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Consider the following convex quadratic problem (QP) with general polytopic
constraints:

min
x

1

2
xTHx

s.t. Ax = b

Cx ≤ d,

(1)

where A ∈ Rm×n, C ∈ Rp×n, H ∈ Rn×n and H � 0, and x ∈ Rn, b ∈ Rm,
d ∈ Rp. We are interested in solving the above problem with a primal-dual
infeasible interior-point method (IPM). To this end, we can write the following
set of equations:

Hx+ATλ+ CT ν = 0

Ax− b = 0

Cx− d+ s = 0

Sν = 0,

(2)

where the slack variable s ∈ Rp has been introduced. Equations (2), together
with the positivity constraints s, ν > 0 constitute the first-order optimality, or
Karush-Kuhn-Tucker conditions (KKTs) associated with (1).

When using infeasible IPMs, a feasible point with respect to inequalities is
required to be available to initialize the algorithm in order to be able to prove
convergence of the iterates to the solution of the problem (if it exists). However,
finding a point that lies inside the set defined by the polytopic constraints Cx ≤
d might be a computationally expensive task. For this reason, the following
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modified problem formulation can be used:

min
x, y

1

2
xTHx

s.t. Ax = b

Cx = y

y ≤ d,

(3)

where the additional constraint Cx = y and the additional variable y have been
introduced in order to “lift” the inequality constraints and deal with the simpler
constraint y ≤ d. The Lagrangian of the modified problem is

L =
1

2
xTHx+ λT (Ax− b) + µT (Cx− y) + νT (y − d) (4)

and the KKTs associated with (3) read

Hx+ATλ+ CTµ = 0

− µ+ ν = 0

Ax− b = 0

Cx− y = 0

y − d+ s = 0

Sν = 0.

(5)

When solving QP problems arising from MPC formulations, due to the presence
of additional equality constraints Cx = y, the efficient Riccati-based factoriza-
tion propsed in [1] cannot be applied straightforwardly. For this reason, we
propose below an efficient elimination technique is proposed that brings the
problem into the same form as in (2). In this way the Ricatti-based factoriza-
tion can be applied to the reduced problem.

The Newton system associated with (5) reads:
H 0 AT CT 0 0
0 0 0 −I I 0
A 0 0 0 0 0
C −I 0 0 0 0
0 I 0 0 0 I
0 0 0 0 S V




∆x
∆y
∆λ
∆µ
∆ν
∆s

 = −


rS
rS′

rE
rE′

rI
rC

 . (6)

The system can be efficiently reduced by eliminating ∆y using the fact that
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∆y = −∆s− rI : 
H AT CT 0 0
0 0 −I I 0
A 0 0 0 0
C 0 0 0 I
0 0 0 S V




∆x
∆λ
∆µ
∆ν
∆s

 = −


rS
rS′

rE
rE′′

rC

 , (7)

where rE′′ = rE′ + rI . Finally ∆µ can be eliminated using ∆µ = ∆ν + rS′ :
H AT CT 0
A 0 0 0
C 0 0 I
0 0 S V




∆x
∆λ
∆ν
∆s

 = −


rS′′

rE
rE′′

rC

 , (8)

where rS′′ = rS + CT rS′
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