# default_exp bidbaltimore

This colab and more can be found at https://github.com/BNIA/VitalSigns.

Whats Inside?:

Indicators Used

  • ✔️ 40 - taxlien - (MdProp, TaxSale) Percentage of residential tax lien sales

Datasets Used

  • ✔️ housing.taxsales_201X (40-taxlien) From BidBaltimore
year = "19"

Import Modules

! pip install -U -q PyDrive ! pip install geopy ! pip install geopandas ! pip install geoplot ! pip install dataplay ! pip install matplotlib ! pip install psycopg2-binary! apt-get install build-dep python-psycopg2 ! apt-get install libpq-dev ! apt-get install libspatialindex-dev!pip install rtree !pip install dexplotfrom dataplay.geoms import workWithGeometryData%%capture # These imports will handle everything import os import sys import csv import matplotlib.pyplot as plt import numpy as np import pandas as pd import geopandas as gpd from geopandas import GeoDataFrame import psycopg2 import pyproj from pyproj import Proj, transform # conda install -c conda-forge proj4 from shapely.geometry import Point from shapely import wkb from shapely.wkt import loads # https://pypi.org/project/geopy/ from geopy.geocoders import Nominatim # In case file is KML, enable support import fiona fiona.drvsupport.supported_drivers['kml'] = 'rw' fiona.drvsupport.supported_drivers['KML'] = 'rw'from IPython.display import clear_output clear_output(wait=True)import ipywidgets as widgets from ipywidgets import interact, interact_manual

Configure Enviornment

# This will just beautify the output pd.set_option('display.expand_frame_repr', False) pd.set_option('display.precision', 2) from IPython.core.interactiveshell import InteractiveShell InteractiveShell.ast_node_interactivity = "all" # pd.set_option('display.expand_frame_repr', False) # pd.set_option('display.precision', 2) # pd.reset_option('max_colwidth') pd.set_option('max_colwidth', 20) # pd.reset_option('max_colwidth')totalres = pd.read_csv("37-totalres-19.csv") # totalres.set_index('CSA2010', inplace=True) totalres.tail(1)

Taxsales_2019 - BidBaltimore - OLD

# Convert to EPSG:4326 taxSales = taxSales.to_crs(epsg=4326)# Convert Geom to Coords taxSales['x'] = taxSales.geometry.x taxSales['y'] = taxSales.geometry.y # taxSales.head(5) taxSales = taxSales[ taxSales.geometry.y > 38 ] taxSales = taxSales[ taxSales.geometry.x < -70 ] taxSales = taxSales[ taxSales.geometry.x > -80 ]# Reference: All Points base = csa.plot(color='white', edgecolor='black') taxSales.plot(ax=base, marker='o', color='green', markersize=5);# Get CSA Labels for all Points. taxSalesCsa = workWithGeometryData( method='ponp', df=taxSales, polys=csa, ptsCoordCol='geometry', polygonsCoordCol='geometry', polygonsLabel='CSA2010' ) taxSalesCsa = taxSalesCsa.drop('geometry',axis=1) taxSalesCsa.to_csv('ponp_taxSales_19.csv', index=False) taxSalesCsa.head(10)

Taxsales_2018 - BidBaltimore - OLD

lstaxSales = gpd.read_file("./TaxSales_2018.shp");# Convert to EPSG:4326 taxSales = taxSales.to_crs(epsg=4326)# Convert Geom to Coords taxSales['x'] = taxSales.geometry.x taxSales['y'] = taxSales.geometry.y # taxSales.head(5) taxSales = taxSales[ taxSales.geometry.y > 38 ] taxSales = taxSales[ taxSales.geometry.x < -70 ] taxSales = taxSales[ taxSales.geometry.x > -80 ]# Reference: All Points base = csa.plot(color='white', edgecolor='black') taxSales.plot(ax=base, marker='o', color='green', markersize=5);# Get CSA Labels for all Points. taxSalesCsa18 = workWithGeometryData( method='ponp', df=taxSales, polys=csa, ptsCoordCol='geometry', polygonsCoordCol='geometry', polygonsLabel='CSA2010' ) taxSalesCsa18 = taxSalesCsa18.drop('geometry',axis=1) taxSalesCsa18.to_csv('ponp_taxSales_18.csv', index=False) taxSalesCsa18.head(10)

Taxsales_2019 - BidBaltimore - NEW

lsoriginal = gpd.read_file("TaxSales_20"+year+"_CSACity.shp");original.rename(columns={ 'CSA':'CSA2010', 'BaltCity':'InBaltimore'}, inplace=True) df = original[ original['CSA2010'].notnull() | original['InBaltimore'].notnull() ]print('After filtering records where a CSA or Baltimore geo-code match Exists') print( 'All rows Before Filter: ', original.shape[0] ) # rows, columns print( '# w BCity.isnull: ', df.InBaltimore.isnull().sum() ); bmorow = df[ df.CSA2010.isnull() ].shape[0] print( '# w CSA2010.isnull: ', bmorow ); csarow = df[ df.CSA2010.notnull() ].shape[0] print( '# w CSA2010.notnull: ', csarow ); print( '# rows After Filter: ', df.shape[0],'==',csarow,'+',bmorow,'==', csarow + bmorow); # add baltimore city df.CSA2010 = df.CSA2010.fillna('Baltimore City')taxSales = df.copy() taxSales.head(1)

Taxlien 40 - (MdProp, TaxSale)

# 40- taxlien - Percentage of residential tax lien sales # https://services1.arcgis.com/mVFRs7NF4iFitgbY/arcgis/rest/services/taxlien/FeatureServer/layers # https://bniajfi.org/indicators/Housing%20And%20Community%20Development/taxlien # Numerator: housing.taxsales_201X # Denominator: housing.mdprop_201X long_Description: """ The percentage of residential properties with city liens sold as tax certificates at the annual tax lien certificate sale held in May. Tax sales are used to collect delinquent real property taxes and other unpaid charges to the city, which are liens against the real property. The tax certificate sale is a public online auction of City lien interests on properties that occurs annually in May. """ taxlien_SQL = """ 2017 Query WITH numerator AS ( select (sum( case when csa_present then 1 else 0 end)::numeric) as result, csa from vital_signs.match_csas_and_bc_by_geom('housing.taxsales_2017', 'gid', 'the_geom') a left join housing.taxsales_2017 b on a.gid = b.gid group by csa ), denominator AS ( select (sum( case when (address != $$NULL$$) AND (desclu = $$Apartments$$ OR desclu = $$Residential$$ OR desclu = $$Residential Commercial$$ OR desclu = $$Residential Condominium$$) then 1 else NULL end)::numeric ) as result, csa from vital_signs.match_csas_and_bc_by_geom('housing.mdprop_2017', 'gid', 'the_geom') a left join housing.mdprop_2017 b on a.gid = b.gid group by csa, the_pop ), tbl AS ( select denominator.csa,(numerator.result / denominator.result)*(100::numeric) as result from numerator left join denominator on numerator.csa = denominator.csa ) select * from tbl where 1 = 1 ORDER BY csa ASC;" 2016 query WITH numerator AS ( select (sum( case when csa_present then 1 else 0 end)::numeric) as result, csa from vital_signs.match_csas_and_bc_by_geom('housing.taxsales_2016', 'gid', 'the_geom') a left join housing.taxsales_2016 b on a.gid = b.gid group by csa ), denominator AS ( select (sum( case when (address != $$NULL$$) AND (desclu = $$Apartments$$ OR desclu = $$Residential$$ OR desclu = $$Residential Commercial$$ OR desclu = $$Residential Condominium$$) then 1 else NULL end)::numeric ) as result, csa from vital_signs.match_csas_and_bc_by_geom('housing.mdprop_2017', 'gid', 'the_geom') a left join housing.mdprop_2017 b on a.gid = b.gid group by csa, the_pop ), tbl AS ( select denominator.csa,(numerator.result / denominator.result)*(100::numeric) as result from numerator left join denominator on numerator.csa = denominator.csa ) update vital_signs.data set taxlien = result from tbl where data.csa = tbl.csa and data_year = '2016'; """ taxlien_translation = " (sum taxsales_2017 when csa_present / mdprop.totalres )* 100 "oldpy = """ taxlien18 = df18.drop(['X', 'Y', 'x', 'y'], axis=1).copy() taxlien18.head(2) taxlien19 = df19.drop(['X', 'Y', 'x', 'y'], axis=1).copy() taxlien19.head(2) taxlien18['taxlien18Count'] = 1 taxlien19['taxlien19Count'] = 1 taxlien = taxlien19.groupby('CSA2010').sum(numeric_only=True) taxlien['taxlien18Count'] = taxlien18.groupby('CSA2010').sum(numeric_only=True)['taxlien18Count'] taxlien = taxlien[['taxlien18Count', 'taxlien19Count']] taxlien['totalres18'] = totalres['totalres18'] taxlien.head(1) # DOES 2019 use the same denominator as 2018 as 2017? taxlien['totalres19'] = taxlien['totalres18'] """totalres.columnstotalres = pd.read_csv("37-totalres-"+year+".csv")#export def taxlien(df, totalres, year): taxlien = df.copy() # Aggregate Numeric Values by Sum taxlien['taxlienCount'] = 1 taxlien = taxlien.groupby('CSA2010').sum(numeric_only=True) # Make sure ALL csas and BaltimoreCity are included. among other things taxlien = totalres[ ['CSA2010','totalres'+year] ].merge( taxlien, left_on='CSA2010', right_on='CSA2010', how='outer' ) # Update the baltimore CSA. taxlien.at[55,'taxlienCount'] = taxlien['taxlienCount'].sum() # Create the Indicator taxlien['40-taxlien'+year] = taxlien['taxlienCount'] / totalres['totalres'+year] * 100 taxlien = taxlien[['CSA2010', 'taxlienCount', '40-taxlien'+year, 'totalres'+year ]] compareYears = gpd.read_file("https://services1.arcgis.com/mVFRs7NF4iFitgbY/ArcGIS/rest/services/Taxlien/FeatureServer/0/query?where=1%3D1&outFields=*&returnGeometry=true&f=pgeojson"); prevYear = 'taxlien'+ str( int(year) - 1 ) if prevYear in compareYears.columns: taxlien = taxlien.merge( compareYears[['CSA2010', prevYear]], left_on='CSA2010', right_on='CSA2010', how='outer' ) taxlien['change'] = taxlien['40-taxlien'+year] - taxlien[ prevYear ] taxlien['percentChange'] = taxlien['change'] / taxlien[ prevYear ] * 100 taxlien['change'] = taxlien['change'].apply(lambda x: "{:.2f}".format(x) ) taxlien = taxlien[['CSA2010', 'taxlienCount', 'totalres19', 'taxlien18', '40-taxlien19', 'percentChange', 'change']] return taxlientaxlien = taxlien( taxSales.drop(['X', 'Y'], axis=1), totalres, year) taxlien.head(60) taxlien.to_csv('40-taxlien'+year+'.csv', index=False)

SEARCH

CONNECT WITH US

DONATE

Help us keep this resource free and available to the public. Donate now!

Donate to BNIA-JFI

CONTACT US

Baltimore Neighborhood Indicators Alliance
The Jacob France Institute
1420 N. Charles Street, Baltimore, MD 21201
410-837-4377 | bnia-jfi@ubalt.edu