HOME | DOWNLOAD | DOCUMENTATION | FAQ |
> Home > Documentation > Python > Spherical Harmonic Transformations
MakeGridPointC
Evaluate a complex function expressed in complex spherical harmonics at a single point.
Usage
value
= MakeGridPointC (cilm
, lat
, lon
, [lmax
, norm
, csphase
, dealloc
])
Returns
value
: complex- Value of the function at (
lat
,lon
).
Parameters
cilm
: complex, dimension (2,lmaxin
+1,lmaxin
+1)- The complex spherical harmonic coefficients of the function. The coefficients
C0lm
andC1lm
refer to the positive and negative angular orders, respectively, withClm=cilm[0,1,m]
andCl-m=cilm[1,l,m]
. lat
: float- The latitude of the point in DEGREES.
lon
: float- The longitude of the point in DEGREES.
lmax
: optional, integer, default =lmaxin
- The maximum spherical harmonic degree used in evaluating the function.
norm
: optional, integer, default = 1- 1 (default) = Geodesy 4-pi normalized harmonics; 2 = Schmidt semi-normalized harmonics; 3 = unnormalized harmonics; 4 = orthonormal harmonics.
csphase
: optional, integer, default = 1- 1 (default) = do not apply the Condon-Shortley phase factor to the associated Legendre functions; -1 = append the Condon-Shortley phase factor of (-1)^m to the associated Legendre functions.
dealloc
: optional, integer, default = 0- 0 (default) = Save variables used in the external Legendre function calls. (1) Deallocate this memory at the end of the funcion call.
Description
MakeGridPointC
will expand a complex function expressed in complex spherical harmonics at a single point. The input latitude and longitude are in degrees, and the maximum degree used in evaluating the function is the smaller of lmaxin
and lmax
. The employed spherical harmonic normalization and Condon-Shortley phase convention can be set by the optional arguments norm
and csphase
; if not set, the default is to use geodesy 4-pi normalized harmonics that exclude the Condon-Shortley phase of (-1)^m.
See also
makegridpoint
, makegriddh
, makegriddhc
, makegridglq
, makegridglqc
> Home > Documentation > Python > Spherical Harmonic Transformations
Laboratoire Lagrange | Observatoire de la Côte d'Azur | © 2016 SHTOOLS |