# default_exp HUD#export import pandas as pd df = pd.read_csv("hcv_2019_BCityonly.csv");df.columnsdf.head(1)#export import numpy as np df['tract'] = df['Code'].astype(str).str[4:].astype(np.int64) df['tract']pip install dataplay geopandas dexplottract = '*' county = '510' state = '24' tableId = 'B25003' year = '19' saveAcs = False#export from dataplay.acsDownload import retrieve_acs_data cdf = retrieve_acs_data(state, county, tract, tableId, year, saveAcs).reset_index()[['B25003_003E_Total:_Renter_occupied', 'tract']]cdf.head(10)#export df['B25003_003E_Total:_Renter_occupied'] = df.merge(cdf, left_on='tract', right_on='tract')['B25003_003E_Total:_Renter_occupied'] df.head()# https://bniajfi.org/mapping-resources/crosswalk = pd.read_csv( 'tract_2_csa.csv' ) crosswalk.head()#export # Match Tract to CSA df['CSA'] = df.merge(crosswalk, left_on='Code', right_on='GEOID10')['CSA2010']df['CSA'].unique()df.head(1)df.tail(2)df.to_csv('hcv_2019_BCityOnly_w_CSAs_and_ACS_Data')df[ df['CSA'] == 'undefined' ] df.head()#export from math import floor cdf = df.merge(crosswalk, left_on='Code', right_on='GEOID2010', how='left') cdf["TRACT2010"] = cdf["TRACT2010"].fillna(0.0).astype(int) # TRACTCE10 GEOID10 NAME10 CSA cdf['TRACTCE10'] = cdf['TRACT2010'] cdf['GEOID10'] = cdf['Code'] cdf['CSA'] = cdf['CSA2010'] cdf = cdf.drop(columns=['TRACT2010', 'GEOID2010', 'Code', 'CSA2010', 'TRACT2010' ], axis=1) cdf.head(1)cw2 = crosswalk2.drop(columns=['STATEFIPS', 'COUNTYFIPS' ,'BLOCKCE10' ,'GEOID10']) cw2.head(1)#export cdf2 = cdf.merge(cw2, left_on='TRACTCE10', right_on='TRACT', how='left') cdf2['NAME10'] = cdf2['NEIGHBORHOOD'] cdf2 = cdf2.drop(columns=['TRACT', 'NEIGHBORHOOD'], axis=1) cdf2.head(1)#export cd3 = cdf2[[ 'NAME10', 'TRACTCE10', 'CSA', 'GEOID10', 'Summary level', 'Program label', 'Program', 'Sub-program', 'Name', 'Subsidized units available', '% Occupied', '# Reported', '% Reported', 'Average months since report', '% moved in past year', 'Number of people per unit', 'Number of people: total', 'Average Family Expenditure per month ($$)', 'Average HUD Expenditure per month ($$)', 'Household income per year', 'Household income per year per person', '% $1 - $4,999', '% $5,000 - $9,999', '% $10,000 - $14,999', '% $15,000 - $19,999', '% $20,000 or more', '% Households where wages are major source of income', '% Households where welfare is major source of income', '% Households with other major sources of income', '% of local median (Household income)', '% very low income', '% extremely low income', '% 2+ adults with children', '% 1 adult with children', '% female head', '% female head with children', '% with disability, among Head, Spouse, Co-head, aged 61 years or less', '% with disability, among Head, Spouse, Co-head, aged 62 years or older', '% with disability, among all persons in households', '% 24 years or less (Head or spouse)', '% 25 to 49 years (Head or spouse)', '% 51 to 60 (Head or spouse)', '% 62 or more (Head or spouse)', '% 85 or more (Head or spouse)', '% Minority', '%Black Non-Hispanic', ' %Black Hispanic', '%Native American Non-Hispanic', '%Asian or Pacific Islander Non-Hispanic', '% Hispanic', 'Average months on waiting list', 'Average months since moved in', '% with utility allowance', 'Average utility allowance $$', '% 0 - 1 bedrooms:', '% 2 bedrooms', '% 3+ bedrooms', '% Overhoused', '% in poverty (Census tract)', '% minority (Census tract)', '% single family owners (Census tract)', 'Congressional District', 'CBSA', 'PLACE', 'Latitude', 'Longitude', 'State', 'PHA Total Units', 'HA category']]cd3.head(1)cd3.to_csv('hcv_2019_BCityonly_w_csas.csv')# TRACTCE10 GEOID10 NAME10 CSAcrosswalk.head(1)cdf.head(1)cdfdf['B25003_003E_Total:_Renter_occupied'] = df.merge(cdf, left_on='CSA', right_on='CSA')['B25003_003E_Total:_Renter_occupied']df.head()

SEARCH

CONNECT WITH US

DONATE

Help us keep this resource free and available to the public. Donate now!

Donate to BNIA-JFI

CONTACT US

Baltimore Neighborhood Indicators Alliance
The Jacob France Institute
1420 N. Charles Street, Baltimore, MD 21201
410-837-4377 | bnia-jfi@ubalt.edu