
sound_source_id
Release 0.2.8

Samuele Carcagno

Jul 26, 2024





CONTENTS:

1 sound_source_id 1

2 Installation 3

3 Parameters file 5

4 Stimulation file 7

5 Results files 9

6 Sound Level Calibration 11

7 Indices and tables 13

i



ii



CHAPTER

ONE

SOUND_SOURCE_ID

sound_source_id is a program for testing sound localization. The interface is shown in Figure Screenshot of the
sound_source_id interface.

Fig. 1: Screenshot of the sound_source_id interface
sound_source_id supports presenting sounds through a physical array of speakers laid out in a circular (or spherical, if multiple
elevations are used) layout, or through earphones. In the latter case, spazialization is achieved by convolving the stimuli with an

head-related transfer function (which must be provided by the used through a SOFA file).

1



sound_source_id, Release 0.2.8

2 Chapter 1. sound_source_id



CHAPTER

TWO

INSTALLATION

sound_source_id has been successfully installed and used on Linux and Windows. It should also work on Mac
platforms, but this has not been tested. sound_source_id is written in Python and can be installed via pip:

pip install sound_source_id

sound_source_id depends on a few Python modules including:

• PyQt6

• numpy

• scipy

• matplotlib

• pandas

• PyAudio https://pypi.org/project/PyAudio/

depending on your Python distribution you may want to install these dependecies before installing sound_source_id
via pip (e.g. through conda if you’re using the Anaconda Python distribution or through your Linux distribution package
manager if you’re using the Python installation that comes with your Linux distribution), otherwise pip will attempt to
automatically pull in and install these dependencies. If the program is successfully installed you should be able to start
it from a bash/DOS terminal with the command:

sound_source_id

You need to ensure that the Python environment you’re using when you call the above command matches the one you
used when you installed the application.

Sound can be played with either PyAudio, or SoX on Windows. On Linux pyalsaaudio can be also used. Depending
on how you want sound to be played, you need to install:

• pyalsaaudio https://pypi.org/project/pyalsaaudio/

or SoX:

• https://sox.sourceforge.net/

3

https://pypi.org/project/PyAudio/
https://pypi.org/project/pyalsaaudio/
https://sox.sourceforge.net/


sound_source_id, Release 0.2.8

4 Chapter 2. Installation



CHAPTER

THREE

PARAMETERS FILE

The settings for a test are stored in a parameters file, which is a plain text file. An example parameters file for a setup
with physical speakers is shown below:

mode = speakers
azimuths = -70, -60, -50, -40, -30, -20, -10, 0, 10, 20, 30, 40, 50, 60, 70
elevs = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
labels = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
channels = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
n_chan = 15
n_blocks = 1
stim_list_file = stim_list.csv
randomize = true
demo_stim = pink_noises/noise1.wav
demo_stim_lev = 65

this is what each field indicates:

• mode: [speakers, earphones], whether spatialization will be achieved by presenting the stimuli through a
physical array of speakers, or virtually through earphones

• azimuths: the azimuth angles (in degrees) at which the sounds are presented. Note that a 0° angle indicates
straight ahead, a 90° angle is to the right, and a -90° angle to the left

• elevs: the elevation angles (in degrees) at which the sounds are presented; (0°: median plane front, 90°: up,
180°: median plane back, 270: down°). This field can be omitted if all of the elevation angles are at 0°

• labels: a label for each of the angles, this can be a number or a letter (e.g., a, b, c, etc. . . )

• channels: the channel of the soundcard that will be used to present a sound at the corresponding azimuth/elevation
coordinate

• n_chan: the total number of channels for the setup

• n_blocks: the number of blocks, that is, how many times the test will be repeated

• stim_list_file: the path (absolute or relative) to the file containing the stimulation list (see below)

• randomize: if true the stim_list_file will be shuffled before the repetition of each block

• demo_stim: the path to the WAV file to be used for the demo

• demo_stim_lev: the sound level (in dB SPL) to be used for the demo

Below is an example parameter file for a setup with virtual spatial presentation through earphones:

5



sound_source_id, Release 0.2.8

mode = earphones
azimuths = -70, -60, -50, -40, -30, -20, -10, 0, 10, 20, 30, 40, 50, 60, 70
labels = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
n_blocks = 1
stim_list_file = stim_list.csv
randomize = true
demo_stim = pink_noises/noise1.wav
demo_stim_lev = 65
sofa_file_path = /media/ntfsShared/archives/auditory/Materials/KU100_Far_Field/HRIR_
→˓CIRC360.sofa
sofa_az_coords = anticlockwise

many of the fields in the parameter file above are the same as for a parameter file for a setup with physical
speakers. The following additional fields are needed in a parameters file for virtual spatial presentation
through earphones:

• sofa_file_path: the path (absolute or relative) to the SOFA file containing the HRTF to be used for spatial-
ization

• sofa_az_coords: [anticlockwise, clockwise], whether the azimuth coordinates of the SOFA file are
specified in a clockwise(0: front, 90: right, 180: back; 270: left), or anti-clockwise (0: front, 90: left, 180:
back; 270: right) arrangement

In a parameter file for a setup with virtual spatial presentation through earphones the channels and n_chan fields are
not needed, and will be ignored if present.

Some additional optional fields can be used to adjust the visual appearance of the widgets layout:

• resp_bt_wd: width of the response buttons in pixels (default 40)

• resp_bt_ht: height of the response buttons in pixels (default 40)

• play_bt_wd: width of the play buttons in pixels (default 40)

• play_bt_ht: height of the play buttons in pixels (default 40)

• resp_lt_wd: width of the response lights in pixels (default 40)

• resp_lt_ht: height of the response lights in pixels (default 40)

• resp_bt_rad_offset: offset of the response buttons radius from the response lights radius in pixels (default 60).
The radius of the response buttons will be set at the radius of the response lights minus this offset

• play_bt_rad_offset: offset of the play buttons radius from the response button radius in pixels (default 60). The
radius of the play buttons will be set at the radius of the response buttons minus this offset

6 Chapter 3. Parameters file



CHAPTER

FOUR

STIMULATION FILE

Stimulation files specify the stimuli that will be played on each trial of the test. Figure Example stimulation file. shows
an example stimulation file.

Fig. 1: Example stimulation file.

Each row of the file represents a trial. Stimulation files contain the following columns:

• az_angle: the azimuth angle at which the sound will be presented (if in mode speakers, stimuli will be sent to
the corresponding soundcard channel as specified in the parameters file)

• elev_angle: the elevation angle at which the sound will be presented (if in mode speakers, stimuli will be sent to
the corresponding soundcard channel as specified in the parameters file)

• sound_file: the path (relative or absolute) to the WAV file to be played

• condition: an optional label specifying the experimental condition

• level: the base sound level (in dB SPL) at which the sound will be presented (this assumes that sound_source_id
has been correctly calibrated)

• roving: a level rove, the actual sound level will be equal to the base level plus a value drawn from a random
uniform distribution between +/- the roving level

• feedback: if true, feedback will be given to the listener at the end of each trial

7



sound_source_id, Release 0.2.8

8 Chapter 4. Stimulation file



CHAPTER

FIVE

RESULTS FILES

The main results file is a comma-separated values (CSV) file. Note that the CSV separator is not necessarily a comma,
and can be changed in the General Preferences tab accessible by clicking Edit, and then Preferences. The main
results file contains a row for each trial with the following fields:

• listener: the listener identifier

• condition: the experimental condition

• block: the block number

• trial: the trial number

• azimuth_angle: the stimulus azimuth angle, as specified in the parameters file

• elevation_angle: the stimulus elevation angle, as specified in the parameters file

• response_azimuth: the response azimuth angle

• response_elevation: the response elevation angle

• azimuth_error: the signed azimuth angle error

• elevation_error: the signed elevation angle error

• azimuth_angle_remapped: the stimulus azimuth angle remapped to the 0-360° range

• response_azimuth_remapped: the response azimuth angle remapped to the 0-360° range

• azimuth_angle_flip: the stimulus azimuth angle obtained after flipping (reflecting/mirroring) the stimulus posi-
tions from the rear to the front

• response_azimuth_flip: the response azimuth angle obtained after flipping (reflecting/mirroring) the stimulus
positions from the rear to the front

• azimuth_error_flip: the azimuth error calculated from stimulus and response angles flipped to the front (this is
one way to calculate errors while ignoring front-back confusions)

• front-back: [0, 1] 1 if the listener made a front-back confusion, 0 otherwise

• sound_file: the sound file used for the trial

• base_level the base level, in dB SPL, for the trial

• rove: the level rove range for the trial

• actual_level: the actual level at which the stimulus was played

• date: the date

• time: the time

9



sound_source_id, Release 0.2.8

sound_source_id additionally outputs summary files for the all the trials, as well as by experimental condition and/or
by block if multiple conditions/blocks are present (and by block x condition). For each of these subdivisions of the
results, one summary file gives root-mean-square (RMS) azimuth and elevation errors, and the other front-back error
proportions. The RMS error files contain the following fields:

• listener: the listener’s identifier

• rms_azimuth_err: the RMS azimuth error

• rms_elevation_err: the RMS elevation error

• rms_azimuth_err_flip: the RMS azimuth error calculated after both stimuli and responses positions have been
flipped from the rear to the front (this is one way to compute RMS errors while ignoring front-back errors)

• azr_rms_err_no_FB: the RMS azimuth error calculated after excluding trials with front-back errors (this is an-
other way to compute RMS errors while ignoring front-back errors). Front-back errors are defined here as cases
in which the RMS error is reduced after flipping both stimuli and responses positions to the front

The front-back error files contain the following fields:

• listener: the listener’s identifier

• front_back: the proportion of front-back errors

10 Chapter 5. Results files



CHAPTER

SIX

SOUND LEVEL CALIBRATION

Figure Edit transducers dialog shows a screenshot of the Transducers dialog which is used for setting calibration
values.

Fig. 1: Edit transducers dialog

Most of the fields should be pretty much self explanatory. Using this dialog you can add headphones/speakers models to
the transducers database. In sound_source_id levels are referenced to the level that would be output by a full amplitude
sinusoid (a sinusoid with a peak amplitude of 1). In the Max Level field you should enter the level in dB SPL that is
output by the transducer for a full amplitude sinusoid . However, getting reliable readings for a pure tone with an SPL
meter is difficult, therefore, typically a noise is used for calibrating loudspeakers.

The procedure I normally use for calibrating loudspeakers is to save on disk a noise stimulus as a wav file. I filter
the noise within the operating range of the SPL meter (usually around 0.05 to 8 kHz). The noise level needs to be
reasonably high as to avoid signal-to-noise ratio issues, but not so high as to cause distortions or damage your hearing
in the measurement process. Once I’ve found a reasonable level, by trial and error, I measure the actual level with
an SPL meter held at the position where the listener head would be located relative to the loudspeaker during the
experiment, and note it down.

We can measure the root-mean-square (RMS) level of the WAV file with the noise used for calibration, let’s call it
𝑅𝑀𝑆𝑛𝑜𝑖𝑠𝑒. A full amplitude sinusoid has an RMS amplitude of 1/

√
2 = 0.707. The difference in dB between the

11



sound_source_id, Release 0.2.8

level of a sinusoid at max amplitude and our calibration noise will be equal to:

∆𝑑𝐵 = 20 log10

(︃
1/
√
2

𝑅𝑀𝑆𝑛𝑜𝑖𝑠𝑒

)︃

Therefore, if our calibration noise had a level (measured with the SPL meter) of 𝑥 dB SPL, a sinusoid at max amplitude
would have a level of:

𝑚𝑎𝑥𝑙𝑒𝑣 = 𝑥+∆𝑑𝐵

this is the value that you need to enter in the Max Level field of the transducers calibration table for the loudspeakers
in question.

12 Chapter 6. Sound Level Calibration



CHAPTER

SEVEN

INDICES AND TABLES

• genindex

• modindex

• search

13


	sound_source_id
	Installation
	Parameters file
	Stimulation file
	Results files
	Sound Level Calibration
	Indices and tables

