AC Optimal Power Flow (rectangular coordinates)

The AC-OPF formulation considers the full nonlinear power flow equations, including both active and reactive power, and the real and imaginary parts of the voltage.

Objective Function

The objective is to minimize the total generation cost:

\[\text{Minimize: } \sum_{g} \left( a_{g} \cdot p_g^2 + b_{g} \cdot p_g + c_{g} \right)\]

Constraints

  1. Power Balance Equations:

    \[\sum_{g\in\mathcal{G}_n} p_g - p^d_n = G^{sh}_n v_n^{(2)} + \sum_{l} \left( F_{ln} \cdot p^f_l + T_{ln} \cdot p^t_l \right), \quad \forall n\]
    \[\sum_{g\in\mathcal{G}_n} q_g - q^d_n = -B^{sh}_n v_n^{(2)} + \sum_{l} \left( F_{ln} \cdot q^f_l + T_{ln} \cdot q^t_l \right), \quad \forall n\]
  2. Line Flow Equations:

    \[p^f_l = G^{ff}_l v_n^{(2)} + G^{ft}_l c^{ft}_l + B^{ft}_l s^{ft}_l, \quad \forall (l, n, m): F_{ln} = 1, T_{lm} = 1\]
    \[q^f_l = -B^{ff}_l v_n^{(2)} + G^{ft}_l s^{ft}_l - B^{ft}_l c^{ft}_l, \quad \forall (l, n, m): F_{ln} = 1, T_{lm} = 1\]
    \[p^t_l = G^{tt}_l v_m^{(2)} + G^{tf}_l c^{ft}_l + B^{tf}_l s^{ft}_l, \quad \forall (l, n, m): F_{ln} = 1, T_{lm} = 1\]
    \[q^t_l = -B^{tt}_l v_m^{(2)} + G^{tf}_l s^{ft}_l - B^{tf}_l c^{ft}_l, \quad \forall (l, n, m): F_{ln} = 1, T_{lm} = 1\]
  3. Rectangular Definitions:

    \[v_{n}^{(2)} = e_n^2 + f_n^2, \quad \forall n\]
    \[c^{ft}_l = e_n e_m + f_n f_m, \quad \forall l\]
    \[s^{ft}_l = f_n e_m - e_n f_m, \quad \forall l\]
    \[(c^{ft}_l)^2 + (s^{ft}_l)^2 \leq v_{n}^{(2)} v_{m}^{(2)}, \quad \forall l\]
  4. Generator Limits:

    \[\underline{p}_g \leq p_g \leq \overline{p}_g, \quad \forall g\]
    \[\underline{q}_g \leq q_g \leq \overline{q}_g, \quad \forall g\]
  5. Line Flow Limits:

    \[(p^f_l)^2 + (q^f_l)^2 \leq (\overline{s}_l)^2, \quad \forall l\]
    \[(p^t_l)^2 + (q^t_l)^2 \leq (\overline{s}_l)^2, \quad \forall l\]
  6. Voltage Magnitude Limits:

    \[(\underline{v}_n)^2 \leq v_n^{(2)} \leq (\overline{v}_n)^2, \quad \forall n\]
  7. Voltage Angle Reference:

    \[f_0 = 0\]