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1 Introduction

Consider the problem

min
w∈Rd

− 1

n

∑
i=1

(
ŷi
∆

log log
(
1 + ew

⊤xi
)
− log

(
1 + ew

⊤xi
))

=: ℓ(w), (1)

where ∆ > 0 is a fixed constant. To ease notation, let yi := ŷi/∆. Let

ℓi(w) := ϕ(w⊤xi), where ϕi(α) := log
(
1 + eα

)
− yi log log

(
1 + eα

)
.

2 Bounding second derivative

Here we will show that the second derivative of f(w) and the fi(w)’s has an
upper bound.

Lemma 2.1. Let

X := [x1, . . . , xn]

D(a) := a× diag(y1, . . . , yn) +
1

4
I.

Numerically we can show (and probably prove with difficulty) that for
a = 0.17

∥∇2
wℓi(w)∥ ≤ max

i=1,...,n

{
∥xi∥2

(
a× yi +

1

4

)}
=: Lmax (2)

∥∇2
wℓ(w)∥ ≤≤ ∥XDX⊤∥ =: L. (3)
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Failing that, we can prove the above for a = 1.0

Proof. First note that

∇2
wℓi(w) = xix

⊤
i ϕ

′′
i (w

⊤xi)

where

ϕ′′
i (α) =

yie
2α − yie

α log(1 + eα) + eα log2(1 + eα)

(1 + eα)2 log2(1 + eα)

= yi
eα

(1 + eα)2

(
eα − log(1 + eα))

log2(1 + eα)

)
︸ ︷︷ ︸

I

+
eα

(1 + eα)2︸ ︷︷ ︸
II

.

The second part is easier to bound with

II ≤ max
β>0

β

(1 + β)2
=

1

4
.

As for the I, it is much harder to bound. We can show through numeric
experiments that

I ≤ max
β∈R

β

(1 + β)2

(
β − log(1 + β))

log2(1 + β)

)
≤ 0.17.

Indeed, numerically the above has only one stationary point at β ≈ 1.64047
which is a local maxima, and thus the global maxima. Thus in practice I
suggest using the bounds

∥∇2
wℓi(w)∥ ≤ yi∥xi∥2 × I + ∥xi∥2 × II (4)

≤ max
i=1,...,n

{
∥xi∥2

(
0.17× yi +

1

4

)}
=: Lmax (5)

Furthermore, let

X := [x1, . . . , xn]

Φ(w) := diag(ϕ′′
1(w

⊤x1), . . . , ϕ
′′
n(w

⊤xn))

D := 0.17× diag(y1, . . . , yn) +
1

4
I.

We have that

∥∇2
wℓ(w)∥ = ∥XΦ(w)X⊤∥ (6)

≤ ∥XDX⊤∥ =: L, (7)
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which follows since Φ(w) ⪯ D. To compute the right hand side of (7), I rec-
ommend a few steps of the power method. This way, you need only imple-
ment a function that computes the matrix vector product v 7→ XΦ(w)X⊤v,
without ever forming the matrix XΦ(w)X⊤.

For a more algebraic proof, we have the following looser bound on I.

Lemma 2.2.
I ≤ 1.0

Proof. First note that

I ≤ e2α

(1 + eα)2
1

log2(1 + eα)

≤ max
β≥0

β2

(1 + β)2
1

log2(1 + β)
≤ 1,

where it remains to prove that the above is less than 1. The proof is as
follows. First, we show that the function

g(β) :=
β2

(1 + β)2
1

log2(1 + β)

has only on stationary point at β → ∞. At this limit we can show that

lim
β→∞

g(β) = 0.

The other candidate for the global maxima is at the boundary of our con-
straint set, which is β = 0, for which we can show that

lim
β→0

g(β) = 1.

Consequently the maxima is attained at β = 0.

3 Lower bounds

Consider instead the more general model given by

min
w∈Rd

1

n

∑
i=1

(
f(w⊤xi)− yi log

(
f(w⊤xi)

))
=: ℓ(w). (8)
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Let ui = f(w⊤xi) > 0 and note that ui 7→ ui−yi log(ui) is convex for yi ≥ 0.
Thus we can obtain a lower bound:

f(w⊤xi)− yi log(f(w
⊤xi)) ≥ min

u>0
[u− yi log(u)] ≥ yi − yi log(yi) (9)

where we define yi log(yi) = 0 for yi = 0. Above we solved the minimization
over u explicitly by setting the derivative with respect to u equal to zero
and finding that the minimum is attained when u = yi.

Thus a lower bound on the full batch objective function is

ℓ(w) ≥ 1

n

n∑
i=1

f(w⊤xi)− yi log(f(w
⊤xi) ≥

1

n

n∑
i=1

yi − yi log(yi)

4 Algorithms

4.1 SAGA with optimal step size

The following version of SAGA is taken from [GGS19]. This implementation
makes use of both large step size set using the smoothness constants, and
the structure of a generalized linear model. That is, the stochastic gradients
of (8) are always combinations of the features vectors x1, . . . , xn. That is,

∇ℓ(w) =
1

n

n∑
i=1

xif
′(w⊤

k xi)

(
1− yi

f(w⊤
k xi)

)
=:

1

n

∑
xizi

where zi = f ′(w⊤
k xi)

(
1− yi

f(w⊤
k xi)

)
. Because of this structure, we need only

store and update the values of the vector z = [z1, . . . , zn] ∈ Rn.
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Algorithm 1: SAGA: step size as function of mini-batch

Input: Input:
1 w0 ∈ Rd, batch size b ∈ [n], and smoothness L > 0 and Lmax.
2 Initiate: full batch gradient ḡ = ∇ℓ(w0), batch smoothness

L(b) := L× n

b

b− 1

n− 1
+ Lmax ×

1

b

n− b

n− 1

step size γ = 1
4

1
L(b) and scalar derivative table

z =

[
f ′(w⊤

0 x1)

(
1− y1

f(w⊤
0 x1)

)
, . . . , f ′(w⊤

0 xn)

(
1− yn

f(w⊤
0 xn)

)]
∈ Rn

3 . for k = 1 to K − 1 do
4 Sample batch B ⊂ n with |B| = b
5 for i ∈ B do

6 ẑi = f ′(w⊤
k xi)

(
1− yi

f(w⊤
k xi)

)
7 gk = ḡ + 1

b

∑n
i∈B xi (ẑi − zi)

8 wk+1 = wk − γgk
9 for i ∈ B do

10 ḡ = ḡ − 1
nzi +

1
n ẑi;

11 zi = ẑi

Output: wK

In particular, for a batch of data B ⊂ [n], and batch gradient ∇ℓB(w), the
SAGA gradient estimator given by

gk =
1

n

∑
xizi +∇ℓB(w)−

1

b

∑
i∈B

xizi

see line 7 in Algorithm 1.

5 Templates

Theorem 5.1. I like my theorems like this, with boldface vectors x and
matrices A

It’s also nice to use clever referencing like ?? or ??.
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6 Population GLM

In NeMoS we also allow to fit jointly a population of neurons. In this case,
the counts are yij , where i indexes time and j neurons, and we have one set
of weights per neuron:

ℓi(w1, . . . , wn) =
∑
j

ϕ(xiwj).

Robert: Does this mean the full batch objective is given by

min
w

1

n

n∑
i=1

ℓi(w1, . . . , wn) =
∑
j

1

n

n∑
i=1

ϕ(xiwj)

The Hessian over the vector w = [w1, . . . , wn] is therefore block diagonal,

∇2
wℓi(w) =


∇2

w1
ℓi(w1) 0 · · · 0
0 ∇2

w2
ℓi(w2) · · · 0

...
...

. . .
...

0 0 · · · ∇2
wn

ℓi(wn).


In this case,

∥∇2
wℓi(w)∥ = max

j
∥∇2

wj
ℓi(wj)∥

≤ max
j

(
yij∥xi∥2 × I + ∥xi∥2 × II

)
≤ ∥xi∥2

(
0.17×max

j
(yij) +

1

4

)
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