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1. The Abel Transform:
For a given physical process leading to the emission of charged particles, the proba-

bility distribution of these particles can be described as a function of particle kinetic
energy (E) and direction, specified by the polar (f) and azimuthal (¢) angles:
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Given some time of evolution ¢, this distribution in kinetic energy space becomes a
Newton sphere which can be represented as a spatial distribution:
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A Velocity Map Imaging (VMI) spectrometer measures the projection of this three-
dimensional distribution onto a two-dimensional plane. Mathematically, this projec-
tion is known as an Abel transform.
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In general, the reduced dimensionality of this measurement would make it impossible

to recover the full three-dimensional distribution.
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2. Axial Symmetry:

For the case of photoionization of an isotropic target or an unaligned ensemble with
linearly polarized light whose polarization vector lies parallel to the detection plane,
axial symmetry is achieved, and we can describe the original distribution with only
two planar coordinates:

F(r.6.6) = £(r.6) (11)
Fly.2) =2 /O df(r,6) (12)

With this axial symmetry, no information is lost in the projection. The challenge is
now to perform an inverse Abel transform and recover the original distribution from
its detected projection.

Conservation of angular momentum during the light-matter interaction further sim-
plifies the task at hand, as the original distribution can be described with a general
radial part multiplied by an angular part described as a sum of the Legendre polyno-



mials. The highest order Legendre polynomial to include will be twice the order of
the light-matter interaction.
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When dealing with an anistropic target or an aligned ensemble, this decomposition
still works assuming axial symmetry still holds. However, it is no longer possible to
truncate the sum of Legendre polynomials to get complete agreement. Still, partially
due to the orthogonality of the Legendre polynomials, setting an arbitrary truncation
can still be useful in approximating the angular distribution and extracting potentially
relevant observables.

. The pBASEX approach:

Although it will no longer be possible to describe any arbitrary distribution, the
use of radial basis functions to describe o(r) and S;(r) will allow for Abel inversion:
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These basis functions can now be Abel transformed:
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In practice, the measured distribution must be represented as a discrete function,
whether this discretization is explicit due to detector pixelization or achieved through
binning. Due to the finite measurement domain, the data can then be represented
as a vector b € R™, where n, is the number of pixels. In a similar way, the Abel
transformed basis functions can be represented as a matrix G € R™*™_ where ny is
the number of basis functions, and the coefficients of the basis functions as a vector
¢ € R™. It is now possible to find the coefficients by fitting the data using:
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Assuming a square and euclidean pixel grid, there will be ,/m;, points sampled in
each axis. This number is an appropriate upper limit on the amount of radial basis
functions to use to avoid overfitting on o(r). In most applications, the sum over
Legendre polynomials will be truncated such that:
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This leads to an underdetermined system when solving for the coefficients, which
makes least squares linear regression an appropriate tool. We find the optimal coeffi-
cient vector ¢, such that:
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This problem has an analytical solution. Using the singular value decomposition of
GG, we can obtain the optimal coefficients and recover the original distribution:
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We also note that use of the singular value decomposition allows for both a regularized
fit with regularization values \; as the diagonal elements of A € R™*":
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or a weighted fit with pixel weights w; as the diagonal elements of W € R™»*"»;
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The particle kinetic energy spectrum and angular distribution are the two outputs.
The angular distribution follows trivially from £;(r), while a bit more work is needed
for the kinetic energy spectrum:
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Working towards a more useful representation of the kinetic energy spectrum:

N = / - / i / 7 F(E,0,¢)E?sinfd¢didE (41)

871043/2 Z mzw Ckl/ / / Tr( \/> )Pi(cos0)V Esinfd¢dddE (42)

l even

=3 3/220’“0/0 \/>)de (43)
= /O I(E)dE (44)

= QO}MZCkofk(\/f)\/E (45)
p

4. Choice of basis functions:

The standard choice for basis functions are Gaussian functions:
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Typically, these functions will be evenly spaced and have constant width:
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A range of values for o will work decently, but we can choose one that allows to
generate a relatively flat function:
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The integrals that need to be calculated are then of the form:
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We can write the Legendre polynomials as a sum over monomials:
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An analytic solution is possible by using a truncated Taylor expansion rather than
the Gaussian radial basis function. The Taylor expansion must be truncated at an
odd M for the function to have zeroes. Numerical methods or lower bounds can be
used to find the domain of this new radial basis function, delimited by these zeroes.
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There are no more numerical integrals, but samplings of the hypergeometric function
are needed:
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5. Implementation:

To summarize, the pBASEX algorithm is implemented in the following steps:



(a) Sampling of the Abel transformed basis functions using equations (25-26, 29).
(b) Fitting of data to these sampled functions using equation (30).

(c) Reconstruction of the inverted data using equations (38, 45).



