Adversarial Search for Gomoku

Gomoku, a deterministic strategy game, presents a huge challenge for adversarial search algorithms
due to its
. The objective is to align five consecutive marks on an n. X n grid (set to 9x9 in this

report).
To address these challenges, four adversarial search algorithms were implemented:

1. MinMax : A baseline algorithm that explores all possible game states.
2. AlphaBeta : An optimized version of , pruning branches that can be confidently
excluded based on the opponent's potential decisions.

3. AlphaBetaHeuristic : Enhances by using heuristic evaluations to prioritize strategic
moves.
4. MCTS : Leverages simulations for probabilistic decision-making,

balancing real win probabilities with exploration.

Game Setup

The game board is a 9x9 grid implemented with a Python-based GUI using . is denoted
for User, for computer.

Algorithm Implementations

1. MinMax :
. : Explores all possible moves to determine the optimal outcome for the current

player through exhaustive search.

°© _maximize(current_depth, alpha, beta) : Recursive function to maximize the score

for the current player.



o _minimize(current_depth, alpha, beta) : Recursive function to minimize the score
for the opponent.

o Note: and parameters in are placeholders and are not used for
pruning in this implementation.

. : Computationally expensive due to exhaustive search, making it impractical for
larger boards.

. : Introduces a parameter to limit search depth and ensure
reasonable response times. Without this, it would be infeasible to compute results, as the
state space grows astronomically (e.g., 80! = 7.1569E+118).

2. AlphaBeta :

. : Improves by eliminating branches that cannot influence the final

decision.

o _apply_max_pruning(alpha, max_score, beta) : Implements pruning for maximizing

player.
o _apply_min_pruning(alpha, min_score, beta) : Implements pruning for minimizing
player.
. : Reduces the search space significantly, enabling deeper exploration within the

same time constraints.
3. AlphaBetaHeuristic :
. : Extends by integrating a heuristic evaluation function to estimate the
desirability of intermediate board states.

o Scores are assigned based on consecutive pieces and open ends (e.g., 4 consecutive
pieces with 2 open ends are highly prioritized, followed by 4 consecutive pieces with 1
open end).

o Penalizes the opponent’s advantageous positions by blocking critical moves.

o For detailed scoring logic, refer to the well-documented class.

o _calculate_heuristic_score(row, col) : Computes the overall heuristic score for the
current board state.

© _calculate_current_score(row, col, player) : Assigns scores for the current player
by evaluating their consecutives on the board.

o _calculate_opponent_score(row, col, opponent) : Penalizes the opponent’s
consecutives by reducing the score for threatening positions.

o _evaluate_center(row, col) : Adds a positional bonus for moves closer to the center
of the board.



. : Enabling the Al to make more informed decisions within practical time

constraints.

4. MCTS
. : Leverages simulations to estimate the probability of winning from a given state.
The algorithm follows four main steps:
a. (via _Node.select() ): Traverses the tree using UCB1 to identify the most
promising nodes for exploration.
b. (via _Node.expand() ): Adds a new child node to the tree.
C. (via _Node.simulate() ): Randomly simulates a game from the newly

expanded node.
d. (via _Node.back_propagate(winner) ): Updates the tree with

simulation results.
. : A configurable time limit (default: 15 seconds per move) ensures the

algorithm responds efficiently.

o _Node.best_final_move : Prioritizes moves that guarantee a win. If no such move
exists, selects the most visited node to maximize the likelihood of success.

Results Analysis

Experiment Setup

Experiments were conducted on a max_depth” and simulation counts to

evaluate:

Following tests were conducted on a MacBook Pro M1 Pro chip (16GB).

1. MinMax :
e Depth-limited to due to exponential growth in game states.

e Struggles with longer simulations, making it easy for the user to win.
e On my Mac ( ), it expands approximately , but
the Al consistently loses due to lack of strategic depth.
2. AlphaBeta :
* Runtime reduced by compared to through branch pruning.
o At , results are produced in .Mla%

Increasing



3. AlphaBetaHeuristic :
* Demonstrated improvements in Al' intelligent, effectively blocking user moves, prioritizing
the center, and|constructing consecutive pieces.

e On my Mac ( ), the first move takes , and

subsequent mpves take due to reduced board complexity.
Performance {
4. MCTS :

e Faces challe

proves significantly as the game progresses.

s in deterministic winning moves during endgame scenarios without fine-

tuning
e Fixed to (configurable). On my Mac, it performs approximately
. The Al is significantly smarter, consistently blocking
user move forming its own 5-consecutive pieces.

Performance Comparison

( ) 11 ~500,000 Baseline for comparison
Efficient pruning for deeper
( ) 0.2 ~6,000 .p J P

exploration

2 (average ~30,000 Strategic decisions, blocks,

after 1st) (average) and center focus

15 ~30,000 Adaptable probabilistic

simulations analysis, strategic wins

: Win Rate (%) is influenced by the user's skill level. However, it is evident that the Al improves
significantly in strategic decision-making with each algorithm upgrade.

Contributions

e The Python package was used to handle the GUI. The initial GUI code was generated
using ChatGPT-4 and subsequently modified and improved by me.
e All algorithm implementations, including , , , and
, (single person in a group).
e This report was reviewed using ChatGPT to ensure proper English grammar and clarity.



