
Import Data from File (IDF) utilitiesfor programming data input to s
ienti�

odesA. Yu. Pigarov and I. V. SaltanovaJanuary 2000Plasma S
ien
e and Fusion Center, Massa
husetts Institute of Te
hnology167 Albany Street, Cambridge, MA 02139, U.S.A.Abstra
tIDF, Import Data from File, is a time-saving utilities for programming datainput from an external text �le into s
ienti�

odes written in C, C++, and FOR-TRAN languages.The IDF pa
kage o�ers a user a

ess to various data sets stored in �le by theirsymboli
 names and a simple syntax for data representation in a �le. The data
an then be pla
ed in a �le in arbitrary order, supported with
omments, andimported into the user program in an order spe
i�ed by a user. IDF is able totransfer input data to the aggregate targets (su
h as a stru
ture or
ommon blo
k).IDF supports the pointer targets as well as the dynami
 allo
ation of memory.This manual presents the
omplete des
ription of: the stru
ture of the datasour
e �le required for IDF; the syntax for data representation in this �le; the setof data types supported by IDF; the built-in
al
ulator; the spe
i�
ation of targetsin the user
ode to whi
h the data should be imported from �le, as well as thedes
ription of fun
tions (utilities) to be
alled by a user in order to handle thedata import with IDF.E-mails: apigarov�psf
.mit.edu, apigarov�pppl.gov, apigarov�rex.pf
.mit.edu1

I. Introdu
tionAs a rule, the large s
ienti�

omputer programs require numerous inputdata. It is a
ommon approa
h to store the input data in a separate �le whi
hthe user's program reads when it is running. This kind of input allows a userto
hange the input data and re-run his program without re-
ompiling thewhole sour
e
ode. The more sophisti
ated is the program input, the moretime
onsuming and even the more hardworking is the programming of �leinput in C or FORTRAN languages1. In addition, the input �le may
ontainnumerous data units looking alike, so that it is hard to �nd and
orre
t thesele
ted unit amongst the other data units stored in this �le.IDF, Import Data from File, is a time-saving utilities for programmingdata input from an external text �le for s
ienti�

odes. The IDF data sour
e�le is an ordinary text �le whi
h
ontains input data in a well understandableform. Ea
h item in the IDF data �le
an be easily identi�ed, modi�ed or
orre
ted. The input data
an be supplied with the user's
omments to make1In C language, the programming of data input from a text �le is based on the usage ofstandard fun
tions (for example, the fget
 and fs
anf fun
tions) from C run-time library.When programming the data input in FORTRAN, a user manipulates with the spe
ialstatements whi
h are built-in this language (for example, the READ statement). Theseutilities (statements or fun
tions) are the bri
ks from whi
h a user
an build a very sophis-ti
ated input for his
ode. The
omplex input programming requires time as well as thedetailed knowledge of programming language (and, sometimes, the operational system).The program author must take
are to read and transfer data in the proper order, in anorder as the data stored in a �le. It is not possible for a user to
hange without modifyingthe sour
e
ode of user program the lo
ation of data set stored in a �le.2

the input
lear to other users. In
omments you
an give instru
tions aboutthe usage of input parameters in your program or any other important infor-mation
on
erning your
ode instead of referring a user to the do
umentation(if any) or to the sour
e
ode of your program. To
reate2 and modify3 this�le you
an invoke your favorable editor.The IDF pa
kage o�ers user an a

ess to various data sets stored in a�le by their symboli
 names. The IDF data sour
e �le is then a
olle
tion ofthe named data sets. The data sets
an be written in arbitrary order. Thelo
ation of data sets in a �le does not a�e
t the result of data import. Atthe same time, the data
an be imported into the user's program in an orderspe
i�ed by a user.Ea
h data set must have the syntax des
ribed in this manual. The syntaxis very simple and resembles main features of C and FORTRAN languages.The IDF pa
kage has its own built-in
al
ulator that allows a user to repre-sent the `arithmeti
' type data stored in input �le in terms of mathemati
alformula. IDF o�ers additional prede�ned set of mathemati
al and physi
al
onstants whi
h are widely used in s
ienti�

odes. If ne
essary, ea
h dataunit (or any sequen
e of
onse
utive data units)
an be impli
itly repeated byspe
ifying the repetition number instead of
onsequently repeating this unitmany times in a �le.IDF is able to transfer data to the sophisti
ated aggregate targets
reated2The �le name
an be represented by any
ombination of letters, digits, and unders
oresymbols, but must always begin with a letter.3You
an use the text output from s
ienti�

odes and modify it following the IDFsyntax. 3

by a user, su
h as stru
tures or
ommon blo
ks. IDF supports the pointertargets as well as the dynami
 allo
ation of memory.The IDF pa
kage provides a
omplete set of fun
tions (utilities) ne
essaryto handle the data input from a text �le. In this sense, IDF is an alternative tothe dire
t programming of data input in C, C++, and FORTRAN languages.The pa
kage in
ludes fun
tions: to open, read, parse, and
lose the input textdata �le; to sear
h for and to referen
e by symboli
 name the data set givenby a user in the input �le; to
onvert the text data stored in �le into binaryvalues of the spe
i�ed data type; to perform the mathemati
al
al
ulations;to manipulate with a set of prede�ned physi
al
onstants; and to assignvarious targets (variables, arrays, stru
tures, pointers, or
ommon blo
ks)de
lared elsewhere in the user program, their values taken from the input�le. All these fun
tions are written in C language following the ANSI Cstandards that makes the IDF pa
kage portable a
ross many
omputers andoperational systems4. You
an use the IDF fun
tions in your
ode almost inthe same way as the fun
tions from C run-time library.II. Stru
ture of IDF data sour
e �leThe IDF data sour
e �le
onsists of one or more data sets. Ea
h data sethas its own name (i.e the set is named). This symboli
 name is used by IDFto �nd the position of data in a �le.4At the same time, the IDF utilities are
ompatible at the sour
e level, i.e they mustbe re
ompiled to run under new operational system or pro
essor.4

A data set is represented in a �le in the form of an abstra
t assignmentstatement5. Consider the following three examples to illustrate the generalstru
ture of a data set:<keywords> data name <subs
ripts> = <repetition number < � > > data unit ;<keywords> data name <subs
ripts> : <repetition number� > data blo
k ;<keywords> data name <subs
ripts> :<repetition number< � >><data unit> <;> ...<repetition number � > <data blo
k> <;> ... ;Any item in these statements
an be optionally omitted, if it is shown withinthe angled bra
ket delimiters, <>.The data name
onstitutes the left hand side of these statements, thename �eld. Optionally, the name
an be pre
eded by the sequen
e of key-words. The keywords and the name must be separated by, at least, a blankspa
e. The name
an be followed by the subs
ripts.The equals mark (=) and the
olon mark (:) are used to separate thename from the data assigned to it.The data �eld
onstitutes the right hand side of these assignment state-ments. The data �eld must end with the semi
olon (;) symbol. This �eldmust
ontain at least one data unit or data blo
k. The data blo
k is a sequen
eof data units en
losed within
urly bra
es. Ea
h data unit or blo
k
an beimpli
ity repeated by spe
ifying its repetition number. If data �eld
onsistsof many data units or data blo
ks, ea
h item should be properly separated5although the name of data set does not represent dire
tly the target, this form issimilar to the assignment statement typi
al for the most programming languages.5

with a spa
e or
omma.There is no other restri
tions on how the elements of named data set
anbe written in a �le, other than the
orre
t syntax for this set. On the onehand, ea
h data set (as well as name �eld, data �eld, data blo
k, and evensome data units) may o
upy one or more lines in a �le, and several nameddata sets
an be pla
ed simulteneously in one line in the data �le, on theother hand. However, the stru
ture and
ontent of data input to a s
ienti�

ode will be more
lear to the users of this
ode in the
ase when ea
h inputparameter is separated and supported with
omments, as it is illustated bythe following example:// IDF data �le "
ouette.dat"/*||||||||||||||||||||||-This �le
ontains input data for the XXX
ode.The XXX
ode simulates the 1D2V Couette
ow problem.The input data are written in the IDF language.||||||||||||||||||||||-*//* Physi
al input parameters */Lz = 1; // A �xed plate separation distan
e, in
mKnu = 0:025;// Knudsen numberTw = 0:1; // Constant plate temperature, eVUw = 0:01; // Constant relative plate velo
ity, U=V t// Vt is the thermal velo
ity, sqrt(2RTw)Pr = $1/3$, $2/3$, 1; // The set of Prandtl numbers/* Computational algorithm input parameters */Nz = 1000; // number of nodes in the uniform mesh in z dire
tion6

Nv = 31,31; // number of nodes in the 2D velo
ity spa
erather than in the
ase:Tw=0.1;Uw=0.01;Nz=1000;L=1;Knu= 0.025;Pr=0.33333, 0.66667,1.0;Nv=31,31;where the same input parameters are given in a stru
tureless manner or
haoti
ally in the data �le.III. Name of data setThe name of data set in a �le may be represented by any
ombination ofletters (in upper and lower
ases), digits, and unders
ore symbols. But, atthe same time, the name must begin with a letter.Usually the data set name
orresponds to the name of a variable de-
lared in the user's
ode, although an exa
t
oinsiden
e of these names is notne
essary.A data name itself must not be:1) the IDF keyword (
har,
hara
ter, int, integer, long,
oat, double, void,text, string,
omplex, stati
, extern, lo
al),2) the name of standard mathemati
al fun
tion used in the built-in
al
ulator(see the list of names given in APPENDIX III), or7

3) the name from the IDF list of mathemati
al and physi
al
onstants (seeAPPENDIX I and II, respe
tively).The name assigned to a data set must not mat
h these intrinsi
 namesreserved for spe
ial purposes. The IDF keywords
an be written either inthe lower or in the upper
ase letters. The names of standard
onstantsmust be given in the upper
ase letters. Any letter in the name of a built-inmathemati
al fun
tion
an be written in the lower as well as in the upper
ases.Anonymous (`unnamed') data sets whi
h appear without or to the leftof the assignment mark (i.e the data sets `aaa = 2; ; 123;' and `123 = aaa;'are illegal) as well as the `empty' names whi
h do not followed by the data(i.e the following data sets `aaa =;' and `aaa = = � aaa is a name � =;' arein
orre
t), will
ause a fatal parse error.IV. S
ope and type of named dataThe IDF language in
ludes two spe
ial keywords: stati
 and extern, inorder to spe
ify the s
ope (and storage)
lass for a named data set. One ofthese keywords
an be optionally added to the data name at the left handside.The IDF
onsiders all data names related to the stati

lass as an inter-nal IDF variables and allo
ates memory for these variables a

ording to thespe
i�ed data type (or, by the default, a

ording to the type of a data unit).The whole �le is the s
ope for these variables. The stati
 variable exists for atime the sour
e �le is open. The stati
 names
annot be referen
ed dire
tly8

from the users
ode. At the same time, these names
an be used inside the�le to
reate spe
i�
 data units. (see a des
ription for the formula data unitgiven further in this manual).The data name supported with the extern keyword indi
ates that
or-respondent data set should be imported into the user's
ode on the userrequest. Su
h a name impli
itly asso
iates parti
ular data set with a targetde�ned outside the IDF. In other words, the name
lassi�ed as extern refersdata to one or more obje
ts de
lared in the user's
ode. Using this name asan argument for the spe
ial fun
tion of IDF pa
kage, a user has an a

ess tothe data set stored in �le.The default
lass for data set names is extern, a user
an always omit thiskeyword in writing data names in the sour
e �le.The IDF generates a fatal error message in the
ase: when the stati
 andextern keywords appear together in the name �eld, or when there are two ormore data sets with the same name in �le, but these names have di�erents
ope
lass.Along with keywords spe
ifying the data s
ope, the name �eld
an also
ontain keywords whi
h spe
ify the type of data stored in the given dataset. The type spe
i�er keywords are:
har, string, text, int, long,
oat,double, void, and
omplex. The following
ombinations of keywords are al-lowed:
omplex
oat and
omplex double, be
ause they have a
ertain spe
i�
meaning.For any internal variable (i.e for a variable asso
iated with the data set ofstati

lass), the type spe
i�er keyword is
onsidered as the de
laration for9

this variable. The memory allo
ation, the initialization, and (optionally) thedata type
onversion o

ur for an internal variable a

ording to the spe
i�edtype. The default data type is void. The void variables re
eive the type ofthe
orresponding data unit (see the se
tion "data units" of this manual).The keyword void
an be omitted for
onvenien
e.For data sets spe
i�ed as extern, the non-
on
i
ting type spe
i�er key-words are simply ignored.V. Subs
ripts for data nameThe data name in a �le
an be expanded by using subsripts. Thesesubs
ripts are required to spe
ify optionally either the array dimensions, orthe parti
ular element in an array.The array subsripts
an be pres
ribed to the name of data set in twoways.First, you
an spe
ify the array dimensions in the same way as they arespe
i�ed in C language. In the C-style
ase, the dataname is followed with alist of non-negative integer numbers and ea
h number is en
losed within thepair of square bra
kets, i.e within [and ℄.Consider the following example of named data sets:stati
 double array1D[3℄ = 7,77,777;stati
 int array2D[2℄[3℄ : 1,2,3,4,5,6;Here, the �rst data set named `array1D' is de
lared as the double pre-
ision,
oating point, one dimensional array of three elements. In parsing10

the �le, the
orresponding stati
 target will be initialized by �lling the arrayelements
onsequently with 7,77, and 777. The name `array2D' introdu
esthe data set as the multi-dimensional array, de
lared as an "array of ar-rays". This array
onsists from six integer-number elements. The elementsare stored in memory in the row-major order, i.e the last dimension indexvaries faster than the previest dimension index. That is, the �rst elementwill re
eive the value of the �rst data unit, array2D[0℄[0℄ = 1, the se
ondelement will get the value of the se
ond data unit array2D[0℄[1℄ = 2, andarray2D[0℄[2℄ = 3, and array2D[1℄[0℄ = 4, and et
.Se
ond, you
an pres
ribe dimensions to the data set name using theFORTRAN style de
laration. In the FORTRAN style
ase, the data nameis followed with a list of integer numbers en
losed in parentheses, i.e within`(' and `)'. within the parentheses, non-negative numbers representing thedimensions must be separated from ea
h other by
ommas.Consider the same two data sets as dis
ussed above in the
ase, when theFORTRAN slyle de
laration is used for name subs
ripts: de
laration:stati
 double array1D(3) = 7,77,777;stati
 int array2D(2,3) : 1,2,3,4,5,6;In this
ase, three data units
onsequently initialize all three elements ofthe one dimensional array `array1D', i.e array1D(0) = 7, array1D(1) = 77,array1D(2) = 777. The multi-dimensional array `array2D'
ontains sixinteger number elements. The elements are stored in memory in the
olomn-major order, i.e the last dimension index varies slower than the previestdimension index. That is, the �rst element will re
eive the value of the11

�rst data unit, array2D(0; 0) = 1, the se
ond element will get the valueof the se
ond data unit array2D(1; 0) = 2, and array2D(0; 1) = 3, andarray2D(1; 1) = 4, and et
.It is not allowed to pres
ribe array dimensions to data names using both Cand FORTRAN style de
larations (for example, the following data set: `Garr[2℄(2)[1℄ = 1; 2; 3; 4;' is illegal). The negative or
oating-point numbers inthe dimension list will
ause a fatal parse error.Note, that in the
ase6 when the data set
orresponds to the internal(i.e stati
) array target, subs
ripts denote the dimensionality of this array.The empty pair of square bra
ket or empty parentheses are allowed. In this
ase, the
orrespondent default dimension is set to unity. For example, thedata set `stati

omplex abra[2℄[℄[5℄ = (2,3);' is equivalent to `stati

omplexabra[2℄[1℄[5℄ = (2,3);'.The maximal number of array dimensions whi
h
an be assigned to thedata set name in a �le is equal to 3. This number is introdu
ed by means ofma
ro-de�nition7 IDF FRMT DIM MAX.In the
ase when data set has the extern
lass and
orresponds to anarray de
lared in the user's
ode, the subs
ripts atta
hed to the name in6In earlier version of IDF, the assignment of array dimensions to the stati

lass namesis not allowed and will result in a fatal error. There are also some restri
tions on the typeof data units for stati
 variables: the data
an be represented only by data units of an`arithmeti
' type, i.e by the integer,
oating-point,
omplex, and formula units, and notby the
hara
ter, string, or text data units.7Here and further in the text we will use the words: ma
ro-de�nition or ma
ros, todenote the standard C prepro
essor dire
tive: #de�ne.12

a �le denote the element in this array starting with whi
h the stored datamust be imported. In other words, non-negative numbers given in data namesubs
ripts determine the o�set from the beginning of array. If no subs
riptsare spe
i�ed, the data will be transferred to an array target assuming thezero o�set.Assume that upper
ase letters K, M , N denote three dimensions of anarray target in the user's program and that lower
ase letters k, m, n denotethree subs
ripts assigned to the data set name in a �le. In the
ase whenthe target is de
lared as the C-style three dimensional array `[K℄[M ℄[N ℄', theFORTRAN-style subs
ripts `(k;m; n)' to the data set name de�ne the o�setequal to N � (M � n+m) + k, whereas the C-style subs
ripts `[k℄[m℄[n℄' givethe o�set N � (M � k + m) + n. In the
ase when the target is de
laredas the FORTRAN-style array `(K;M;N)', the C-style subs
ripts `[k℄[m℄[n℄'de�ne the o�set equal to K � (M � k+m) +n, whereas the FORTRAN-stylesubs
ripts `(k;m; n)' result in the o�set K � (M � n +m) + k.If the integer number is omitted inside the pair of square bra
kets orparentheses, it is assumed to be zero. If the number of subs
ripts assignedto data name in a �le is less than the number of dimensions pres
ribed tothe target, the la
king name subs
ripts are assumed to be equal to zero.VI. CommentsA pie
e of data sour
e �le boardered by the
hara
ter pairs /* and */ is
onsidered as the C-style
omment. A
omment
an
ontain any
ombinationof
hara
ters in
luding: white spa
e, tabulation, line-feed,
arriage-return,13

form-feed, horizontal and verti
al tabulation, and new-line
hara
ters. As inC language, C-style
omments in IDF
an not be nested.Comments
an be pla
ed in data �le anywhere a white spa
e is allowed.When parsing the data �le, IDF repla
es a
omment by a single white spa
e(in some
ases this additional spa
e symbol may a�e
t the data import ormay generate a fatal error, for example, you
an not break the data name orthe integer-number data unit with a
omment).IDF also re
ognizes the C++ style
omment: a text beginning with two
onsequtive forward slashes, //, and ending with a new-line symbol. TheC++ style
omment
an be a part of the C style
omment.VII. Representation of data in IDF data �leIn the data sour
e �le, the numerous data are represented by means of ele-mentary data units. Su
h data units express a de
imal, o
tal, or hexade
imalinteger number, a
hara
ter, a
hara
ter string, a
oating-point number, or a
omplex number in the literal form, i.e as a sequen
e of
hara
ters Hereafterthis representation of data unit will be referred to as S-value. The legal dataunit has its binary value, the R-value. The R-value
an be related to oneor more variables, the type of whi
h is spe
i�ed in C, C++, or FORTRANlanguages. Ea
h data unit is evaluated,
onverted and imported (i.e assignedto targets spe
i�ed in the user's program) by the IDF utility.14

Data unitsThere are seven types of data units:
hara
ter, string, text, integer,
oating-point,
omplex, and formula. This se
tion explains how to de�nethese data units.Chara
ter data unitUsually, the
hara
ter data unit is represented by any printable ASCIIsymbol (ex
ept the ba
kslash and single quotation mark symbols) that isen
losed in apostrophes. Between the apostrophes, a printable ASCII symbol
an be a

ompanied by white spa
es (for example: two units, 'a' and ' a ',express the same
hara
ter a). The `empty'
hara
ter unit (given by the two
onse
utive apostrophes only) is not allowed.Chara
ter data unit
an be also expressed by some non-printable and non-ASCII symbols or by an es
ape sequen
e, if they are apostrophes delimited.Chara
ter unit based on the ANSI es
ape sequen
e is one of:'na', 'nb', 'nf ', 'nn', 'nr', 'nt', 'nv', 'n' ', 'n" ', 'nn', 'n?', 'n0',introdu
ing respe
tively the ASCII
hara
ters for alert, ba
kspa
e, form-feed, new-line,
arriage-return, horizontal and verti
al tabulation, single anddouble quotation mark, ba
kslash, literal question mark, and end-of-string(NULL) symbol. In other
ases, when
hara
ter unit body
onsists from theba
kslash followed by any single symbol other than a digit or a, b, f , n, r, t,v, x, ', ", n, ?, $, the ba
kslash is ignored (for example, the sequen
e 'n
'produ
es the ordinary
hara
ter '
').15

IDF re
ognizes
hara
ter units based on the o
tal and hexade
imal es
apesequen
es. The o
tal es
ape sequen
e starts with a ba
kslash symbol followedby one to three o
tal digits8. In the
ase when less than three digits formthe o
tal es
ape sequen
e, the es
ape sequen
e is automati
ally expandedby adding zeroes from the left hand side (for example, the unit 'n41' isequivalent to the o
tal es
ape sequen
e 'n041' and introdu
es the ex
lamationmark symbol). The hexade
imal es
ape sequen
e starts with the ba
kslashfollowed by x or X, and thereafter, by one to three hexade
imal symbols9.The R-value
orrespondent to the o
tal or hex es
ape sequen
es must notex
eed the eight bits of memory.String data unitThe string data unit must be delimited in data �le by a double quotationmark. This unit
an
ontain any
ombination of printable ASCII
hara
tersand those es
ape sequen
es whi
h represent an ASCII
hara
ters. In orderto pla
e the double quotation mark inside a string unit, the
orrespondentANSI es
ape sequen
e (i.e n") has to be used.The string unit
an o

upy more than one line in a data �le using thesame string
on
atenation rule as that adopted in C language. The ba
kslashis
onsidered as a string
ontinuation mark, if newline symbol immediatelyfollows the ba
kslash. In this
ase the ba
kslash is ignored and the string
ontinues with the �rst
hara
ter of the next line in data �le.8The o
tal digit is one of: 0,1,2,3,4,5,6,7 .9The hexade
imal symbol is one of: 0,1,2,3,4,5,6,7,8,9, a,b,
,d,e,f, A,B,C,D,E,F .16

Text data unitThe text data unit is a series of
hara
ters en
losed in the pound signsymbols (#).Within a text unit, the IDF re
ognizes the so-
alled trigraph sequen
es.As in C language, the trigraph sequen
e
onsists of three
hara
ters. Thesequen
e starts with two
onse
utive question marks followed by an ASCIIsymbol whi
h will be
onverted into the pun
tuation
hara
ter. The followingnine trigraphs:??= , ?? (, ??/ , ??) , ?? ' , ?? < , ?? ! , ?? > , and ?? �will be repla
ed by the
orrespondent single ASCII
hara
ters:# , [, n , ℄ , ^ , f , j , g , and � .So, in order to deposit the pound sign
hara
ter in the text, the
orrespondenttrigraph sequen
e `??=' must be used instead of the pound sign symbol `#'.Integer data unitInteger data units
an be represented as a de
imal, o
tal, or hexade
imalnumber. IDF follows a simple rule to distinguish between these three typesof numbers. By default, the integer unit is assumed de
imal unless it startswith 0. If the integer unit begins with 0x or 0X, it is assumed hexade
imal,and it is o
tal, otherwise.No delimiters required to introdu
e this unit in a data sour
e �le, althoughwhite spa
e,
omma, and some other symbols should be used in order toseparate data units in a �le. 17

Floating-point data unitIn general form, the
oating-point unit has a sign, integral and fra
tionalparts separated by de
imal point, and optionally, an exponent. The integralor fra
tional part
an be omitted, but the rest part must
ontain at least onedigit. The exponent is expressed with a letter symbol (one of: e,E,d,D,g,G)followed by a sign symbol (optional) and at least one digit.For example, the following data units:777, 777:, +777:0e + 0, 7:77d + 2, 77:7D + 01, :777g + 3, 77700G � 2,introdu
e the same
oating-point value whi
h is equal to 777.No delimiters required for a single
oating-point unit in the data sour
e�le, but blank spa
e and
omma should be used in order to separate dataunits in a �le.Complex number data unitThe
omplex number is an ordered pair of
oating-point values. The
om-plex data unit is represented by two
oating-point units whi
h express re-spe
tively the real and imaginary parts: re and im, separated with a
ommasymbol. The
omplex unit must be en
losed in parentheses, i.e (re; im), andre and im must
ontain at least one digit. White spa
e, tabulation, andnew-line symbols are allowed inside the parentheses.Formular data unitThe formula data unit
an be represented by: (i) any exe
utable math-emati
al expression (a formula), (ii) the name of mathemati
al or physi
al18

onstant from the standard IDF list, and (iii) the name of any stati
 dataset de
lared in the same data sour
e �le.The
ontent of a formula data unit must be en
losed within the dollarsigns (by analogy with the TEX mathemati
s mode). Formular units
annotbe nested, but subje
ted to
on
atenation in the
ase when two or more unitsare not properly separated.VIII. Con
atenation of delimited data unitsIn general
ase, if you are pla
ing several data units on a line in thedata sour
e �le, you must separate these units with blank spa
e or
ommasymbols. At the same time, if two or more
onsequtive data units havedi�erent type of delimiters, it is not ne
essarily to separate these units withspa
e or
omma.Con
atenation rule is applied to data units delimited with ", ', #, and$ symbols in the
ase when the identi
al type units are not separated withwhite spa
e,
omma, or new-line symbols, or with a
omment. For example,the translation of string type union: "The"" Bea""tle""s", is equivalent tothe single string unit "The Beatles". The series of
hara
ter units 'n ' 'x''26' is equivalent to the hexade
imal es
ape sequen
e 'nx26' whi
h in turnrepresents the single ampersand symbol. The
on
atenation of two formulaunits $ sqrt(2) $$ ** 2 $ will result in the
oating-point
onstant equal to 2.19

IX. Impli
it repetition of data unitsA union of data units en
losed within
urly bra
es (i.e f and g) is
alleddata blo
k. Data units in a blo
k
an have di�erent types and must beproperly separated by spa
es or
ommas from ea
h other. A blo
k must
ontain at least one data unit, the 'empty' blo
k is not allowed. Data blo
ks
an be nested, i.e any blo
k may appear within other blo
ks.Consider the following example:ab
 = f /* this data set introdu
es an alphabet. */f 'a', 'b',"
def"g, f"ghij","klmn", "oprq"g "rst",'u'f"vw" "xyz"gg;Here the name `ab
' is assigned to a data superblo
k. Superblo
k in
ludesa C-style
omment and
onsists of three data blo
ks and a single string-typedata unit "rst". Ea
h blo
k
ontains three data units.Data blo
ks in a series of blo
ks
an be separated by a spa
e or
ommaseparators, although it is not ne
essarily. Use
omments inside and outside ablo
k where a spa
e is lexi
ally allowed. The appearen
e of: (i)
onse
utive
ommas inside or outside the blo
k, (ii) the semi
olon inside the data blo
k,(iii) the openning bra
e followed by the
omma, and (iv) the
omma followedby either the semi
olon or by the
losing bra
e,
auses a fatal error (even inthe
ase when there are multiple spa
es,
omments, and tabulators betweenthese pairs of symbols).Important feature of data blo
k is that ea
h blo
k
an be impli
itly re-20

peated. To repeat the blo
k, you should use an expression in whi
h datablo
k is multiplied at the left hand side by the repetition number. So, theexpression of the form: XXX � data blo
k ;will be translated by IDF as "repeat XXX times the data blo
k". Therepetition number XXX must be represented here by any positive integernumber (in de
imal, o
tal, or hexade
imal notation). Multiple repetitions ofa blo
k (for example: 1 � 2 � 3 � 4 � data blo
k) are not allowed. Instead, you
an use the nested superblo
ks. For example, in the following expression:1 � f2 � f3 � f4 � data blo
kggg, the data blo
k will be repeated 24 times. Ifno repetition number followed by asterisk is given, the blo
k appears onlyon
e, unless this blo
k is a part of the super-blo
k subje
ted to be repeated.The zero repetition number makes the IDF utility to ignore the
ontentof
orrespondent data blo
k (i.e in treating the data �eld, the zero timesrepeated blo
k will be simply skipped).In the same way you
an impli
itly repeat any single data unit in a �le.In order to demonstrate the impli
it repetition of data unit and blo
k,
onsider respe
tively the following examples:
omplexseven times seven : 7*(7; 0); //
omplex unit repeated 7 timesonetwo times three = 3*f1,2g; //repetition number is 3 for a blo
kHere, the data set named
omplexseven times seven
ontains seven identi
al
omplex numbers. In the data set onetwo times twelve, the sequen
e f1; 2gis repeated 3 times, i.e the resulting data input is as follows: 1,2,1,2,1,2.21

X. Built-in mathemati
al and physi
al
onstantsIDF reserves spe
ial names for symboli
 representation of widely-usedmathemati
al and physi
al
onstants. These names must be written withthe upper
ase letters. All built-in names start with a sequen
e 'IDF ' inorder to avoid their
oin
iden
e with data names given by a user. The listof mathemati
al
onstants is given in APPENDIX I. The physi
al
onstantsare listed in APPENDIX II.Being en
losed within dollar sign symbols, any spe
ial name
onstitutes adata unit of the formula type. For example, the formula data unit $ IDF PI$ based on built-in name IDF PI is equivalent to the
oating-point data unitexpressing the � number with a
omputer a

ura
y.The spe
ial name
an appear without delimiters inside the formula unit asa member of mathemati
al expression. In this
ase, the spe
ial name repla
esthe
orrespondent mathemati
al or physi
al
onstant in an expression.XI. Built-in
al
ulatorIn general
ase the formula data unit is given by the mathemati
al ex-pression in
luding:1)
onstants that represent the integer and
oating-point number by theirS-values;2) algebrai
 operators;3) referen
es by name to the standard mathemati
al and physi
al
on-stants spe
i�ed in IDF, i.e the
onstants given by their R-value;22

4) referen
es by name to the R-values of stati
 data sets de�ned by a userelsewhere in the given data sour
e �le;5) names of built-in mathemati
al fun
tions;6) parentheses that delimit the list of fun
tion arguments,
hange thepre
eden
e of en
losed operators, or delimit the S-value
onstants;7)
ommas that separate the fun
tion arguments from ea
h other.The expression in formula unit does not
ontain an assignment operator.The expression must be exe
utable, its
al
ulation must yield a single numeri
value.In order to introdu
e the
omplex number
onstants by their S-value ina formula, you must use the built-in fun
tions:
omplex,
mplx, and polar(see APPENDIX III). For example, the resultant R-value of the followingformula unit: $
omplex (1,2)$, is the
omplex number (1; 2), whereas theformula expression $(1,2)$ is illegal.The following operators are used in algebrai
 expressions: '+' for addition,'�' for subtra
tion, '�' for multipli
ation, '=' for division, and '^' or '��' forexponentiation. All employed operators are binary operators, i.e they operateon the pair of operands. Ex
ept the exponentiation, all other operatorsasso
iate from left to right. The
omputation of a binary expression resultsin the R-value.Two algebrai
 operators must nowhere appear together in a formula.Most frequently, operators tend to appear together in the
ase when thealgebrai
 operator is followed by a negative valued
onstant expression. Toavoid fatal error, use parentheses to separate the negative
onstant in this23

ase. Unlike to C or FORTRAN, ea
h S-value
onstant or a referen
e byname
an be en
losed in the single or multiple parentheses, for example: $(0)+((10))�(2) $, $ (�2)^((�1)) $, $ (IDF PI)��(3) $, and $ (1+(sqrt((2))))$, . Nonessential parentheses do not a�e
t the result and will be simply ig-nored by the
al
ulator.In evaluation of mathemati
al expression, algebrai
 operators range intheir pre
eden
e. Plus and minus operators have the lowest pre
eden
e. Ifthe expression
ontains operators other than '+' or '�', the addition andsubtra
tion will be performed the last. Multipli
ation and division operatorshave the higher pre
eden
e than '+' and '�' operators. The pre
eden
e ofthe exponentiation operator is the highest. If a series of operators have anequal pre
eden
e, they are evaluated a

ording to their asso
iativity. Theparenthesis may
hange the order of pre
eden
e for any operator.All S-value
onstants entering the expression are
onverted either to thelong integer or to the double pre
ision
oating-point (type double)
onstant.All mathemati
al
omputations are performed in double pre
ision.The type
onversion of operands may o

ur even if both operands in abinary expression have the same data type. For example, to
ompute thefun
tion argument in the following expression: $sqrt(1 + 5000000000)$,the addition of integers will be repla
ed by the addition of
oating-pointnumbers by
onversion of ea
h integer to the double pre
ision
oating-pointvalue. In this
ase, the dire
t addition of integer numbers will
ause anover
ow in the resulting integer value.If operands entering the binary expression have di�erent data types, the24

type
onversion o

urs before this expression will be evaluated. In the
asewhen one of operands is a
omplex number, the other operand will be
on-verted to the
omplex number (the
onverted
omplex number
onsists of thereal number and the zero imaginary part). The exe
ution of
omplex binaryexpression results in the
omplex number value. If integer and
oating-pointnumbers
onstitute the binary expression, the integer number will be
on-verted to the
oating-point number. This binary expression results in thedouble pre
ision
oating-point number.The built-in fun
tions enter the expression in the same way as in C orFORTRAN languages. The name of fun
tion is followed by the parenthesizedlist of expressions
orrespondent to a
tual arguments of a fun
tion. A
ommais used to separate the adja
ent argument expressions of a fun
tion. Thea
tual argument
an be represented by any exe
utable expression in
ludingthose expressions whi
h use the
alled fun
tion again.Fun
tions
an be nested, i.e any fun
tion may serve as an argument ofanother fun
tion (for example: $ real(sqrt(exp(
omplex(1:0 + pow(2; 3);IDF PI)) $). The
all of a fun
tion without arguments or with a variablelist of arguments is not allowed.The full list and the des
ription of built-in mathemati
al fun
tions isgiven in APPENDIX III.On using the fun
tion in mathemati
al expression, the type
onversionsmay o

ur when: (i) the built-in fun
tion is dire
tly responsible for the type
onversion, su
h as int, long, double,
omplex, and
mplx fun
tions; (ii) theunlike type value is passed as an argument to a fun
tion; and (iii) the value25

returning by any other built-in fun
tion is subje
ted to further
onversiona

ording to the expression syntax.In
omputing
ompli
ated expressions, the type of the resultant R-value isgiven by the last exe
utable binary expression (for example, the result of $ 1+int(
mplx(1)) $ is an integer number, whereas the result of $ 1+
mplx(1) $ isa
omplex number), or by the last fun
tion
all (for example, the last fun
tionthat will be
alled in the expression: $ real(sqrt(
omplex(1;IDF PI))) $,is real() and hen
e the resulting value has a storage type double).The IDF
al
ulator analyses the expression given in data �le in the order,from left to right, sear
hing for tokens (operands,
onstants, opening and
losing parentheses,
ommas, and fun
tions). Tokens are
oded and storeduntil the a

umulated expression
an be
ompletely exe
uted or simpli�edby an exe
ution of any its part. The maximal number of thus a

umulatedtokens is set to 100 by the ma
ro-de�nition IDF FORM ELM MAX.Performing algebrai

al
ulations, the IDF takes pre
autions against theover
ow of
oating-point number, the improper values of fun
tion arguments,and et
. IDF generates the
orrespondent error message before these errorso

ur.XII. Parse of IDF data �leAs soon as a user
alls the spe
ial IDF fun
tion to open the data sour
e�le, IDF runs through this �le sear
hing for the data sets.26

Insodoing, the IDF utility:1) s
ans
hara
ters in the name �eld up to the �rst appearan
e of the as-signment mark ('=' or ':');2) skips
omments and insigni�
ant
hara
ters whi
h may appear in thename �eld (su
h as the newline or
arriage-return symbols, the nonessential
onsequent blank spa
es and tabulators whi
h may surround a name, et
);3) splits the name �eld into three parts: the keywords, the data name, andthe subs
ripts;4) determines the s
ope
lass (stati
 or extern) for a
urrent data set;5) determines the type of data set and its dimensionality;6) stores (in the
atalog) the name and some other information about the
urrent data set;7) if data set has extern
lass, skips the data �eld
orresponding to the
urrent data name up to the �rst appearan
e of semi
olon (;) symbol;8) if data set is stati
, parses the data �eld, evaluates, and stores the valuesof ea
h data unit in the �eld;9)
ontinues with the next data set until the end of �le will be rea
hed.As a result, the IDF utility
reates two
atalogs for the given input �le.The �rst
atalog
ontains names and data R-values for all data sets spe
-i�ed in �le as stati
10. The se
ond
atalog
ontains information about alldata sets spe
i�ed as extern. This information in
ludes the data set name,the o�set pres
ribed by data name subs
ripts, and the starting position of10The total number of stati
 variables given in �le must not ex
eed 50, as spe
i�ed bythe ma
ro-de�nition IDF NAME LISTL N.27

orresponding data �eld in the �le11.On the user request, IDF imports data from the named data set. A user
alls the spe
ial IDF fun
tion using the data set name as an argument of thisfun
tion. The IDF fun
tion, �rst of all, sear
hes this name in the
atalog.If the name is found in the
atalog, this utility positions the input �le atthe beginning of data �eld asso
iated with a given name. After that, thefun
tion parsing the data �eld iteratively, from data unit to unit.When parsing the data �eld assigned to the data name, the IDF utility:1) s
ans
hara
ters in the data �le starting with assignment mark ('=' or':') until the end-of-�eld mark (i.e semi
olon, ';');2) sear
hes for data units returning at the beginning of the data unitblo
k, if the end of the blo
k (i.e. right bra
e, 'g') is rea
hed and data unitsshould be repeated;3) removes
omments and insigni�
ant
hara
ters whi
h may appear inthe data �eld;4) performs
on
atenation of data units, if it is required by a syntax;5) if data unit is found, determines the type of data unit;6) analyses the
ontent of data unit, removes delimiters and any insigni�-
ant
hara
ters (for example: string
ontinuation marks, newline or
arriage-return symbols,
onsequent blank spa
es and tabulators whi
h may surrounda number, and et
). In treating integer,
oating-point,
omplex, and formula11The total number of external data sets given in �le must not ex
eed 50, as spe
i-�ed by the ma
ro-de�nition IDF NAME LIST N. In the ex
ess, IDF stops exe
ution andgenerates the error message. 28

units, IDF removes any kind of
omment and repla
es the
omment witha single blank spa
e. At the same time, IDF does not re
ognize
ommentspla
ed inside the
hara
ter, string, and text data units, i.e in between the', ", and # delimiters (for example, in treating a
hara
ter type data unit:'n t/*this is an improper pla
e for
omment*/', IDF will generate an errorinstead of importing the single tabulation symbol);7) stores in memory signi�
ant
hara
ters of data unit (ex
ept for theformula unit) for a time of further analysis and
onversion;8)
onverts the sequen
e of signi�
ant
hara
ters into a
hara
ter, another
hara
ter sequen
e, or a binary value a

ording to the type of data unit;9) performs mathemati
al
al
ulations, if the data unit has a formulatype, hen
e,
onverting the formula into the single binary value;10) stores the obtained temporary R-value in the appropriate type vari-ables (that provide the nominal a

ura
y for data representation) until thisR-value will be transferred to the user's target.In parsing the
hara
ter unit, IDF sear
hes for the signi�
ant
hara
ter(white spa
es are ignored in the
ase when the
hara
ter unit
ontains anyother ASCII symbol) or for the es
ape sequen
e. Es
ape sequen
e is repla
edby its
hara
ter or numeri
al equivalent. The result is temporary stored asan unsigned int variable.In treating the string type unit, all es
ape sequen
es are repla
ed by theirASCII
hara
ter equivalents. If the input string expli
itly
ontains horizontaltabulation, this symbol is repla
ed by the equivalent number of blank spa
es.The string unit input terminates at the �rst appearan
e of NULL
hara
ter29

(i.e n0). If the input string does not
ontain the NULL
hara
ter, it willbe automati
ally added to the end of the resulting string. The maximallength of the resulting string is limited to 328 (a number given by the ma
ro-de�nition IDF DBUF LENGTH), and IDF will generate an error messagefor more lengthy string unit input from a �le.Ex
ept the trigraph
ase, the IDF re-writes the
ontent of a text unit "asis", i.e without any kind of
onversion. The length of any text unit is alsolimited to IDF DBUF LENGTH bytes.The sear
h algorithm for integer and
oating-point units in the data �leis more
ompli
ated than the sear
h algorithm for a delimited data units.In skipping the leading spa
es and tabs, the integer (or
oating-point) unit
an start either with a digit, or with the plus '+', minus '�', and de
imalpoint ':' symbols. These units end properly with the �rst appearan
e of:(i) the semi
olon (i.e ';') symbol whi
h signals the end of data �eld, (ii)any spa
e symbol (in
luding the new-line and
arriage-return), (iii) any kindof
omment, (iv) the
omma, (v) the
urved bra
es, and (iv) optionally, thedelimiter symbol whi
h starts another data unit. If data unit does not
ontainthe de
imal point, the exponent part, and its value by modulus is less thanthe maximal long int number, the data unit
ontent will be
onverted intoan integer
onstant and stored temporary as long int variable. In any other
ases, the unit will be
onverted into double pre
ision
oating-point
onstantand stored in a double variable.When pro
essing the
omplex number unit, IDF
onsequently sear
h fortwo
oating point numbers that are separated by
omma. In su

ess, IDF30

stores the result of
onversion in an array of two elements of the type double.In treating the formula unit, the IDF utility substitutes the
onstantsreferen
ed to by their symboli
 names and evaluates the mathemati
al ex-pression using the built-in
al
ulator. The resultant value is
ase dependent,it
an be represented by either integer,
oating-point, or
omplex R-value.On the parse phase, the data unit gets its raw S-value and then
onvertedinto the temporary R-value. The further
onversion and assignment of R-value to the user's target depend on the type of a target as will be dis
ussedlater.The IDF utility stops exe
uting when a fatal error o

urs. It may be anyparse, mathemati
al, �le reading, or type
onversion error. IDF generatesan error message whi
h usually
onsists of more than one line. Normally,the error message provides enough information to determine the
ause of anerror. In some
ases, it
ontain the
hara
ter whi
h was in
onsistent withthe data representation rule, or the S-value of an improper data unit. Themessage also in
ludes the data set name and its lo
ation in a �le, the startingposition of the data �eld, and the position
urrent data unit. The positionin �le is given by three numbers: (1) the o�set in bytes from the beginningof data �le; (2) the line number, and (3) the
olumn number. If an errorappears in formula, IDF displays the list of a

umulated tokens. The user
an then invoke a text editor to
orre
t (in the data sour
e �le) the textwhi
h
aused an error. 31

XIII. TargetsTarget is the �nal destination for the data stored in �le. The target
an be a single variable, a pointer, or an array, anywhere de
lared in theusers
ode. De
lared targets have di�erent types representing the
hara
ter,integer, or
oating-point obje
ts. A more
ompli
ated targets
an be given bya sequen
e of unlike type obje
ts with a known rule for positioning of obje
tsin the
ommon memory segment. Su
h a targets may be the stru
tures12 inC and C++ languages, or the
ommon blo
ks in FORTRAN.In order to import the named data set from a �le, a user must spe
ify the
orrespondent target in symboli
 form by means of the Target String. Ea
hTarget String in IDF must have the syntax des
ribed in this manual.The Target String is represented by ASCII
hara
ter string and
onsistsof the following
hara
ters:1) target type symbols: '
', 's', 't', 'i', 'l', 'f', 'd', 'z', and 'w' (these symbols
an be also written in
apital letters);2) spe
ial symbols: %, #, &, and �;3) digits representing any positive integer number written in de
imal form;4) parentheses,
ommas, or square bra
kets ([and ℄) that are used in orderto spe
ify the array subs
ripts;5)
urved bra
kets (f and g) and asterisks (*) that are used to express the12some diale
ts of FORTRAN language also in
lude stru
tures, for example: the VAXFORTRAN in VMS Version 5.0 or higher and the FORTRAN-90, Mi
rosoft Fortran PowerStation. The stru
tures de
lared in FORTRAN program
an also serve as a target for theIDF pa
kage. 32

impli
it repetition of target unit in a string;6) blank spa
es and tabulators;7)
ommas whi
h separate the target units;8) semi
olon (;) and NULL (`n0')
hara
ters, with whi
h the target stringends.All other
hara
ters must not appear in the string. The blank spa
es andtabulators are non-essential and will be ignored by the Target String parser.The letters (
,s,t,i,l,f,d,z,w) are used as a keywords in the Target String.The stand-alone letter from this list denotes the single obje
t of spe
i�
 type.The same letter may represent an array or a pointer of the similar type, ifit is used with subs
ripts or in the
ombination with spe
ial symbols. Forstru
tured targets, the Target String may
ontain a sequen
e of keywords.Single obje
t targetAt present, IDF re
ognizes nine types of obje
ts represented in the TargetString by the following letters: '
', 's', 't', 'i', 'l', 'f', 'd', 'z', and 'w'. Ea
htype from this list
orresponds to the parti
ular data type spe
i�ed in Cand FORTRAN languages. An important
hara
teristi
 of ea
h type is theamount of bytes required to represent the
orresponding obje
t in memory.Type
:This type
hara
terized the single
hara
ter obje
t whi
h is a one byte vari-able. It
orresponds to an obje
t X de
lared as `
har X;' in C language, as`
hara
ter*1 X' in FORTRAN-77, and as `
hara
ter(1) X' in FORTRAN-90.33

Type s:This type
orresponds to an obje
t whi
h is a string variable. It is de
laredas an array of
hara
ters. The total number N of
hara
ters in the string(in
luding the end-of-string symbol) must be spe
i�ed. This type obje
t Xo

upies N bytes of
ontiguous memory and is de
lared as `
har X[N℄;' in Clanguage, as `
hara
ter*1 X(N)' (or, `
hara
ter*N X') in FORTRAN-77, andas `
hara
ter(N) X' in FORTRAN-90.Type t:This type
hara
terizes the obje
t de
lared as an array of
hara
ters. Thetotal numberN of
hara
ters must be spe
i�ed. This type obje
tX o

upiesN bytes of memory and is de
lared as `
har X[N℄;' in C language, as `
har-a
ter*1 X(N)' (or, `
hara
ter*N X') in FORTRAN-77, and as `
hara
ter(N)X' in FORTRAN-90.Type i:This type represents the integer number, default de
laration of whi
h requires4 bytes of memory. The
orrespondent obje
t X is de
lared as `int X;'in C language, as `integer*4 X' in FORTRAN-77, and as `integer(4) X' inFORTRAN-90.Type l:This type represents the long integer number whi
h normally requires 4bytes of memory13. The
orrespondent obje
t X is de
lared as `long intX;' in C language, as `integer*4 X' in FORTRAN-77, and as `integer(4) X'13Depending on the
omputer and C
ompiler, an integer variable de
lared in C as longint may require the 8 bytes of memory 34

in FORTRAN-90.Type f:This type represents the single pre
ision,
oating-point number whi
h o

u-pies 4 bytes of memory. The
orrespondent obje
t X is de
lared as `
oat X;'in C, as `real*4 X' in FORTRAN-77, and as `real(4) X' in FORTRAN-90.Type d:This type represents the double pre
ision,
oating-point number whi
h re-quires 8 bytes of memory. The
orrespondent obje
t X is de
lared as `doubleX;' in C, as `real*8 X' in FORTRAN-77, and as `real(8) X' in FORTRAN-90.Type z:This type represents the
omplex number given by two single pre
ision,
oating-point numbers. The
orrespondent obje
t X o

upies 8 bytes of
ontiguous memory and is de
lared as `
oat X[2℄;' in C language, as `
om-plex*8 X' in FORTRAN-77, and as `
omplex(4) X' in FORTRAN-90.Type w:This type represents a
omplex number given by the pair of double pre
ision,
oating-point numbers. The
orrespondent obje
t X requires 16 bytes of
ontiguous memory. This obje
t
an be de
lared as `double X[2℄;' in C, as`
omplex*16 X' in FORTRAN-77, and as `
omplex(8) X' in FORTRAN-90.The stand-alone keyword:
,i,l,f,d,z, or, w, in the Target String repre-sents dire
tly a single obje
t of given type.35

Array targetArray, as the IDF target, is de�ned as a group of like type variables.The elements of an array are stored in memory
ontiguously in an in
reasingorder, from the �rst element to the last. Array
an be
omposed from singletargets of the following type: s, t, i, l, f, d, z, and w. Note, that `single'targets of type s and t are the arrays by de�nition.One-dimensional array, as a target,
an be spe
i�ed in the following form:% number of elements target type symbolwhere target type symbol is the keyword (one of: s, t, i, l, f, d, z, w, writtenin upper and lower
ases), number of elements is the positive number writ-ten in the de
imal form, and the per
ent sign (%) is used in this expression asthe left-hand separator (optionally, %
an be omitted). For example, TargetStrings: "%100t" and "%6f",
hara
terize respe
tively the text string of 100
hara
ters, and the one dimensional, single pre
ision array
onsisted of sixelements.You
an also use either C, or FORTRAN syntax to pres
ribe dimensionsto the target array (in the same manner as it has been dis
ussed in the se
tion"Subs
ripts for data name").In the C-style
ase, the name is followed with a list of non-negative integernumbers, and ea
h number is en
losed within the pair of square bra
kets, i.ewithin [and ℄. For example, Target Strings: "w[2℄[3℄" and "s[100℄", de�nerespe
tively the two dimensional array
onsisted of six elements whi
h arethe double pre
ision,
oating-point,
omplex numbers; and the literal string36

of 100
hara
ters.In the FORTRAN style
ase, the name is followed with a list of integernumbers en
losed in parentheses, i.e within (and). Inside the parentheses,the non-negative numbers representing the dimensions must be separatedfrom ea
h other by
ommas. For example, Target Strings: "i(2000)" and"d(2,3,4)", des
ribe respe
tively the one dimensional array of integer numbersand the three dimensional array of double pre
ision
oating-point numbers.You
an de�ne array targets in the generalized form:% number of elements target type symbol subs
riptsIn this
ase, the number of elements will be interpreted as an additionalarray dimension. For example, the real dimensionality of arrays in TargetStrings: "%10i[2℄", "%30s[20℄[10℄", and "%4z(2,3)",
orrespond to "i[10℄[2℄","s[30℄[20℄[10℄", and "z(2,3,4)", respe
tively.Pointer targetPointer is a variable whi
h stores the address of an obje
t to whi
h thevariable points. Normally, the pointer itself requires 4 bytes of memory14.The spe
ial symbols: ampersand (&) and at sign (�), are used in orderto de
lare a pointer target in the Target String.Consider the following examples in order to illustrate the spe
i�
ation ofpointer targets.14The size of memory required to represent a pointer may depend on the
ompiler, andthe pointers to di�erent type obje
ts are not ne
essarily have the same size.37

ase 1:< % > & target type symbol
ase 2:< % > & < number of elements > target type symbol < subs
ripts >
ase 3:< % > � target type symbol
ase 4:< % > � < number of elements > target type symbol < subs
ripts >In all four
ases
onsidered here, the angled bra
kets are used to show thatthe en
losed item
an be optionally omitted.In the �rst and se
ond
ases, the ampersand (&) symbol is
onsidered asan address-of operator whi
h takes the address of an obje
t whi
h followedthis operator. (in analogy to the similar operator in C language). The target(
ase 1) is a pointer variable whi
h stores the address of single obje
t ofthe given type target type symbol =
,i,l,f,d,z,w. The target (
ase 2) isa pointer variable whi
h points to an array of the target type symbol typeobje
ts. In these two
ases, the obje
t must exist, i.e the user must allo
atethe
orrespondent amount of memory and assign the address to the pointervariable.In
ases 3 and 4, the at sign (�) quali�es the target as a pointer. Inthese
ases the obje
t must not exist. The � sign tells the IDF utility toallo
ate the
orrespondent amount of memory and to assign the address tothe pointer variable.IDF does not support the targets whi
h are de�ned as the nested pointers,38

i.e Target Strings: "&&i", "�&z[100℄", "��w", "%&&&&10d", are illegal.XIV. Spe
i�
ation of multi-obje
t targetThe multi-obje
t target
onsists of one or more target units. Ea
h targetunit
an be written in the Target String in the following generalized form:<%> <#> <� or &> <integral number> obje
t type symbol <subsripts>whi
h represents the variety of targets whi
h have been dis
ussed in theprevious se
tion.Comma is a valid separator for target units in the Target String. Atthe same time, two or more
onsequent
ommas appeared in a String
ausethe fatal error. Any number of
onsequent blank spa
es or tabulators will besimply ignored. The usage of
ommas is illustrated by the following example:"100s, 100d(10,2), 5i[3℄[2℄".Fi
titious target unitThe pound sign (#) is an additional symbol whi
h may appear in themulti-obje
t Target Srting. This symbol quali�es the target as a '�
titious'target. Fi
titious target means that the target is de
lared in the user's pro-gram, but at the same time, the
orresponding named data set
ontains nodata units asso
iated with this target. When parsing the Target String, IDFignores the �
titious target unit only in the sen
e that IDF asso
iates no dataunits with this target, but IDF takes into a

ount the presen
e of a �
titioustarget unit for
al
ulating the address of other target units in the
ommon39

memory. You
an use the �
tious target units in order to assign values tothe sele
ted members of multi-obje
t target.Repetition of target unit in the Target StringIn the
ase when the target unit starts with the spe
ial quali�er symbol(%,�,#, or &), the positive de
imal integer number pre
eding this unit is
onsidered as the repetition number for the whole target unit.The repetition rule
an be illustated by the following examples. A
-
ording to this rule, the Target String "3%�100s[20℄is equivalent to theString: "%�100s[20℄%�100s[20℄%�100s[20℄%d", where the �rst target unit`%�100s[20℄' is repeated three times. The following Target Strings: "5&d","10%i", "3%5z[10℄", are written in the mu
h shorter form than the
orre-spondent Target Strings: "&d &d &d &d &d", "iiiiiiiiii", "%5z[10℄, %5z[10℄,%5z[10℄".It is important to note, that be
ause of alignment rules (see the next se
-tion), the Target String "3%
%d" is not ne
essarily equivalent to "
[3℄%d", aswell as the String "100%i,#d,3%i#d" is not the same as "i[100℄,#d,i[3℄,#d"or "i[103℄".Blo
k of target unitsThe blo
k of target units is de�ned as one or more target units en
losedwithin the
urly bra
es (f and g). 40

The
ontent of a blo
k
an be repeated in the Target String in the fol-lowing way: XXX f target unit <;> target unit <;> ::: gwhere XXX denotes any positive integer number written in de
imal form.The target blo
ks
an be nested, i.e one blo
k may be a member of anothertarget blo
k, for example: "s[100℄f6%d[4℄, 10f&s[100℄�i[3℄f#&z,dgg&wg".You
an en
lose any target unit within the nested bra
es. The followingTarget String: "2f3f4f5dggg", whi
h
ontains the multiple repetitions ofthe d-type target unit, is equivalent to String "120d".XV. Alignment rules for multi-obje
t targetThe multi-obje
t target
hara
terizes the aggregate, the group of vari-ables, pointers, or arrays stored together in memory. The members of thegroup may be of di�erent types (i.e
,s,t,i,l,f,d,z,w). Su
h a target
an be astru
ture or a
ommon blo
k de
lared in the user's program. The membersof an aggregate are represented in memory
onsequently in an order as theirnames are given in the de
laration list. The �rst member of the group hasthe lowest address and the last member has the highest address in groupmemory. The starting position for ea
h member in group memory dependson the spe
i�
 alignment rule used by a
ompiler to handle this group. Ingeneral, the alignment rule may depend on the type of members
onsistingthe group. In the
ase when the group
onsists of unlike type members, thegroup memorymay
ontain an unnamed spa
es, the holes. At the same time,41

if the group
ontains the array member, the elements in an array immedeatelyfollow ea
h other in group memory.The alignment rule
an be
hosen by a
ompiler, a

ording:1) to the default
ompiler settings taking into a

ount the pro
essor per
u-liarities;2) to the
ommand-line option of a
ompiler, for example: /Zp option forthe Mi
rosoft C/C++; -member alignment and /Zp options for DEC C
ompilers; -dalign option for SUN FORTRAN
ompiler; or -align optionfor DEC UNIX FORTAN
ompilers;3) to the `pa
king' dire
tives de�ned in C or FORTRAN languages, whi
h
ontrol the aligmnment of members of an aggregate obje
t.The alignment rule introdu
es the alignment boundary (or, in general
ase, the boundaries for ea
h parti
ular type of group members). Most fre-quently, the members (of stru
ture or
ommon blo
k) are aligned in memoryon the boundary whi
h is the smaller of their own size or the spe
i�ed pa
kingsize.Some programming languages in
lude the
ompiler dire
tives whi
h
on-trol the position of stru
ture members in the
omputer memory. In C andC++ langauges su
h a dire
tive is that given by the ma
ros: `# pragmapa
k (Npa
k)'. In FORTRAN-90 the
orrespondent dire
tive is the `$PACK: [Npa
k℄' dire
tive. These dire
tives tell a
ompiler to use one ofsimple pa
king rules15. The `pa
k' type dire
tives spe
ify the pa
king size15The dire
tives given within the sour
e
ode of a user program override the settingsestablished by the
ommand-line option. At the same time, the
ompiler's manuals give42

in terms of integer value Npa
k that is a power of two. The integer valueNpa
k is passed as the ma
ros argument to the
ompiler and
hara
terizesthe number of bytes to pad in order to align the data. The smaller Npa
k,the more
ompa
t the members of stru
ture are pa
ked in
omputer memory.At the same time, the performan
e may get worser for small Npa
k values(in parti
ular, the time for a

essing the members in
reases). The smallestNpa
k is zero, this value tells
ompiler to align the data on the byte bound-ary, i.e without any holes in memory between the members of stru
ture or
ommon blo
k. The biggest Npa
k = 9 o�ers
ompiler the alignment on thepage boundary, i.e the alignment of 29 = 512 bytes.To spe
ify the boundary for data alignment, you
an also use the follow-ing terminology. The value Npa
k = 0
orresponds to the byte boundary.The word, longword, quadrword, o
taword, hexword, and page boundaries
orrespond, respe
tively, to the Npa
k = 1; 2; 3; 4; 5; 9 values.Sin
e the alignment rule may depend on the parti
ular multi-obje
t tar-get, the pro
essor, and the
ompiler, this part of IDF is the most intri
ated.The user must use IDF in this
ase with a
aution. The data import breaksdown with a fatal error, if the alignment rule
hosen by the user for a tar-get is in
orre
t. The IDF fun
tion responsible for the alignment
ontrol iswritten as the well isolated fun
tion whi
h
an be easily modi�ed taking intoa

ount the additional per
uliarities of your pro
essor and
ompiler.The variety of alignment rules the IDF utility handles by means of inputparameter align mode. In order to import the data stored in a �le, a userno warranty that the
ompiler will follow the `pa
k' dire
tive rule.43

must spe
ify the value of align mode parameter along with the Target Stringfor ea
h parti
ular multi-obje
t target. The integral values of align mode
orrespond to the alignment rules
onsidered below.align mode=0:In this
ase, the target members are aligned on the byte boundary, i.e withoutany holes in memory between the members of stru
ture or
ommon blo
k.align mode=1,2,3,4,5,6:In these
ases, the members (of stru
ture or
ommon blo
k) are aligned inmemory on the boundary whi
h is the smaller of their own size or the spe
i�edalignment boundary. The spe
i�ed boundary is the word (align mode = 1), longword (align mode = 2), quadword (align mode = 3), o
taword (align mode = 4), hexword (align mode = 5), or page (align mode = 6)alignment boundary.align mode=7:The target members are aligned on their natural boundaries, that is, onthe next free boundary appropriate to the type of member. The
hara
tertype members (
,s,t) are alingned on the byte boundary. The integer typemembers (i,l) are normally aligned on the longword boundary as well as the
oating-point type members (f,z). The quadword boundary
orresponds tothe double pre
ision type members (d,w).align mode=8,9,10,11,12,13:The target members are aligned a

ording to pres
ribed pa
king size, Npa
k.The pres
ribed alignment boundary is the word (align mode = 8), longword44

(align mode = 9), quadword (align mode = 10), o
taword (align mode =11), hexword (align mode = 12), or page (align mode = 13) boundary.XVI. Import of named data setIDF utility reads an input text �le and imports the named data sets,name by name, in an order spe
i�ed by a user.In the simplest
ase when target is a single obje
t, IDF reads the �rst dataunit lo
ated imedeately after the data set name in �le. The
orrespondentR-value is
onverted a

ording to the target type and then assigned to thetarget. The rules for R-value to target type
onversion are as follows: (i)the
hara
ter R-value is equivalent to the type
 target; (ii) the R-valuesof string and text data units
orresponds to both s- and t-type targets ;(iii) the usual
onversions of types (integer to
oating point,
oating-pointto integer, single to double pre
ision) may o

ur when R-values of integer,
oating-point,
omplex, and formula data units are assigned to `arithmeti
'type target (i,l,f,d,z,w). Any attempt to assign the
hara
ter R-value to`arithmeti
' type target or the 'arithmeti
' type R-value to
hara
ter typetarget (
,s,t), will
ause the fatal error.When string or text R-values are delivered to the s and t targets, theimport of
hara
ters �nishes if either the data unit
ontent is exhausted orthe last element of this target unit is imported.If the set of R-values is assigned to an array target, the �rst R-value inthe set is assigned to the �rst element of array, the se
ond R-value is assignedto the se
ond element of array, and so on, until either the set of data units45

is exhausted or the end of array is rea
hed. If the set does not use all thevalues given in data �le, the remainder data units are ignored.When subs
ripts are added to the data name in a �le, they spe
ify theelement in an array target starting with whi
h R-values should be importedfrom a given data set. In this
ase, IDF
al
ulates the o�set from the be-ginning of array (for the multi-dimensional arrays, a user must spe
ify theTarget String in order to introdu
e the dimensions of an array) and the
or-respondent number of elements will be left in the target before parsing thedata set.The IDF utility transfers data to the multi-obje
t targets
onsequently,on the one-to-one basis, that is the value of ea
h data unit will be assignedto the
orrespondent target unit in an order as the data units followed thedata name in a �le and as the target units are spe
i�ed in the Target String.The R-value of ea
h data unit will be
onverted (a

ording to the target typegiven in the Target String) and assigned to the
urrent target (the positionof target in memory is
al
ulated a

ording to the spe
i�ed alignment rule,i.e align mode). The import of data �nishes if either the list of target unitsor the sequen
e of data units in �le get exhausted, whi
hever happens �rst(but, at least one value must be imported).XVII. IDF fun
tions to be used in the C programThe names of all IDF fun
tions to be
alled in a user's C program startwith the sequen
e of four
hara
ters `idf '. The prototypes of these fun
tionsare given in the header �le "idfusr.h".46

The IDF fun
tions must be
alled in the proper order. The fun
tionidf init is
alled the �rst, in order to a
tivate the IDF pa
kage. The idf openfun
tion should be
alled the next to open the IDF data sour
e �le for input16.In su

ess, you
an use a variety of IDF fun
tions to transfer the data storedin the
urrent �le to di�erent targets de
lared in your program. Any attemptto import data from the unopened �le will result in a fatal error. The fun
tionidf
lose
loses the
urrent data �le. The last fun
tion to be
alled is theidf �nish17.At an error, the IDF fun
tions idf init, idf �nish, idf open, and idf
loseautomati
ally generate the error message, if the ma
ros IDF MISTAKE is setnon-zero. If IDF MISTAKE is de�ned as zero, you should
all the idf err prnfun
tion to obtain the
orrespondent error message. If any kind of erroro

urs, all other fun
tions responsible for data transfer from �le to targetsdisplay the error message automati
ally.idf initThis fun
tion initializes some global IDF variables and allo
ates memoryused by other fun
tions of IDF pa
kage. Synopsis:int idf init();The idf init fun
tion re
eives no arguments. It returns zero in su

ess andthe positive integer number in the
ase of an error.16Only one IDF sour
e �le
an be opened at on
e. If you want to import data fromanother �le, you should
lose the previously onepened �le and
ontinue the IDF inputwith the idf open fun
tion for the next input �le.17If it is ne
essary to
ontinue the IDF input after the idf �nish was
alled, you muststart IDF again by
alling the idf init fun
tion.47

idf �nishThe idf �nish fun
tion sets to zero all global IDF variables and de-allo
atesthe memory whi
h has been previously reserved for IDF with the help ofidf init fun
tion. Synopsis:void idf �nish();This fun
tion re
eives no arguments and returns no value.idf openThis fun
tion openes the spe
i�ed IDF data sour
e �le for input. It alsoparsing the �le and
reates two
atalogs (for stati
 and external s
ope data)of data names given in this �le. Synopsis:int idf open(
har *Fname);This fun
tion has one argument, Fname, whi
h is a string
ontaining thename of the input data �le to be opened. It returns zero in su

ess and thepositive integer number at an error.idf
loseThis fun
tion
loses the IDF data sour
e �le (if any �le has been opened withidf open fun
tion). Synopsis:void idf
lose();This fun
tion re
eives no arguments and returns no value.idf err prnThis fun
tion prints the error message for any error asso
iated with thememory allo
ation, with the opening, reading, and parsing the IDF datasour
e �le, and with the
reation of
atalogs for data names. Synopsis:48

void idf err prn();This fun
tion re
eives no arguments and returns no value.idf
, idf u
, idf uThese fun
tions import the named data set from a �le for the single
har-a
ter target de
lared in the user's program as
har, unsigned
har, andunsigned int, respe
tively. Synopsis:int idf
(
har *name,
har *Pobj);int idf u
(
har *name, unsigned
har *Pobj);int idf
(
har *name, unsigned int *Pobj);The �rst argument of the fun
tion, name, is the string
ontaining the nameof data set to be imported. The se
ond argument, Pobj, is the address ofan obje
t. Ea
h fun
tion returns zero in su

ess. At an error, the fun
tionreturns a positive integer number (the error
ode). It also displays an errormessage in the
ase of error.idf i , idf l , idf f , idf d , idf z , idf wThese fun
tions import the named data set from a �le for the single obje
ttarget
orresponding to the type i,l,f,d,z, and w, respe
tively. Synopsis:int idf i(
har *name , int *Pobj);int idf l(
har *name , long *Pobj);int idf f(
har *name ,
oat *Pobj);int idf d(
har *name , double *Pobj);int idf z(
har *name ,
oat *Pobj);int idf w(
har *name , double *Pobj);49

The �rst argument of a fun
tion, name, is the string
ontaining the nameof data set to be imported. The se
ond argument, Pobj, is the address ofan obje
t of the given type for i,l,f,d targets and the address of the �rstelement of an array for the z- and w-type targets. Ea
h fun
tion returnszero in su

ess. In the
ase of error, the fu
tion returns a positive integernumber and displays the
orresponding error message.idf s , idf tThese fun
tions import the named data set from a �le for the
hara
ter string(s) and text (t) type targets, respe
tively. Synopsis:int idf s(
har *name ,
har *Str , int nelem);int idf t(
har *name ,
har *Str , int nelem);The arguments of these fun
tions are: name is the string
ontaining thename of data set to be imported; Str is the address of the �rst element in the
hara
ter string; nelem is the maximal number of
hara
ters in the string.Ea
h fun
tion returns zero in su

ess and the positive integer number in the
ase of error. At an error the fun
tion displays the error message.idf iarr , idf larr , idf farr , idf darr , idf zarr , idf warrThese fun
tions import a named data set from the
urrent data �le for theone-dimensional array target
orresponding to the type i,l,f,d,z, and w, re-spe
tively. Synopsis:int idf iarr(
har *name , int *Arr , int nelem);int idf larr(
har *name , long *Arr , int nelem);int idf farr(
har *name ,
oat *Arr , int nelem);int idf darr(
har *name , double *Arr , int nelem);50

int idf zarr(
har *name ,
oat *Arr , int nelem);int idf warr(
har *name , double *Arr , int nelem);Ea
h fun
tion from this list re
eives three arguments: name is the string
on-taining the name of data set to be imported; Arr is the address of the �rstelement of an array; nelem is the maximal number of elements in an array (for
omplex number targets, z and w, ea
h element in an array
onsists of twonumbers). The fun
tion returns the number of imported elements in su

ess.It returns the negative number at an error and displays the
orrespondenterror message.idf get arrayThis fun
tion imports a named data set from the
urrent �le for the multi-dimensional array target. Synopsis:int idf get array(
har *name,
har *TS, void *Ptarget);The arguments are as follows: name is the string
ontaining the name ofdata set to be imported; TS is the Target String; Ptarget is the address ofto the array target. The dimensionality of an array must be spe
i�ed usingsubs
ripts to the target type spe
i�er in the Target String. The subs
ripts
an be also added (within a �le) to the name of
orresponding data set. Inthis
ase, the data set name subs
ripts denote the o�set from the beginningof an array target (i.e the parti
ular element in an array target startingwith whi
h the stored data should be imported). The fun
tion returns thenumber of imported elements in su

ess. At an error, the fun
tion returnsthe negative number and displays the
orrespondent error message.51

idf getThis fun
tion imports a named data set from the
urrent �le and transfersdata to the arbitrary target. Synopsis:int idf get(name , TS , align mode , Ptarget);
har *name,
har *TS, int align mode, void *Ptarget;The fun
tion arguments have the following meanings: name is the string
ontaining the name of data set to be imported; TS is the Taget String;align mode is the parameter de�ning the alignment rule; Ptarget is the ad-dress of the target. In su

ess, the fun
tion returns the number of importedelements. In the
ase of error, it returns the negative number and displaysthe
orrespondent error message.Examples of IDF usage in the C programThe following sample program written in C language demonstrates thedata import from external �le with the IDF pa
kage. In this program, alltargets are the single variables and arrays. For ea
h target, IDF imports the
orresponding data set a

ording to its symboli
 name.#in
lude <stdio.h>#in
lude "idfuser.h"int main()/* The �rst sample program in C */f/*initialization of input IDF data �le String*/stati

har Fname[℄ = "
ouette.dat";/* de
laration of input parameters */ 52

double Lz,Pr[3℄;
oat Knu,Uw,Tw;int Nz,Nv[2℄;int ier;/* start the IDF pa
kage */ier=idf init(); if(ier) goto er;/* open the data �le */ier=idf open(Fname); if(ier) goto err;/* reading the data from �le */ier=idf d("Lz", &Lz); if(ier) goto err;ier=idf f("Knu", &Knu); if(ier) goto err;ier=idf f("Uw", &Uw); if(ier) goto err;ier=idf f("Tw", &Tw); if(ier) goto err;ier=idf darr("Pr", Pr , 3); if(ier!=3) goto err; ier=0;ier=idf i("Nz", &Nz); if(ier) goto err;ier=idf iarr("Nv", Nv , 2); if(ier!=2) goto err; ier=0;/* print the imported data sets*/printf("Lz=%12.3e Knu=%12.3enn",Lz,Knu);printf("Uw=%12.3e Tw=%12.3enn",Uw,Tw);printf("Pr=%12.3e, %12.3e, %12.3enn",Pr[0℄,Pr[1℄,Pr[2℄);printf("Nz=%5d Nv=%5d, %5dnn",Nz,Nv[0℄,Nv[1℄);/*
lose the data �le */err: idf
lose();/* �nish the IDF */er: idf �nish();return ier;g The above program imports data from �le "
ouette.dat". Assume that53

this �le
ontains the s
ienti�
 data18 and these data are stored in �le in thesame form as they have been given in Se
tion II. Then, the following fourstrings will be displayed as a result of exe
ution of this program:Lz= 1.000e+00 Knu= 2.500e-02Uw= 1.000e-02 Tw= 1.000e-01Pr= 3.333e-01, 6.667e-01, 1.000e+00Nz= 1000 Nv= 31, 31Consider the next sample program to illustrate the data input from a�le for the aggregate target with the IDF pa
kage. In this
ase, the inputparameters are in
orporated within a stru
ture and are initialized all togetherusing the symboli
 name of the stru
ture.The C sour
e �le for the se
ond sample program
onsists of:the header �le referen
es#in
lude <stdio.h>#in
lude "idfuser.h"the COUETTE stru
ture type de�nition#typedef stru
t fdouble Lz;
oat Knu,Uw,Tw;double Pr[3℄;int Nz,Nv[2℄; g COUETTE;18As an example, we
onsider a data related to the so-
alled Couette problem, the
lassi
al problem of rare�ed gas dynami
s. 54

the C fun
tion Couette inputint Couette input(Cinp)COUETTE *Cinp;/*this fun
tion returns zero in su

ess*/f/*initialization of input IDF data �le String*/
har Fname[℄ = "
ouetteS.dat";/* initialization of stru
ture data name */
har Stru
tName[℄ = "COUETTE";/*initialization of alignment mode */int amode = 7; /*assume the `natural boundary' rule*//*initialization of Target String */
har Target String[℄ = "d�fd[3℄ii[2℄";int ier;/* start the IDF pa
kage */ier=idf init(); if(ier) goto er;/* open the data �le */ier=idf open(Fname); if(ier) goto err;/* reading the data from �le to the Cinp stru
ture*/ier = idf get(Stru
tName, Target String, amode, Cinp);if(ier>0) ier=0;/*
lose the data �le */err: idf
lose();/* �nish the IDF */er: idf �nish();return ier;g and the program main 55

int main()/* The se
ond sample program in C */f/* de
laration of input stru
ture */COUETTE Cinput;int ier=0;/* import data from �le */ier=Couette input(&Cinput); if(ier) goto err;/* print the imported data sets*/printf("Lz=%12.3e Knu=%12.3enn",Cinput.Lz,Cinput.Knu);printf("Uw=%12.3e Tw=%12.3enn",Cinput.Uw,Cinput.Tw);printf("Pr=%12.3e, %12.3e, %12.3enn",Cinput.Pr[0℄,Cinput.Pr[1℄,Cinput.Pr[2℄);printf("Nz=%5d Nv=%5d, %5dnn",Cinput.Nz,Cinput.Nv[0℄,Cinput.Nv[1℄);err: return ier;g In this program, the input parameters, namely: Lz, Knu, Uw, Tw, Pr,Nz, and Nv, are the members of a stru
ture, the type of whi
h is de
lared asCOUETTE. All IDF fun
tions required to import data from "
ouetteS.dat"�le are well isolated within the user's fun
tion Couette input. The fun
tionCouette input initializes in whole the input stru
ture, Cinput, de
lared asCOUETTE type in themain program. The program then prints the values ofimported parameters. For this program, the
orrespondent IDF data sour
e�le "
ouetteS.dat"
an be written as follows:// IDF data �le "
ouetteS.dat"/* COUETTE, this stru
ture
ontains input parameters for Couette problem */56

COUETTE = f/* Physi
al input parameters */1:0 //Lz, A �xed plate separation distan
e, in
m0:025 // Knu, Knudsen number0:1 // Tw, Constant plate temperature, eV0:01 // Uw, Constant relative plate velo
ity, U=V t// Vt is the thermal velo
ity, sqrt(2RTw)$1/3$, $2/3$, 1 // Pr, The set of Prandtl numbers/* Computational algorithm input parameters */1000 //Nz, number of nodes in the uniform mesh in z dire
tion31; 31 //Nv, number of nodes in the 2D velo
ity spa
eg; The exe
ution of this program results in displaying the same four stringsas the output strings from the �rst sample program.Usage of IDF fun
tions in C++For obje
t-oriented programming the C++ language introdu
es an ag-gregate data type
lass whi
h is the extension of stru
ture data type in theC language. In this se
tion we will
onsider an example of C++ program19whi
h handles the data input with IDF pa
kage using the
lass me
hanism.The C++ sour
e �le for the sample program
onsists of:the header �le referen
es#in
lude <stream.h>19We re-write the se
ond sample program
onsidered in the pre
eeding se
tion from Cto C++ language using the
lass COUET instead of stru
ture COUETTE.57

#de�ne IDF CPP 1#de�ne IDF CPP STYLE 1#in
lude "idfuser.h"the COUET
lass de�nition
lass COUET fint ierror;publi
:double Lz;
oat Knu,Uw,Tw;double Pr[3℄;int Nz,Nv[2℄;COUET(
har*,
har*);void COUETprn();int COUETerr();g;the
lass
onstru
torCOUET :: COUET(
har *Fname,
har *Sname)fint amode = 7; // assume the `natural boundary' rule
har Target String[℄ = "d�fd[3℄ii[2℄"; //initialization of Target Stringierror=idf init(); if(ierror) goto er; // start the IDF pa
kageierror=idf open(Fname); if(ierror) goto err; // open the data �le// reading the data from �le to the Cinp stru
tureierror = idf get(Sname, Target String, amode, &Lz);if(ierror>0) ierror=0;err: idf
lose(); //
lose the data �leer: idf �nish(); // �nish the IDF 58

g two
lass member fun
tions, COUETerr and COUETprn,int COUET :: COUETerr()freturn ierror; // transfer the error
aggvoid COUET :: COUETprn()f/* fun
tion prints the imported data sets*/f
out << form("Lz=%12.3e Knu=%12.3enn",Lz,Knu);
out << form("Uw=%12.3e Tw=%12.3enn",Uw,Tw);("Pr=%12.3e, %12.3e, %12.3enn", Pr[0℄,Pr[1℄,Pr[2℄);
out << form("Nz=%5d Nv=%5d, %5dnn", Nz,Nv[0℄,Nv[1℄);g and the program mainint main()f
har File Name[℄ = "
ouetteS.dat"; //initialization of input IDF data �le String
har Class Name[℄ = "COUETTE"; // initialization of stru
ture data nameint ier;//
reate the
lass obje
t with the IDF based
onstru
torCOUET Cinp(File Name , Class Name);ier = Cinp.COUETerr();if(!ier) Cinp.COUETprn(); // if no errors print input datareturn ier;g 59

In this C++ program, the
onstru
tor
reates the obje
t Cinp of theCOUET
lass. The s
ienti�
 parameters are the data members of this
lass.The
onstru
tor re
eives the IDF input �le name "
ouetteS.dat" and the dataset name "COUETTE" as the arguments. It uses then the IDF fun
tions toinitialize the data members of COUET
lass.XVIII. IDF fun
tions for the FORTRAN programid�nitThis fun
tion initializes some global IDF variables and allo
ates memoryused by other fun
tions of IDF pa
kage. Usage in FORTRAN:ierr = id�nit(0)The fun
tion re
eives an integer type argument whi
h has no meaning. Itreturns zero in su

ess and the positive integer number ierr in the
ase oferror.id�nishThe id�nish subroutine sets to zero all global IDF variables and de-allo
atesthe memory whi
h has been previously reserved for IDF with the help ofid�nit fun
tion. Usage in FORTRAN:
all id�nishThis subroutine is
alled without arguments.idfopenThis fun
tion openes the spe
i�ed IDF data sour
e �le for input. It alsoparsing the �le and
reates two
atalogs (for stati
 and external s
ope data)60

of data names given in this �le. Example of usage in FORTRAN:
hara
ter*(*) Fnameinteger*4 nlen, ierrparameter (len = 10 , Fname = '�le name')ierr = idfopen(Fname, len)This fun
tion re
eives two arguments. The �rst argument, Fname, is the
hara
ter string
ontaining the name of the �le to be opened. The se
ondargument, len, is the number of
hara
ters in the �le name. In su

ess, thefun
tion returns zero, and the positive integer number ierr in the
ase of anerror.idf
loseThe idf
lose subroutine
loses the IDF data sour
e �le (if any �le has beenopened with idfopen fun
tion). Usage in FORTRAN:
all idf
loseThis subroutine is
alled without arguments.idferprnThis subroutine prints the error message for any error asso
iated with thememory allo
ation, with the opening, reading, and parsing the IDF datasour
e �le, and with the
reation of
atalogs for data names.Usage in FORTRAN:
all idferrprnThis subroutine is
alled without arguments.61

idf
This fun
tion imports the named data set from a �le for the single
hara
tertarget de
lared in the user-written program as
hara
ter. Example of usagein FORTRAN:
hara
ter*(*) name;
hara
ter*1 Charinteger*4 nlen, ierrparameter (nlen = 10 , name = 'data name')ierr = idf
(name , nlen , Char)The �rst argument of the fun
tion, name is the string
ontaining the nameof data set to be imported. The se
ond argument, nlen, is the number of
hara
ters in the data set name. The third argument, Char, is the name of
hara
ter variable de
lared in the user's
ode. The fun
tion returns zero insu

ess and the positive integer number (i.e the error
ode ierr) in the
aseof error. If any error o

urs, the fun
tion displays the error message.id� , id� , idfd , idfz , idfwThese fun
tions import the named data set from a �le for the single obje
ttarget
orresponding to the `arithmeti
' type i,f,d,z, and w, respe
tively.Example of usage in FORTRAN:
hara
ter*(*) nameinteger*4 nlen, ierrparameter (nlen = 10 , name = 'data name')integer*4 ObjI; real*4 ObjF; real*8 ObjD;
omplex*8 ObjZ;
omplex*16 ObjWierr = id�(name , nlen , ObjI)ierr = id�(name , nlen , ObjF) 62

ierr = idfd(name , nlen , ObjD)ierr = idfz(name , nlen , ObjZ)ierr = idfw(name , nlen , ObjW)The �rst argument of a fun
tion, name, is the string
ontaining the nameof data set to be imported. The se
ond argument, nlen, is the number of
hara
ters in the data set name. The third argument, Obj , is the symboli
name of a target given in the user's
ode. Ea
h fun
tion returns zero insu

ess and the positive integer number ierr in the
ase of error. At anerror, the fun
tion displays the
orresponding error message.idfs , idftThese fun
tions import a named data set from the
urrent �le for the
har-a
ter string (s) and text (t) type targets, respe
tively. Example of usage inFORTRAN:
hara
ter*(*) nameinteger*4 nlen, ierrparameter (nlen = 10 , name = 'data name')
hara
ter*100 Str; integer*4 nelem=100;ierr = idfs(name , nlen , Str , nelem)ierr = idft(name , nlen , Str , nelem)The arguments of these fun
tions are as follows: name is the string
ontain-ing the name of data set to be imported; nlen is the number of
hara
tersin the data set name; Str is the symboli
 name of a target de
lared as a
hara
ter string in the user-written program; nelem is the maximal numberof
hara
ters in the
hara
ter string target Str. Ea
h fun
tion returns zero in63

su

ess. In the
ase of error, the fun
tion returns a positive integer numberierr and displays the error message.id�arr , id�arr , idfdarr , idfzarr , idfwarrThese fun
tions import the named data set from a �le for the one dimen-sional array target
orresponding to the type i,f,d,z, and w, respe
tively.Example of usage in FORTRAN:
hara
ter*(*) nameinteger*4 nlen, ierrparameter (nlen = 12 , name = 'array1D name')integer*4 ArrI(3); real*4 ArrF(4); real*8 ArrD(2,3)
omplex*8 ArrZ(5);
omplex*16 ArrW(7)ierr = id�arr(name , nlen , ArrI , 3)ierr = id�arr(name , nlen , ArrF , 4)ierr = idfdarr(name , nlen , ArrD , 6)ierr = idfzarr(name , nlen , ArrZ , 5)ierr = idfwarr(name , nlen , ArrW , 7)Ea
h fun
tion re
eives four arguments, namely: name is the string
ontainingthe name of data set to be imported; nlen is the number of
hara
ters in thedata set name; Arr is the symboli
 name of an array in the user-written pro-gram. The last argument is the smaller of the maximal number of elements inarray or the number of array elements to be imported. The fun
tion returnsthe number ierr of imported elements in su

ess. At an error, the fun
tionreturns a negative number and displays the
orrespondent error message.64

idfarrayThis fun
tion imports a named data set from the
urrent �le for the multi-dimensional array target. Example of usage in FORTRAN:
hara
ter*(*) name, TSinteger*4 nlen, nts, ierrparameter (nlen = 10 , name = 'array name')parameter (nts = 8 , TS = 'd(3,4,5)')real*8 Arr(3,4,5)ierr = idfarray(name, nlen , TS, nts , Arr)The arguments are as follows: name is the string
ontaining the name of dataset to be imported; nlen is the number of
hara
ters in the data set name; TSis the Target String; nts is the number of
hara
ters in the Target String; Arris the symboli
 name of an array de
lared in the user-written program. Thedimensionality of array must be spe
i�ed using the target subs
ripts in theTarget String. The subs
ripts
an be also added (within a �le) to the name of
orresponding data set. In this
ase, the data set name subs
ripts denote theo�set from the beginning of an array target (i.e the parti
ular element in anarray target starting with whi
h the stored data should be imported). Thefun
tion returns the number of imported elements in su

ess. At an error, thefun
tion returns the negative number and displays the
orrespondent errormessage. 65

idfgetThis fun
tion imports a named data set from the
urrent �le and transferdata to the arbitrary target. Example of usage in FORTRAN:
hara
ter*(*) name, TSinteger*4 nlen, nts, align modeparameter (nlen=12 , name = 'dataset name')parameter (nts=18 , TS = 'd(3,4,5)i(2)z(6,7)' , align mode=0)
ommon/input/ Arr,Iarr,Carrinteger*4 ierr, Iarr(2)real*8 Arr(3,4,5);
omplex*8 Carr(6,7)ierr = idfget(name, nlen , TS, nts , align mode, Atarget)The fun
tion arguments have the following meanings: name is the string
on-taining the name of data set to be imported; nlen is the number of
hara
tersin the data set name; TS is the Taget String; nts is the number of
hara
tersin the Target String; align mode is the integer parameter (or variable) spe
-ifying the alignment rule; Atarget is either the symboli
 name of the target(if target is the single variable or array), or the name of the �rst memberin an aggregate target de
lared in the user-written program. In su

ess thefun
tion returns the number of imported elements. In the
ase of error, itreturns the negative number and displays the
orrespondent error message.Example of IDF usage in FORTRAN programThis se
tion illustrates the usage of IDF pa
kage for programming datainput in FORTRAN language. Two simple sample programs written in66

FORTRAN-77 are
onsidered below.The �rst program
ouette imports data from the �le "
ouette.dat". Thisprogram is the FORTRAN-77 analog to the �rst C sample program
onsid-ered in the previous se
tion.program
ouette
 The �rst sample program in FORTRAN
 initialization of input IDF data �le String
hara
ter*(*) Fnameinteger*4 Flen, ierparameter (Flen = 11 , Fname = '
ouette.dat')
 de
laration of input parametersreal*8 Lz,Pr(3)real*4 Knu,Uw,Twinteger*4 Nz,Nv(2)
 start the IDF pa
kageier=id�nit(0)if(ier.ne.0) go to 1
 open the data �leier=idfopen(Fname,Flen)if(ier.ne.0) go to 2
 reading the data from �leier=idfd('Lz', 2, Lz)if(ier.ne.0) go to 2ier=id�('Knu', 3, Knu)if(ier.ne.0) go to 2ier=id�('Uw', 2, Uw)if(ier.ne.0) go to 2ier=id�('Tw', 2, Tw) 67

if(ier.ne.0) go to 2ier=idfdarr('Pr', 2, Pr, 3)if(ier.ne.3) go to 2ier=id�('Nz', 2, Nz)if(ier.ne.0) go to 2ier=id�arr('Nv', 2, Nv, 2)if(ier.ne.2) go to 2
 print the imported data setsprint 10,Lz,Knu10 format('Lz='E12.3 'Knu='E12.3)print 20,Uw,Tw20 format('Uw='E12.3 ' Tw='E12.3)print 30,Pr(1),Pr(2),Pr(3)30 format ('Pr='E12.3 ',' E12.3 ',' E12.3)print 40,Nz,Nv(1),Nv(2)40 format('Nz='I5 'Nv='I5',' I5)

lose the data �le2
all idf
lose
 �nish the IDF1
all id�nishstopendThe se
ond FORTRAN program
ouettes transferes data from the �le"
ouetteS.dat" to
ommon blo
k COUETTE, and all input parameters arethe members of this blo
k. The IDF input is performed within the user'sfun
tion
ouetinp.program
ouettes
 The se
ond sample program in FORTRAN68

 initialization of input IDF data �le String
hara
ter*(*) Fnameinteger*4 Flen, ier,
ouetinpparameter (Flen = 12 , Fname='
ouetteS.dat')
 de
laration of input parameters within a
ommon blo
k
ommon/COUETTE/Lz,Knu,Uw,Tw,Pr,Nz,Nvreal*8 Lz,Pr(3)real*4 Knu,Uw,Twinteger*4 Nz,Nv(2)
 import data with IDF pa
kageier =
ouetinp(Fname,Flen)if(ier.eq.0) then
 print the imported data setsprint 10,Lz,Knu10 format('Lz='E12.3 'Knu='E12.3)print 20,Uw,Tw20 format('Uw='E12.3 ' Tw='E12.3)print 30,Pr(1),Pr(2),Pr(3)30 format ('Pr='E12.3 ',' E12.3 ',' E12.3)print 40,Nz,Nv(1),Nv(2)40 format('Nz='I5 'Nv='I5',' I5)end ifstopendinteger fun
tion
ouetinp(namef,lenf)
hara
ter*(*) namefinteger*4 lenf
 fun
tion returns zero in su

ess
ommon/COUETTE/Lz,Knu,Uw,Tw,Pr,Nz,Nv69

real*8 Lz,Pr(3)real*4 Knu,Uw,Twinteger*4 Nz,Nv(2)integer*4 id�nit,idfopen,idfgetinteger*4 amode, lSN, lTS
 initialization of Align Mode for F77 option '-align d
ommon'parameter (amode=7)
 initialization of Target String and Data Set Nameparameter (lSN=7 , lTS=13)
hara
ter*13 TS /'d�fd[3℄ii[2℄'/
hara
ter*7 SN /'COUETTE'/
 start the IDF pa
kage
ouetinp=id�nit(0)if(
ouetinp.ne.0) go to 1
 open the data �le
ouetinp=idfopen(namef,lenf)if(
ouetinp.ne.0) go to 2
 transfer the data from �le to
ommon blo
k
ouetinp = idfget(SN, lSN, TS, lTS, amode, Lz)if(
ouetinp) 2,3,33
ouetinp=0

lose the data �le2
all idf
lose
 �nish the IDF1
all id�nishreturnendThe
ouettes program imports the single named data set 'COUETTE'from the "
ouetteS.dat" �le (see the previous se
tion) and prints the values70

of input parameters.XIX. Installing the IDF pa
kageTo install the IDF pa
kage on your
omputer you need, �rst of all, to
reate the obje
t module �le for ea
h C sour
e �le of IDF pa
kage by invokinga C
ompiler. These modules should then be stored in an obje
t modulelibrary. This library
an then be linked to the user's
ode.For UNIX platform, you may use the make �le idf.make. This make�le
ontains additional
omments whi
h will help you to adjust
ommands toyour operational system.IDF pa
kage in
ludes four header �les, namely: "id
ib.h", "idf.i", "idf.h",and "idfusr.h" 20. In some
ases, it is ne
essary to
hange ma
ro-de�nitionsettings in "id
ib.h", "idf.i" header �les in order to adjust the IDF pa
kageto your
omputer,
ompiler, and program.The IDF header �le "id
ib.h"
ontains a list of standard C header �les21used in IDF. The id
ib.h �le also de�nes the ma
ro IDF CPP STYLE whi
h
ontrols the de
laration of C fun
tion prototypes22. The ma
ro IDF IEEEmust be de�ned as unity, if your software implements the IEEE standard forbinary
oating-point arithmei
. You should also spe
ify the proper type of20The header �le "idfuser.h" is
reated in running idf.make. This header �le is a
opyof "idfusr.h" �le.21In the
ase when the standard header �les from this list does not exists (for example,"
oat.h" header �le), follow instru
tions given in "id
ib.h" in order to de�ne standardma
ros required for IDF.22Set IDF CPP STYLE to zero if you want to use Pre-Standard C de
larations.71

naming
onvention for C fun
tions to be
alled from FORTRAN in terms ofma
ro IDF FORTRAN.The IDF header �le "idf.i"
ontains several ma
ros important for IDFpa
kage performan
e. If you want to
hange the settings of these ma
ros,follow
omments given in this �le.

72

APPENDIX I:The List of IDF mathemati
al
onstantsHere is the list of names used by IDF for symboli
 representation of severalmathemati
al
onstants.Name ValueIDF RAD 1 radian in degreesIDF DEG 1 degrees in radiansIDF EU Eu, Euler numberIDF PI � numberIDF 2PI 2 � �IDF PIPI �2IDF PIOVER2 �=2IDF PIOVER3 �=3IDF PIOVER4 �=4IDF 1 PI 1=�IDF 2 PI 2=�IDF EXP exp(1)IDF EXP2 exp(2)IDF EXPI exp(�)IDF EXPU exp(Eu)IDF EXPE exp(exp(1)) 73

IDF SEXP sqrt(exp(1))IDF SQRT2 sqrt(2)IDF SQRT3 sqrt(3)IDF SQRT5 sqrt(5)IDF SPI sqrt(�)IDF S2PI sqrt(2 � �)IDF LN2 ln(2)IDF LN3 ln(3)IDF LN10 ln(10)IDF LNPI ln(�)IDF LNU ln(Eu)

74

APPENDIX IIThe List of IDF physi
al
onstantsThe following Table
ontains the list of names used by IDF for symboli
representation of several physi
al
onstants. The values of
onstants aregiven in Centimeter-Gram-Se
ond (CGS) units system.Name Symbol Meaning ValueIDF C
 Speed of light in va
uum 2.99792458e10
m=se
IDF H h Plan
k
onstant 6.6260196e-27 erg se
IDF HB �h = h=2� Plan
k
onstant 1.054592e-27 erg se
IDF K k Boltzmann
onstant 1.380658e-16 erg=KIDF K EV k Boltzmann
onstant in eV 8.617385e-5 k=e eV=KIDF E e Elementary
harge 4.806532e-10 stat
oulIDF ME me Ele
tron mass 9.1093897e-28 gIDF MP mp Proton mass 1.6726231e-24 gIDF MPME mp=me 1836.152755IDF MEMP me=mp 5.446169971e-4IDF G g Gravitational
onstant 6.6732e-8 dyne
m2=g2IDF RY Ry Rydberg
onstant 109737.31534
m�1IDF RY EV Ry Rydberg
onstant in eV 13.6056981 eVIDF RB rB Bohr radius 0.529177249e-8
mIDF CS �r2B Atomi

ross se
tion 0.8797356696e-16
m275

IDF RE rE Classi
al ele
tron radius 2.8179e-13
mIDF ALP � Fine-stru
ture
onstant 7.297351e-3IDF IALP 1=� Inverse Fine-stru
ture
onstant 137.0360IDF MUB �B Bohr magneton 5.78838263e-5 eV/TeslaIDF FA F = eNA Faraday
onstant 2.892599e14 stat
oul=molIDF CW �h=me
 Compton ele
tron wavelength 3.861592e-11
mIDF CR1 8�h
 First radiation
onstant 4.992579e-15 erg
mIDF CR2 h
=k Se
ond radiation
onstant 1.438833
m KIDF S � Stefan-Boltzmann
onstant 5.66961e-5 erg=
m2=se
=K4IDF NA NA Avogadro number 6.022169e23 mol�1IDF R R = kNA Gas
onstant 8.31434e7 erg=deg=molIDF TO To Standard temperature 273.15 KIDF PO Po = LokTo Atmospheri
 pressure 1.0133e6 dyne=
m2IDF LO Lo Los
hmidt's number 2.6868e19
m�3IDF VO Vo = RTo=Po Normal volume perfe
t gas 2.24136e4
m3=mol
76

APPENDIX IIIMathemati
al fun
tions of IDF
al
ulatorThe following mathemati
al fun
tions are used in the IDF built-in
al
ulator23. The names of these fun
tions are the generi
 names, that is auser refers by
ommon name to the number of fun
tions. For ea
h parti
ularfun
tion
all, the IDF
al
ulator dynami
ally sele
ts the fun
tion, the typeof dummy arguments of whi
h mat
hes the type of a
tual arguments. In this
ase, not only the returning value but also the data type returning by thefun
tion depends on the type of an a
tual arguments passed to this fun
tion.
mplx(re)This fun
tion
reates a
omplex number a, whose real part is equal to re andwhose imaginary part is set to zero, i.e a = (re; 0). The fun
tion argumentis a real number, whereas the returning value is aways a
omplex number.
omplex(re,im)The fun
tion
reates a
omplex number a spe
i�ed by its real, re, and imagi-nary, im, parts. The numbers, re and im
an be asso
iated with
oordinatesof a point at
omplex plane. That is why, the following form of
omplex23The names of some fun
tions listed in this APPENDIX mat
h the names of standardfun
tions spe
i�ed in C and FORTRAN languages. At this point, the IDF mathemati
alfun
tions are not the same fun
tions as in C or FORTRAN, although their exe
utionrequire standard mathemati
al fun
tions from the C run-time library, namely: sqrt, exp,log, pow,
os, sin, tan, a
os, asin, and atan.77

number representation: a = re + i im = (re; im) , where i is the imag-inary unit (i2 = �1), is frequently referred to as the Cartesian form. Thefun
tion returns the
omplex number
omposed from real numbers, re andim.real(a)If the argument a is the real number, the fun
tion returns the value of ar-gument (
onverting an integer to the
oating-point number, if ne
essary). Ifthe argument a is the
omplex number, a = x+ iy, the fun
tion returns thereal part, i.e real(a) = x.double(a)If the argument a is the real number, the fun
tion returns the value of ar-gument
onverting an integer to the
oating-point number (type double), ifne
essary. If the argument a is the
omplex number, a = x+ iy, the fun
tionreturns the real part, i.e double(a) = x.imag(a)If the argument a is the real number, the fun
tion returns zero. If the argu-ment a = x+ iy is the
omplex number, the fun
tion returns the imaginarypart, i.e imag(a) = y.
onj(a)If the argument a is the real number, the fun
tion returns the value of itsargument, but with opposite sign, i.e (�a). If the argument a is the
om-plex number, a = x + iy, the fun
tion returns the
omplex
onjugate, i.e
omplex(x;�y). 78

abs(a)If the argument a is the real number, the fun
tion
al
ulates the absolutevalue of a. In the
ase when the argument is the
omplex number a = x+ iy,the fun
tion
omputes the modulus or radius of a
omplex number, i.e � =sqrt(x2 + y2). The fun
tion returns then the value of � whi
h is always thereal number.arg(a)The argument of this fun
tion must be the
omplex number represented inCartesian form: a = x + iy. Any
omplex number
an be re-written inthe polar form: a = � � [
os(�) + i sin(�)℄, where � is the radius and �is the angle or argument of
omplex number at the
omplex plane. Sin
ethe trigonometri
 fun
tions are periodi
 fun
tions, only the prin
iple valuearg of an argument �, 0 � arg < 2�, is usually used. In the spe
ial
asewhen a = (0; 0), arg(a) = 0, otherwise the prin
iple value is
al
ulated as:arg(a) = a
os(x=�) if y � 0, and arg(a) = �a
os(x=�) if y < 0. The argfun
tion returns the prin
iple argument
orrespondent to
omplex numbera. The returning value is always the real number.polar(�,Arg)The fun
tion
reates the
omplex number a spe
i�ed by its modulus � andprin
iple argumentArg, i.e a = ��
os(Arg) + i ��sin(Arg)℄, The argumentsof this fun
tion are real numbers, whereas the returning value is always a
omplex number. 79

int(re)This fun
tion
onvert the argument to the integer number by trun
ationthe
oating-point number towards zero. The argument must have integer or
oating-point type, whereas the returning value is always the integer number.The
omplex argument is not allowed in this fun
tion.sqrt(a)For any real argument a, the sqrt fun
tion returns the square root of a. The
omplex square root of
omplex argument a = x+ iy is de�ned as follows:pa = sqrt(abs(a)) � [
os(arg(a)=2) + i sin(arg(a)=2)℄:For the bran
hing point, i.e when a = (0; 0), the fun
tion returns
omplexzero. In all other
omplex
ases, the fun
tion returns the
omplex number:pa =
omplex(g; y2g);where � = abs(a) = sqrt(x2 + y2) is the modulus of a and the parameter is
al
ulated in the following way: g = sqrt[(�+ x)=2℄ if only x � 0, otherwiseg = sqrt[(�� x)=2℄ for y � 0 and g = �sqrt[(�� x)=2℄ for y < 0.sqrt1pz2(a)This fun
tion evaluates the expression sqrt(1 + a2) for any real argument a.When applied to
omplex numbers a = x + iy, this expression results in:sqrt(
omplex(1 + x2 � y2 ; 2xy)).80

sqrt1mz2(a)This fun
tion evaluates the expression sqrt(1 � a2) for the real argumenta � 1. When applied to
omplex numbers a = x+ iy, this expression resultsin: sqrt(
omplex(1 � x2 + y2 ; �2xy)).max(a,b)This fun
tion returns the maximum of two real numbers a and b. If only oneof the arguments is the
omplex number, the other argument will be
on-verted to the
omplex number with the zero imaginary part. In
omparisonof
omplex numbers a and b, the fun
tion
hooses the number amongst them,whose modulus is the biggest. If abs(a) = abs(b), the fun
tion returns thenumber whose prin
iple argument is the biggest.min(x,y)This fun
tion returns the minimumof two real numbers a and b. If only one ofthe arguments is the
omplex number, the other argument will be
onvertedto the
omplex number with the zero imaginary part. In
omparison of
omplex numbers a and b, the fun
tion
hooses the number with the smallestmodulus. If abs(a) = abs(b), the fun
tion returns the number whose prin
ipleargument has the smallest value.pow(a,b)This is the generalized power fun
tion. For real arguments, the fun
tionraises a to the b power. A

ording to C language standards, the pow fun
tionreturns: the zero value, if a = 0 and b is a positive number; the unity value,if a = b = 0; the unity value, if a is positive and b = 0; the ab value forarbitrary b, only if a is positive; the ab value, if a is the negative number and81

b is the integer number. It is not allowed to exponentiate the negative basea to the non-integer power, or the zero base to the negative power. Whenapplied to the
omplex numbers, the fun
tion returns the
omplex numberwhi
h is de�ned and
omputed as:pow(a; b) = exp(b � log(a)):exp(a)This is the natural exponential fun
tion whi
h for real numbers raises e tothe a power. In the
ase when fun
tion argument is the
omplex numbera = x+ iy, the fun
tion returns the
omplex number de�ned as:exp(a) = exp(x) � [
os(y) + i sin(y)℄:pow10(a)This fun
tion raises the base 10 to the a power for any real or
omplexargument. The fun
tion
al
ulates 10a as follows: 10a = exp(a � log(10)),using the natural exponential fun
tion exp(a) and the
onstant value log(10).log(a)This is the natural logarithm fun
tion. For a real argument, it returns thenatural logarithm of a. The
omplex natural logarithm of the
omplex argu-ment a = x+ iy is evaluated as follows:log(a) = log[abs(a)℄ + i arg(a):82

log10(a)This is the
ommon logarithm fun
tion. The fun
tion
al
ulates logarithmto the base 10 of its argument a as: log10(a) = log(a)=log(10), using thenatural logarithm fun
tion log(a) and the
onstant value log(10).
os(a)For real numbers, this is the standard trigonometri
 fun
tion. The fun
tion
al
ulates the
osine of its argument. The real number argument is expressedin radians. When applied to
omplex numbers, the
osine fun
tion is de�nedas follows:
os(a) = [exp(ia) + exp(�ia)℄=2:The
omplex
osine is
al
ulated for a = x+ iy as:
omplex(
os(x) �
osh(y) ; �sin(x) � sinh(y)):sin(a)For real numbers, this is the standard trigonometri
 fun
tion. The fun
tion
al
ulates the sine of angle a spe
i�ed in radians. The
omplex sine fun
tionis introdu
ed as: sin(a) = i [exp(�ia) � exp(ia)℄=2:For a = x+ iy, the
omplex sine is
al
ulated as follows:
omplex(sin(x) �
osh(y) ;
os(x) � sinh(y)):83

tan(a)For real numbers, this is the standard trigonometri
 fun
tion. It
al
ulatesthe tangent of angle a spe
i�ed in radians. The
omplex tangent fun
tion isde�ned as follows:tan(a) = i [exp(�i2a)� 1℄ = [exp(�i2a) + 1℄:For the argument given in Cartesian form, a = x+ iy, the
omplex tangentis
al
ulated as follows:
omplex(sin(2x)=g; sinh(2y)=g);where g =
os(2x) +
osh(2y).a
os(a)When the argument is real, the a
os fun
tion returns the angle, expressed inradians, whose
osine is equal to a, �1 � a � 1. When applied to
omplexnumbers, the ar

osine fun
tion is introdu
ed as:a
os(a) = �i log[a + i sqrt(1� a2)℄:asin(a)The asin fun
tion
al
ulates the inverse sine of argument a. For real argu-ment �1 � a � 1, the ar
 sine fun
tion returns the
orrespondent angle inradians. The
omplex ar
 sine fun
tion is de�ned as:asin(a) = �i log[ia + sqrt(1� a2)℄:84

atan(a)The atan fun
tion
al
ulates the inverse tangent of argument a. For anyreal argument, the ar
 tangent fun
tion returns the
orrespondent angle inradians. The
omplex inverse tangent fun
tion is de�ned as:atan(a) = �0:5 i log(1 + ia1 � ia):For a = x+iy, the expression under logarithm results in the
omplex number:
omplex([1� x2 � y2℄=g ; 2x=g) ;where g = x2 + (1 + y)2.
osh(a)This is the hyperboli

osine fun
tion:
osh(a) = [exp(a) + exp(�a)℄=2;and for real argument a, the fun
tion returns the value given by this expres-sion. The
omplex hyperboli

osine of argument a = x+ iy is
al
ulated asfollows:
omplex(
osh(x) �
os(y) ; sinh(x) � sin(y)):sinh(a)The hyperboli
 sine fun
tion sinh is de�ned as:sinh(a) = [exp(a) � exp(�a)℄=2:This expression is used to evaluate sinh for real argument a. When appliedto
omplex numbers a = x+ iy, the
omplex hyperboli
 sine is
al
ulated as:
omplex(sinh(x) �
os(y) ;
osh(x) � sin(y)):85

tanh(a)This is the hyperboli
 tangent fun
tion. For any real argument a:tanh(a) = �1� exp(�2jaj)1 + exp(�2jaj);where jaj is the absolute value of argument, and � is the sign of a. For
omplex numbers, the hyperboli
 tangent is de�ned as:tanh(a) = �i tan(ia):For any a = x+ iy, the tanh fun
tion
an be evaluated as follows:
omplex(sinh(2x)=g; sin(2y)=g);where g =
os(2y) +
osh(2x).a
osh(a)This fun
tion is the inverse hyperboli

osine of real argument a > 1. Theinverse hyperboli

osine of
omplex number a = x + iy is given by thefollowing expression:a
osh(a) = log[a + sqrt(a2 � 1)℄:asinh(a)This fun
tion is the inverse hyperboli
 sine of any real argument a. The
omplex inverse hyperboli
 sine of a = x+ iy is de�ned by the expression:asinh(a) = log[a + sqrt(a2 + 1)℄:86

atanh(a)The fun
tion
al
ulates the inverse hyperboli
 tangent of real argument�1 <a < 1. The
omplex inverse hyperboli
 tangent is de�ned as:atanh(a) = 0:5 log(1 + a1 � a):For a = x+iy, the expression under logarithm results in the
omplex number:
omplex([1� x2 � y2℄=g ; 2y=g) ;where g = (x� 1)2 + y2.hypot(x,y)The hypot fun
tion is de�ned only for real numbers. It
al
ulates and re-turns the following value: sqrt(x2 + y2), whi
h is, histori
ally, the lengthof hypotenuse in re
tangular triangle. The arguments, x and y, as well asreturning value are always real numbers.
87

