 0.
Thus we can obtain a lower bound:

flw"2;) — yilog(flw'x;)) > 1328[“ —yilog(u)] > yi —yilog(y:) (9)

where we define y; log(y;) = 0 for y; = 0. Above we solved the minimization
over u explicitly by setting the derivative with respect to u equal to zero
and finding that the minimum is attained when u = y;.

Thus a lower bound on the full batch objective function is

(w)

3\'—‘

n
Z w' ;) = yilog(f(w'x;) > Zy, yilog(yi)

4 Algorithms

4.1 SAGA with optimal step size

The following version of SAGA is taken from [GGS19]. This implementation
makes use of both large step size set using the smoothness constants, and
the structure of a generalized linear model. That is, the stochastic gradients
of (8) are always combinations of the features vectors x1,...,z,. That is,

1 & ,
= g ;l‘z‘f (Wl—lc—xz) <1 - W) Z%Zz

where z; = f'(w} z;) <1 B f(wy,fxi)

store and update the values of the vector z = [z1,...,2,] € R™.

) . Because of this structure, we need only



Algorithm 1: SAGA: step size as function of mini-batch
Input: Input:

1 wo € R?, batch size b € [n], and smoothness L > 0 and Lpay.

2 Initiate: full batch gradient g = V/{(wy), batch smoothness

nb-—1 1n—-20
L(b):=L x — Liax X —
(b) an—1+ & an—l

step size v = %ﬁ and scalar derivative table

3. fork=1to K—1do

4 Sample batch B C n with |B| =b
5 for : € B do

6

L 5= fiwla) (1~ 7ty)

7 gkzg-i-%zzlegﬂfi(éi_zi)
8 Wi+1 = Wi — Y9k

9 for i € B do

10 g=9—15+1z;

11 Zi :ZA:Z'

6utput: WK

In particular, for a batch of data B C [n], and batch gradient V{p(w), the
SAGA gradient estimator given by

1 1
g = E szzl + VKB(w) — E EZBl‘lZl

see line 7 in Algorithm 1.

5 Templates

Theorem 5.1. I like my theorems like this, with boldface vectors x and
matrices A

It’s also nice to use clever referencing like 7?7 or 77.



6 Population GLM

In NeMoS we also allow to fit jointly a population of neurons. In this case,
the counts are y;;, where ¢ indexes time and j neurons, and we have one set
of weights per neuron:

Ei(wl, ce ,wn) = Zgb(:nle)

J
Robert: Does this mean the full batch objective is given by

n}li)ni;&(wl, Ce W) = ; % gqb(xiwj)

The Hessian over the vector w = [w1, ..., w,] is therefore block diagonal,
V2 4(w) 0 0
V2 li(w) = 0 Vizﬁ‘z(wg) 0
0 0 V2 )

In this case,

IV ()| = max IV, €i(wy)|

IN

max (wigllall® x I + llil* x I1)

IN

1
|2 || (0.17 X m?x(yij) + 4>
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