PYENSMALLEN: HIGH-PERFORMANCE OPTIMIZATION FOR STATISTICAL
COMPUTING IN PYTHON

APOORVA LAL

1. SUMMARY

Modern statistical applications increasingly involve large datasets with millions of observa-
tions, making computational efficiency a critical concern. Many popular Python libraries
for statistical modeling (such as SciPy (Virtanen et al. 2020) and statsmodels (Seabold and
Perktold 2010)) were not designed with these scales in mind, resulting in excessive com-
putation times for large problems. This also limits users’ ability to perform uncertainty
quantification via the nonparametric bootstrap. This creates a significant barrier for re-
searchers working with big data, often forcing compromises in model complexity or dataset
size.

pyensmallen seeks to solve this problem by providing Python bindings to the highly op-
timized header-only ensmallen (Bhardwaj et al. 2018) C++ library, which leverages high-
performance linear algebra through Armadillo (Sanderson and Curtin 2016). This enables
access to ensmallen’s state-of-the-art optimization algorithms, with a focus on methods com-
monly used in statistical estimation:

e [-BFGS for smooth objective optimization in maximum likelihood estimation

e ADAM (and variants) for neural network-style optimization SGD (optionally with
momentum)

e Frank-Wolfe algorithms for constrained optimization with Ip-ball or simplex con-
straints

e Generalized Method of Moments (GMM) estimation using ensmallen optimizers and
JAX-powered automatic differentiation (Bradbury et al. 2018)

The library is designed for researchers and practitioners who need to train models on large
datasets where existing solutions become prohibitively slow. Our implementation scales
efficiently with both dataset size and dimensionality, enabling analyses that would otherwise
be computationally infeasible. Our benchmarks demonstrate that pyensmallen consistently
outperforms both SciPy and statsmodels across a range of regression models and dataset
sizes, with the performance advantage becoming more pronounced as data size increases:

e For linear regression with 10 million observations, pyensmallen is 5-11x faster than
SciPy and 3-4x faster than statsmodels

e For logistic regression with high-dimensional data, pyensmallen achieves 11-15x
speedup over SciPy and 2-4.5x faster than statsmodels

e For Poisson regression with large datasets, pyensmallen is up to 13x faster than
SciPy and 30x faster than statsmodels

Date: 31 March 2025.

https://ensmallen.org/

2 APOORVA LAL

Importantly, this speed advantage does not come at the cost of accuracy - all libraries achieve
essentially identical parameter estimates since the loss functions are all convex, confirming
that pyensmallen delivers the same statistical results much more efficiently.

The performance benefits enable several practical advantages:

e Practical nonparametric-bootstrap: The speed improvements make bootstrap
resampling for inference viable even with large datasets. This allows users to con-
struct confidence intervals around most statistical functionals

e Model Selection Benefits: Researchers can iterate through more model specifica-
tions and hyperparameter choices in the same time budget

e Reliable convergence: Unlike some competitors that occasionally fail to converge
on challenging problems (particularly with Poisson regression), pyensmallen shows
robust convergence across all test cases

2. BENCHMARKS

2.1. runtime. All benchmarks were conducted using synthetic datasets with controlled
properties to ensure fair comparison. We tested each library on identical data across various
sizes (from 1,000 to 10,000,000 observations) and dimensionalities (k=5 and k=20) over five
iterations and measure mean runtime and RMSE. The complete benchmark methodology
and code are available in the repository’s paper directory, allowing for full reproducibility
of our results.

) Model: linear | # of Features: 5 Model: logistic | # of Features: 5 Model: poisson | # of Features: 5
10 E

: e I

-
/ & 7'] .7 .
107* E Library, # of Features
T T lib

) Model: linear | # of Features: 20 Model: logistic | # of Features: 20 Model: poisson | # of Features: 20 — pyensmallen
10 - scipy

. o] /: — ztatsmode\s
A = | F

107*

\
N

Runtime (seconds, log scale)

Runtime (seconds, log scale)

LSA BREREE A L a R T T T LA B L e e e e
10° 104 10° 108 107 103 104 10° 10° 107 10° 104 10° 10° 107
Sample Size (log scale) Sample Size (log scale) Sample Size (log scale)

FiGure 1. Library Performance Comparison across Regression Models

Figure 1: Performance comparison of different libraries across linear, logistic, and Poisson
regression models. pyensmallen consistently delivers superior performance, especially as
dataset size increases. This is especially surprising for linear regression, where statsmodels
uses the closed form solution 3 = (X’ X)"1X’y, while pyensmallen and scipy minimize

PYENSMALLEN: HIGH-PERFORMANCE OPTIMIZATION FOR STATISTICAL COMPUTING IN PYTHON 3

square loss using L-BFGS. These figures show execution times for different models as a func-
tion of dataset size. The slope of each line indicates how efficiently each library scales. The
consistently lower position of the pyensmallen line demonstrates its performance advantage,
which grows with larger datasets.

REFERENCES

Bhardwaj, Shikhar, Ryan R Curtin, Marcus Edel, Yannis Mentekidis, and Conrad Sanderson.
2018. “Ensmallen: A Flexible c++ Library for Efficient Function Optimization.” Work-
shop on Systems for ML and Open Source Software at NeurIPS. https://ensmallen.org/.

Bradbury, James, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dou-
gal Maclaurin, George Necula, et al. 2018. “JAX: Composable Transformations of
Python+NumPy Programs.” http://github.com/google/jax.

Sanderson, Conrad, and Ryan Curtin. 2016. “The Design and Implementation of the Ar-
madillo c++ Linear Algebra Library.” In Mathematical Software—ICMS 2016: 5th Inter-
national Conference, Berlin, Germany, July 11-14, 2016, Proceedings, 57-67. Springer.

Seabold, Skipper, and Josef Perktold. 2010. “Statsmodels: Econometric and Statistical
Modeling with Python.”

Virtanen, Pauli, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler Reddy, David
Cournapeau, Evgeni Burovski, et al. 2020. “SciPy 1.0: Fundamental Algorithms for
Scientific Computing in Python.” Nature Methods 17 (3): 261-72.

https://ensmallen.org/
http://github.com/google/jax

	1. Summary
	2. Benchmarks
	2.1. runtime

	References
	References

