
Adversarial Search for Gomoku

Introduction
Gomoku, a deterministic strategy game, presents a huge challenge for adversarial search algorithms
due to its vast state space (approximately n^2! possible states, making it infeasible to expand
all nodes). The objective is to align five consecutive marks on an  grid (set to 9×9 in this
report).

To address these challenges, four adversarial search algorithms were implemented:

1.  MinMax : A baseline algorithm that explores all possible game states.
2.  AlphaBeta : An optimized version of  MinMax , pruning branches that can be confidently

excluded based on the opponent's potential decisions.
3.  AlphaBetaHeuristic : Enhances  AlphaBeta  by using heuristic evaluations to prioritize strategic

moves.
4.  MCTS  (Monte Carlo Tree Search): Leverages simulations for probabilistic decision-making,

balancing real win probabilities with exploration.

Methodology

Game Setup
The game board is a 9×9 grid implemented with a Python-based GUI using  pygame .  X  is denoted
for User,  O  for computer.

Algorithm Implementations
1.  MinMax :

Overview: Explores all possible moves to determine the optimal outcome for the current
player through exhaustive search.
Key Functions:

 _maximize(current_depth, alpha, beta) : Recursive function to maximize the score
for the current player.

n× n



 _minimize(current_depth, alpha, beta) : Recursive function to minimize the score
for the opponent.
Note:  alpha  and  beta  parameters in  MinMax  are placeholders and are not used for
pruning in this implementation.

Limitations: Computationally expensive due to exhaustive search, making it impractical for
larger boards.
Optimization: Introduces a  max_depth  parameter to limit search depth and ensure
reasonable response times. Without this, it would be infeasible to compute results, as the
state space grows astronomically (e.g., 80! ≈ 7.1569E+118).

2.  AlphaBeta :
Overview: Improves  MinMax  by eliminating branches that cannot influence the final
decision.
Key Functions:

 _apply_max_pruning(alpha, max_score, beta) : Implements pruning for maximizing
player.
 _apply_min_pruning(alpha, min_score, beta) : Implements pruning for minimizing
player.

Impact: Reduces the search space significantly, enabling deeper exploration within the
same time constraints.

3.  AlphaBetaHeuristic :
Overview: Extends  AlphaBeta  by integrating a heuristic evaluation function to estimate the
desirability of intermediate board states.
Heuristic Design:

Scores are assigned based on consecutive pieces and open ends (e.g., 4 consecutive
pieces with 2 open ends are highly prioritized, followed by 4 consecutive pieces with 1
open end).
Penalizes the opponent’s advantageous positions by blocking critical moves.
For detailed scoring logic, refer to the well-documented  HeuristicScore  class.

Key Functions:
 _calculate_heuristic_score(row, col) : Computes the overall heuristic score for the
current board state.
 _calculate_current_score(row, col, player) : Assigns scores for the current player
by evaluating their consecutives on the board.
 _calculate_opponent_score(row, col, opponent) : Penalizes the opponent’s
consecutives by reducing the score for threatening positions.
 _evaluate_center(row, col) : Adds a positional bonus for moves closer to the center
of the board.



Advantages: Enabling the AI to make more informed decisions within practical time
constraints.

4.  MCTS  (Monte Carlo Tree Search):
Overview: Leverages simulations to estimate the probability of winning from a given state.
The algorithm follows four main steps:

a. Selection (via  _Node.select() ): Traverses the tree using UCB1 to identify the most
promising nodes for exploration.

b. Expansion (via  _Node.expand() ): Adds a new child node to the tree.
c. Simulation (via  _Node.simulate() ): Randomly simulates a game from the newly

expanded node.
d. Backpropagation (via  _Node.back_propagate(winner) ): Updates the tree with

simulation results.
Customization: A configurable time limit (default: 15 seconds per move) ensures the
algorithm responds efficiently.
Final Move Selection:

 _Node.best_final_move : Prioritizes moves that guarantee a win. If no such move
exists, selects the most visited node to maximize the likelihood of success.

Results Analysis

Experiment Setup
Experiments were conducted on a  9×9 board with varying  max_depth` and simulation counts to
evaluate:

Following tests were conducted on a MacBook Pro M1 Pro chip (16GB).

1.  MinMax :
Depth-limited to  max_depth=3  due to exponential growth in game states.
Struggles with longer simulations, making it easy for the user to win.
On my Mac ( max_depth=3 ), it expands approximately 500,000 nodes in 11 seconds, but
the AI consistently loses due to lack of strategic depth.

2.  AlphaBeta :
Runtime reduced by 30%-50% compared to  MinMax  through branch pruning.
At  max_depth=3 , results are produced in 0.2 seconds with 6,000 nodes expanded.
Increasing 
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3.  AlphaBetaHeuristic :
Demonstrated improvements in AI' intelligent, effectively blocking user moves, prioritizing
the center, and constructing consecutive pieces.
On my Mac ( max_depth=3 ), the first move takes 6 seconds for ~100,000 nodes, and
subsequent moves take 2 seconds for ~30,000 nodes due to reduced board complexity.
Performance improves significantly as the game progresses.

4.  MCTS :
Faces challenges in deterministic winning moves during endgame scenarios without fine-
tuning  UCB1 .
Fixed to 15 seconds per move (configurable). On my Mac, it performs approximately
30,000 simulations in this timeframe. The AI is significantly smarter, consistently blocking
user moves and forming its own 5-consecutive pieces.

Performance Comparison

Algorithm
Time per

Move (sec)
Nodes

Explored
Key Strength

 MinMax ( max_depth=3 ) 11 ~500,000 Baseline for comparison

 AlphaBeta ( max_depth=3 ) 0.2 ~6,000
Efficient pruning for deeper
exploration

 AlphaBetaHeuristic 
2 (average
after 1st)

~30,000
(average)

Strategic decisions, blocks,
and center focus

 MCTS  15
~30,000
simulations

Adaptable probabilistic
analysis, strategic wins

Note: Win Rate (%) is influenced by the user's skill level. However, it is evident that the AI improves
significantly in strategic decision-making with each algorithm upgrade.

Contributions
The Python package  pygame  was used to handle the GUI. The initial GUI code was generated
using ChatGPT-4 and subsequently modified and improved by me.
All algorithm implementations, including  MinMax ,  AlphaBeta ,  AlphaBetaHeuristic , and
 MCTS , were entirely developed by me (single person in a group).
This report was reviewed using ChatGPT to ensure proper English grammar and clarity.


