AC Optimal Power Flow (polar coordinates)
The AC-OPF formulation considers the full nonlinear power flow equations, including both active and reactive power, voltage magnitudes, and angles.
Objective Function
The objective is to minimize the total generation cost:
\[\text{Minimize: } \sum_{g} \left( a_{g} \cdot p_g^2 + b_{g} \cdot p_g + c_{g} \right)\]
Constraints
Power Balance Equations:
\[\sum_{g\in\mathcal{G}_n} p_g - p^d_n = v_n^2 G^{sh}_n + \sum_{l} \left( F_{ln} \cdot p^f_l + T_{ln} \cdot p^t_l \right), \quad \forall n\]\[\sum_{g\in\mathcal{G}_n} q_g - q^d_n = -v_n^2 G^{sh}_n + \sum_{l} \left( F_{ln} \cdot q^f_l + T_{ln} \cdot q^t_l \right), \quad \forall n\]Line Flow Equations:
\[p^f_l = v_n^2 G^{ff}_l + v_n v_m \left( G^{ft}_l \cos(\theta_{nm}) + B^{ft}_l \sin(\theta_{nm}) \right), \quad \forall (l, n, m): F_{ln} = 1, T_{lm} = 1\]\[q^f_l = -v_n^2 B^{ff}_l + v_n v_m \left( G^{ft}_l \sin(\theta_{nm}) - B^{ft}_l \cos(\theta_{nm}) \right), \quad \forall (l, n, m): F_{ln} = 1, T_{lm} = 1\]\[p^t_l = v_m^2 G^{tt}_l + v_n v_m \left( G^{tf}_l \cos(\theta_{mn}) + B^{tf}_l \sin(\theta_{mn}) \right), \quad \forall (l, n, m): F_{ln} = 1, T_{lm} = 1\]\[q^t_l = -v_m^2 B^{tt}_l + v_n v_m \left( G^{tf}_l \sin(\theta_{mn}) - B^{tf}_l \cos(\theta_{mn}) \right), \quad \forall (l, n, m): F_{ln} = 1, T_{lm} = 1\]Generator Limits:
\[\underline{p}_g \leq p_g \leq \overline{p}_g, \quad \forall g\]\[\underline{q}_g \leq q_g \leq \overline{q}_g, \quad \forall g\]Line Flow Limits:
\[(p^f_l)^2 + (q^f_l)^2 \leq (\overline{s}_l)^2, \quad \forall l\]\[(p^t_l)^2 + (q^t_l)^2 \leq (\overline{s}_l)^2, \quad \forall l\]Voltage Magnitude Limits:
\[\underline{v}_n \leq v_n \leq \overline{v}_n, \quad \forall n\]\[\underline{\theta}_n \leq \theta_n \leq \overline{\theta}_n, \quad \forall n\]Voltage Angle Reference:
\[\theta_{0} = 0\]