# -*- coding: utf-8 -*-
"""
This module contains the class to compute lensing properties of any
elliptical profile using Shajib (2019)'s Gauss decomposition.
"""
__author__ = 'ajshajib'
import numpy as np
import abc
from scipy.special import comb
from lenstronomy.LensModel.Profiles.gaussian_ellipse_kappa import GaussianEllipseKappa
from lenstronomy.LensModel.Profiles.sersic_utils import SersicUtil
from lenstronomy.LensModel.Profiles.base_profile import LensProfileBase
from lenstronomy.Util.package_util import exporter
export, __all__ = exporter()
_SQRT_2PI = np.sqrt(2*np.pi)
[docs]@export
class GaussianEllipseKappaSet(LensProfileBase):
"""
This class computes the lensing properties of a set of concentric
elliptical Gaussian convergences.
"""
param_names = ['amp', 'sigma', 'e1', 'e2', 'center_x', 'center_y']
lower_limit_default = {'amp': 0, 'sigma': 0, 'e1': -0.5, 'e2': -0.5,
'center_x': -100, 'center_y': -100}
upper_limit_default = {'amp': 100, 'sigma': 100, 'e1': 0.5, 'e2': 0.5,
'center_x': 100, 'center_y': 100}
def __init__(self, use_scipy_wofz=True, min_ellipticity=1e-5):
"""
:param use_scipy_wofz: To initiate ``class GaussianEllipseKappa``. If ``True``, Gaussian lensing will use ``scipy.special.wofz`` function. Set ``False`` for lower precision, but faster speed.
:type use_scipy_wofz: ``bool``
:param min_ellipticity: To be passed to ``class GaussianEllipseKappa``. Minimum ellipticity for Gaussian elliptical lensing calculation. For lower ellipticity than min_ellipticity the equations for the spherical case will be used.
:type min_ellipticity: ``float``
"""
self.gaussian_ellipse_kappa = GaussianEllipseKappa(
use_scipy_wofz=use_scipy_wofz,
min_ellipticity=min_ellipticity)
super(GaussianEllipseKappaSet, self).__init__()
[docs] def function(self, x, y, amp, sigma, e1, e2, center_x=0, center_y=0):
"""
Compute the potential function for a set of concentric elliptical
Gaussian convergence profiles.
:param x: x coordinate
:type x: ``float`` or ``numpy.array``
:param y: y coordinate
:type y: ``float`` or ``numpy.array``
:param amp: Amplitude of Gaussian, convention: :math:`A/(2 \pi\sigma^2) \exp(-(x^2+y^2/q^2)/2\sigma^2)`
:type amp: ``numpy.array`` with ``dtype=float``
:param sigma: Standard deviation of Gaussian
:type sigma: ``numpy.array`` with ``dtype=float``
:param e1: Ellipticity parameter 1
:type e1: ``float``
:param e2: Ellipticity parameter 2
:type e2: ``float``
:param center_x: x coordinate of centroid
:type center_x: ``float``
:param center_y: y coordianate of centroid
:type center_y: ``float``
:return: Potential for elliptical Gaussian convergence
:rtype: ``float``, or ``numpy.array`` with ``shape = x.shape``
"""
function = np.zeros_like(x, dtype=float)
for i in range(len(amp)):
function += self.gaussian_ellipse_kappa.function(x, y,
amp[i],
sigma[i], e1,
e2,
center_x,
center_y)
return function
[docs] def derivatives(self, x, y, amp, sigma, e1, e2, center_x=0, center_y=0):
"""
Compute the derivatives of function angles :math:`\partial
f/\partial x`, :math:`\partial f/\partial y` at :math:`x,\ y` for a
set of concentric elliptic Gaussian convergence profiles.
:param x: x coordinate
:type x: ``float`` or ``numpy.array``
:param y: y coordinate
:type y: ``float`` or ``numpy.array``
:param amp: Amplitude of Gaussian, convention: :math:`A/(2 \pi\sigma^2) \exp(-(x^2+y^2/q^2)/2\sigma^2)`
:type amp: ``numpy.array`` with ``dtype=float``
:param sigma: Standard deviation of Gaussian
:type sigma: ``numpy.array`` with ``dtype=float``
:param e1: Ellipticity parameter 1
:type e1: ``float``
:param e2: Ellipticity parameter 2
:type e2: ``float``
:param center_x: x coordinate of centroid
:type center_x: ``float``
:param center_y: y coordianate of centroid
:type center_y: ``float``
:return: Deflection angle :math:`\partial f/\partial x`, :math:`\partial f/\partial y` for elliptical Gaussian convergence
:rtype: tuple ``(float, float)`` or ``(numpy.array, numpy.array)`` with each ``numpy`` array's shape equal to ``x.shape``
"""
f_x = np.zeros_like(x, dtype=float)
f_y = np.zeros_like(x, dtype=float)
for i in range(len(amp)):
f_x_i, f_y_i = self.gaussian_ellipse_kappa.derivatives(x, y,
amp=amp[i],
sigma=sigma[i], e1=e1,
e2=e2, center_x=center_x,
center_y=center_y)
f_x += f_x_i
f_y += f_y_i
return f_x, f_y
[docs] def hessian(self, x, y, amp, sigma, e1, e2, center_x=0, center_y=0):
"""
Compute Hessian matrix of function :math:`\partial^2f/\partial x^2`,
:math:`\partial^2 f/\partial y^2`, :math:`\partial^2 f/\partial
x\partial y` for a set of concentric elliptic Gaussian convergence
profiles.
:param x: x coordinate
:type x: ``float`` or ``numpy.array``
:param y: y coordinate
:type y: ``float`` or ``numpy.array``
:param amp: Amplitude of Gaussian, convention: :math:`A/(2 \pi\sigma^2) \exp(-(x^2+y^2/q^2)/2\sigma^2)`
:type amp: ``numpy.array`` with ``dtype=float``
:param sigma: Standard deviation of Gaussian
:type sigma: ``numpy.array`` with ``dtype=float``
:param e1: Ellipticity parameter 1
:type e1: ``float``
:param e2: Ellipticity parameter 2
:type e2: ``float``
:param center_x: x coordinate of centroid
:type center_x: ``float``
:param center_y: y coordianate of centroid
:type center_y: ``float``
:return: Hessian :math:`\partial^2f/\partial x^2`, :math:`\partial^2/\partial x\partial y`, :math:`\partial^2/\partial y\partial x`, :math:`\partial^2 f/\partial y^2` for elliptical Gaussian convergence.
:rtype: tuple ``(float, float, float)`` , or ``(numpy.array, numpy.array, numpy.array)`` with each ``numpy`` array's shape equal to ``x.shape``
"""
f_xx = np.zeros_like(x, dtype=float)
f_yy = np.zeros_like(x, dtype=float)
f_xy = np.zeros_like(x, dtype=float)
for i in range(len(amp)):
f_xx_i, f_xy_i, _, f_yy_i = self.gaussian_ellipse_kappa.hessian(x, y, amp=amp[i], sigma=sigma[i], e1=e1,
e2=e2, center_x=center_x, center_y=center_y)
f_xx += f_xx_i
f_yy += f_yy_i
f_xy += f_xy_i
return f_xx, f_xy, f_xy, f_yy
[docs] def density_2d(self, x, y, amp, sigma, e1, e2, center_x=0, center_y=0):
"""
Compute the density of a set of concentric elliptical Gaussian
convergence profiles :math:`\sum A/(2\pi \sigma^2) \exp(-(
x^2+y^2/q^2)/2\sigma^2)`.
:param x: x coordinate
:type x: ``float`` or ``numpy.array``
:param y: y coordinate
:type y: ``float`` or ``numpy.array``
:param amp: Amplitude of Gaussian, convention: :math:`A/(2 \pi\sigma^2) \exp(-(x^2+y^2/q^2)/2\sigma^2)`
:type amp: ``numpy.array`` with ``dtype=float``
:param sigma: Standard deviation of Gaussian
:type sigma: ``numpy.array`` with ``dtype=float``
:param e1: Ellipticity parameter 1
:type e1: ``float``
:param e2: Ellipticity parameter 2
:type e2: ``float``
:param center_x: x coordinate of centroid
:type center_x: ``float``
:param center_y: y coordianate of centroid
:type center_y: ``float``
:return: Density :math:`\kappa` for elliptical Gaussian convergence
:rtype: ``float``, or ``numpy.array`` with shape equal to ``x.shape``
"""
density_2d = np.zeros_like(x, dtype=float)
for i in range(len(amp)):
density_2d += self.gaussian_ellipse_kappa.density_2d(x, y,
amp=amp[i],
sigma=sigma[i],
e1=e1, e2=e2,
center_x=center_x,
center_y=center_y)
return density_2d
[docs]@export
class GaussDecompositionAbstract(metaclass=abc.ABCMeta):
"""
This abstract class sets up a template for computing lensing properties of
an elliptical convergence through Shajib (2019)'s Gauss decomposition.
"""
def __init__(self, n_sigma=15, sigma_start_mult=0.02, sigma_end_mult=15.,
precision=10, use_scipy_wofz=True, min_ellipticity=1e-5):
"""
Set up settings for the Gaussian decomposition. For more details about
the decomposition parameters, see Shajib (2019).
:param n_sigma: Number of Gaussian components
:type n_sigma: ``int``
:param sigma_start_mult: Lower range of logarithmically spaced sigmas
:type sigma_start_mult: ``float``
:param sigma_end_mult: Upper range of logarithmically spaced sigmas
:type sigma_end_mult: ``float``
:param precision: Numerical precision of Gaussian decomposition
:type precision: ``int``
:param use_scipy_wofz: To be passed to ``class GaussianEllipseKappa``. If ``True``, Gaussian lensing will use ``scipy.special.wofz`` function. Set ``False`` for lower precision, but faster speed.
:type use_scipy_wofz: ``bool``
:param min_ellipticity: To be passed to ``class GaussianEllipseKappa``. Minimum ellipticity for Gaussian elliptical lensing calculation. For lower ellipticity than min_ellipticity the equations for the spherical case will be used.
:type min_ellipticity: ``float``
"""
self.gaussian_set = GaussianEllipseKappaSet(
use_scipy_wofz=use_scipy_wofz,
min_ellipticity=min_ellipticity)
self.n_sigma = n_sigma
self.sigma_start_mult = sigma_start_mult
self.sigma_end_mult = sigma_end_mult
self.precision = precision
p = self.precision
# nodes and weights based on Fourier-Euler method
# for details Abate & Whitt (2006)
kes = np.arange(2 * p + 1)
self.betas = np.sqrt(2 * p * np.log(10) / 3. + 2. * 1j * np.pi * kes)
epsilons = np.zeros(2 * p + 1)
epsilons[0] = 0.5
epsilons[1:p + 1] = 1.
epsilons[-1] = 1 / 2. ** p
for k in range(1, p):
epsilons[2 * p - k] = epsilons[2 * p - k + 1] + 1 / 2. ** p * comb(
p, k)
self.etas = (-1.) ** kes * epsilons * 10. ** (p / 3.) * 2. * \
_SQRT_2PI
[docs] def gauss_decompose(self, **kwargs):
r"""
Compute the amplitudes and sigmas of Gaussian components using the
integral transform with Gaussian kernel from Shajib (2019). The
returned values are in the convention of eq. (2.13).
:param func: The function to decompose
:type func: ``function``
:param \**kwargs: Keyword arguments to send to ``func``
:return: Amplitudes and standard deviations of the Gaussian components
:rtype: tuple ``(numpy.array, numpy.array)``
"""
sigma_start = self.sigma_start_mult*self.get_scale(**kwargs)
sigma_end = self.sigma_end_mult*self.get_scale(**kwargs)
sigmas = np.logspace(np.log10(sigma_start), np.log10(sigma_end),
self.n_sigma)
f_sigmas = np.sum(self.etas * self.get_kappa_1d(
sigmas[:,np.newaxis]*self.betas[np.newaxis, :],
**kwargs).real,
axis=1
)
del_log_sigma = np.abs(np.diff(np.log(sigmas)).mean())
amps = f_sigmas * del_log_sigma / _SQRT_2PI
# weighting for trapezoid method integral
amps[0] *= 0.5
amps[-1] *= 0.5
return amps, sigmas
[docs] @abc.abstractmethod
def get_scale(self, **kwargs):
"""
Abstract method to identify the keyword argument for the scale size
among the profile parameters of the child class' convergence profile.
:param \**kwargs: Keyword arguments
:return: Scale size
:rtype: ``float``
"""
[docs] @abc.abstractmethod
def get_kappa_1d(self, y, **kwargs):
r"""
Abstract method to compute the spherical Sersic profile at y.
The concrete method has to defined by the child class.
:param y: y coordinate
:type y: ``float`` or ``numpy.array``
:param \**kwargs: Keyword arguments that are defined by the child class that are particular for the convergence profile
"""
[docs] def function(self, x, y, e1=0., e2=0., center_x=0.,
center_y=0., **kwargs):
r"""
Compute the deflection potential of a Gauss-decomposed
elliptic convergence.
:param x: x coordinate
:type x: ``float``
:param y: y coordinate
:type y: ``float``
:param e1: Ellipticity parameter 1
:type e1: ``float``
:param e2: Ellipticity parameter 2
:type e2: ``float``
:param center_x: x coordinate of centroid
:type center_x: ``float``
:param center_y: y coordinate of centroid
:type center_y: ``float``
:param \**kwargs: Keyword arguments that are defined by the child class that are particular for the convergence profile
:return: Deflection potential
:rtype: ``float``
"""
amps, sigmas = self.gauss_decompose(**kwargs)
# converting the amplitude convention A -> A/(2*pi*sigma^2)
amps *= 2.*np.pi * sigmas * sigmas
return self.gaussian_set.function(x, y, amps, sigmas, e1, e2,
center_x, center_y)
[docs] def derivatives(self, x, y, e1=0., e2=0., center_x=0.,
center_y=0., **kwargs):
r"""
Compute the derivatives of the deflection potential :math:`\partial
f/\partial x`, :math:`\partial f/\partial y` for a Gauss-decomposed
elliptic convergence.
:param x: x coordinate
:type x: ``float`` or ``numpy.array``
:param y: y coordinate
:type y: ``float`` or ``numpy.array``
:param e1: Ellipticity parameter 1
:type e1: ``float``
:param e2: Ellipticity parameter 2
:type e2: ``float``
:param center_x: x coordinate of centroid
:type center_x: ``float``
:param center_y: y coordinate of centroid
:type center_y: ``float``
:param \**kwargs: Keyword arguments that are defined by the child class that are particular for the convergence profile
:return: Derivatives of deflection potential
:rtype: tuple ``(type(x), type(x))``
"""
amps, sigmas = self.gauss_decompose(**kwargs)
# converting the amplitude convention A -> A/(2*pi*sigma^2)
amps *= 2. * np.pi * sigmas * sigmas
return self.gaussian_set.derivatives(x, y, amps, sigmas, e1, e2,
center_x, center_y)
[docs] def hessian(self, x, y, e1=0., e2=0., center_x=0.,
center_y=0., **kwargs):
r"""
Compute the Hessian of the deflection potential
:math:`\partial^2f/\partial x^2`, :math:`\partial^2 f/ \partial
y^2`, :math:`\partial^2 f/\partial x\partial y` of a Gauss-decomposed
elliptic Sersic convergence.
:param x: x coordinate
:type x: ``float`` or ``numpy.array``
:param y: y coordinate
:type y: ``float`` or ``numpy.array``
:param e1: Ellipticity parameter 1
:type e1: ``float``
:param e2: Ellipticity parameter 2
:type e2: ``float``
:param center_x: x coordinate of centroid
:type center_x: ``float``
:param center_y: y coordinate of centroid
:type center_y: ``float``
:param \**kwargs: Keyword arguments that are defined by the child class that are particular for the convergence profile
:return: Hessian of deflection potential
:rtype: tuple ``(type(x), type(x), type(x))``
"""
amps, sigmas = self.gauss_decompose(**kwargs)
# converting the amplitude convention A -> A/(2*pi*sigma^2)
amps *= 2. * np.pi * sigmas * sigmas
return self.gaussian_set.hessian(x, y, amps, sigmas, e1, e2,
center_x, center_y)
[docs] def density_2d(self, x, y, e1=0., e2=0., center_x=0.,
center_y=0., **kwargs):
r"""
Compute the convergence profile for Gauss-decomposed elliptic Sersic profile.
:param x: x coordinate
:type x: ``float`` or ``numpy.array``
:param y: y coordinate
:type y: ``float`` or ``numpy.array``
:param e1: Ellipticity parameter 1
:type e1: ``float``
:param e2: Ellipticity parameter 2
:type e2: ``float``
:param center_x: x coordinate of centroid
:type center_x: ``float``
:param center_y: y coordinate of centroid
:type center_y: ``float``
:param \**kwargs: Keyword arguments that are defined by the child class that are particular for the convergence profile in the child class.
:return: Convergence profile
:rtype: ``type(x)``
"""
amps, sigmas = self.gauss_decompose(**kwargs)
# converting the amplitude convention A -> A/(2*pi*sigma^2)
amps *= 2. * np.pi * sigmas * sigmas
return self.gaussian_set.density_2d(x, y, amps, sigmas, e1, e2,
center_x, center_y)
[docs]@export
class SersicEllipseGaussDec(GaussDecompositionAbstract):
"""
This class computes the lensing properties of an elliptical Sersic
profile using the Shajib (2019)'s Gauss decomposition method.
"""
param_names = ['k_eff', 'R_sersic', 'n_sersic', 'e1', 'e2', 'center_x',
'center_y']
lower_limit_default = {'k_eff': 0., 'R_sersic': 0., 'n_sersic': 0.5,
'e1': -0.5, 'e2': -0.5, 'center_x': -100.,
'center_y': -100.}
upper_limit_default = {'k_eff': 100., 'R_sersic': 100., 'n_sersic': 8.,
'e1': 0.5, 'e2': 0.5, 'center_x': 100.,
'center_y': 100.}
[docs] def get_kappa_1d(self, y, **kwargs):
r"""
Compute the spherical Sersic profile at y.
:param y: y coordinate
:type y: ``float``
:param \**kwargs: Keyword arguments
:Keyword Arguments:
* **n_sersic** (``float``) --
Sersic index
* **R_sersic** (``float``) --
Sersic scale radius
* **k_eff** (``float``) --
Sersic convergence at R_sersic
:return: Sersic function at y
:rtype: ``type(y)``
"""
n_sersic = kwargs['n_sersic']
R_sersic = kwargs['R_sersic']
k_eff = kwargs['k_eff']
bn = SersicUtil.b_n(n_sersic)
return k_eff * np.exp(-bn * (y / R_sersic) ** (1. / n_sersic) + bn)
[docs] def get_scale(self, **kwargs):
"""
Identify the scale size from the keyword arguments.
:param \**kwargs: Keyword arguments
:Keyword Arguments:
* **n_sersic** (``float``) --
Sersic index
* **R_sersic** (``float``) --
Sersic scale radius
* **k_eff** (``float``) --
Sersic convergence at R_sersic
:return: Sersic radius
:rtype: ``float``
"""
return kwargs['R_sersic']
[docs]@export
class NFWEllipseGaussDec(GaussDecompositionAbstract):
"""
This class computes the lensing properties of an elliptical, projected NFW
profile using Shajib (2019)'s Gauss decomposition method.
"""
param_names = ['Rs', 'alpha_Rs', 'e1', 'e2', 'center_x', 'center_y']
lower_limit_default = {'Rs': 0, 'alpha_Rs': 0, 'e1': -0.5, 'e2': -0.5,
'center_x': -100, 'center_y': -100}
upper_limit_default = {'Rs': 100, 'alpha_Rs': 10, 'e1': 0.5, 'e2': 0.5,
'center_x': 100, 'center_y': 100}
def __init__(self, n_sigma=15, sigma_start_mult=0.005, sigma_end_mult=50.,
precision=10, use_scipy_wofz=True, min_ellipticity=1e-5):
"""
Set up settings for the Gaussian decomposition. For more details about
the decomposition parameters, see Shajib (2019).
:param n_sigma: Number of Gaussian components
:type n_sigma: ``int``
:param sigma_start_mult: Lower range of logarithmically spaced sigmas
:type sigma_start_mult: ``float``
:param sigma_end_mult: Upper range of logarithmically spaced sigmas
:type sigma_end_mult: ``float``
:param precision: Numerical precision of Gaussian decomposition
:type precision: ``int``
:param use_scipy_wofz: To be passed to ``class GaussianEllipseKappa``. If ``True``, Gaussian lensing will use ``scipy.special.wofz`` function. Set ``False`` for lower precision, but faster speed.
:type use_scipy_wofz: ``bool``
:param min_ellipticity: To be passed to ``class GaussianEllipseKappa``. Minimum ellipticity for Gaussian elliptical lensing calculation. For lower ellipticity than min_ellipticity the equations for the spherical case will be used.
:type min_ellipticity: ``float``
"""
super(NFWEllipseGaussDec, self).__init__(n_sigma=n_sigma,
sigma_start_mult=sigma_start_mult,
sigma_end_mult=sigma_end_mult,
precision=precision,
use_scipy_wofz=use_scipy_wofz,
min_ellipticity=min_ellipticity)
[docs] def get_kappa_1d(self, y, **kwargs):
r"""
Compute the spherical projected NFW profile at y.
:param y: y coordinate
:type y: ``float``
:param \**kwargs: Keyword arguments
:Keyword Arguments:
* **alpha_Rs** (``float``) --
Deflection angle at ``Rs``
* **R_s** (``float``) --
NFW scale radius
:return: projected NFW profile at y
:rtype: ``type(y)``
"""
R_s = kwargs['Rs']
alpha_Rs = kwargs['alpha_Rs']
kappa_s = alpha_Rs / (4 * R_s * (1 - 0.30102999566))
# log2 = 0.30102999566
x = y/R_s
f = np.empty(shape=x.shape, dtype=x.dtype)
range1 = (x > 1.)
if np.any(range1):
s = x[range1]
f[range1] = (1 - np.arccos(1 / s) / np.sqrt(s * s - 1)) / (
s * s - 1)
range2 = (x < 1.)
if np.any(range2):
s = x[range2]
f[range2] = (1 - np.arccosh(1 / s) / np.sqrt(1 - s * s)) / (
s * s - 1)
range3 = np.logical_and(np.logical_not(range1), np.logical_not(range2))
if np.any(range3):
f[range3] = 1. / 3.
return 2 * kappa_s * f
[docs] def get_scale(self, **kwargs):
"""
Identify the scale size from the keyword arguments.
:param \**kwargs: Keyword arguments
:Keyword Arguments:
* **alpha_Rs** (``float``) --
Deflection angle at ``Rs``
* **R_s** (``float``) --
NFW scale radius
:return: NFW scale radius
:rtype: ``float``
"""
return kwargs['Rs']
[docs]@export
class GaussDecompositionAbstract3D(GaussDecompositionAbstract):
"""
This abstract class sets up a template for computing lensing properties of
a convergence from 3D spherical profile through Shajib (2019)'s Gauss
decomposition.
"""
[docs] def gauss_decompose(self, **kwargs):
r"""
Compute the amplitudes and sigmas of Gaussian components using the
integral transform with Gaussian kernel from Shajib (2019). The
returned values are in the convention of eq. (2.13).
:param func: The function to decompose
:type func: ``function``
:param \**kwargs: Keyword arguments to send to ``func``
:return: Amplitudes and standard deviations of the Gaussian components
:rtype: tuple ``(numpy.array, numpy.array)``
"""
f_sigmas, sigmas = super(GaussDecompositionAbstract3D,
self).gauss_decompose(**kwargs)
return f_sigmas * sigmas * _SQRT_2PI, sigmas
[docs]@export
class CTNFWGaussDec(GaussDecompositionAbstract3D):
"""
This class computes the lensing properties of an projection from a
spherical cored-truncated NFW profile using Shajib (2019)'s Gauss
decomposition method.
"""
param_names = ['r_s', 'r_core', 'r_trunc', 'a', 'rho_s', 'center_x'
'center_y']
lower_limit_default = {'r_s': 0, 'r_core': 0, 'r_trunc': 0, 'a': 0.,
'rho_s': 0, 'center_x': -100, 'center_y': -100}
upper_limit_default = {'r_s': 100, 'r_core': 100, 'r_trunc': 100, 'a': 10.,
'rho_s': 1000, 'center_x': 100, 'center_y': 100}
def __init__(self, n_sigma=15, sigma_start_mult=0.01, sigma_end_mult=20.,
precision=10, use_scipy_wofz=True):
"""
Set up settings for the Gaussian decomposition. For more details about
the decomposition parameters, see Shajib (2019).
:param n_sigma: Number of Gaussian components
:type n_sigma: ``int``
:param sigma_start_mult: Lower range of logarithmically spaced sigmas
:type sigma_start_mult: ``float``
:param sigma_end_mult: Upper range of logarithmically spaced sigmas
:type sigma_end_mult: ``float``
:param precision: Numerical precision of Gaussian decomposition
:type precision: ``int``
:param use_scipy_wofz: To be passed to ``class GaussianEllipseKappa``. If ``True``, Gaussian lensing will use ``scipy.special.wofz`` function. Set ``False`` for lower precision, but faster speed.
:type use_scipy_wofz: ``bool``
:param min_ellipticity: To be passed to ``class GaussianEllipseKappa``. Minimum ellipticity for Gaussian elliptical lensing calculation. For lower ellipticity than min_ellipticity the equations for the spherical case will be used.
:type min_ellipticity: ``float``
"""
super(CTNFWGaussDec, self).__init__(n_sigma=n_sigma,
sigma_start_mult=sigma_start_mult,
sigma_end_mult=sigma_end_mult,
precision=precision, use_scipy_wofz=use_scipy_wofz)
[docs] def get_kappa_1d(self, y, **kwargs):
r"""
Compute the spherical cored-truncated NFW profile at y.
:param y: y coordinate
:type y: ``float``
:param \**kwargs: Keyword arguments
:Keyword Arguments:
* **r_s** (``float``) --
Scale radius
* **r_trunc** (``float``) --
Truncation radius
* **r_core** (``float``) --
Core radius
* **rho_s** (``float``) --
Density normalization
* **a** (``float``) --
Core regularization parameter
:return: projected NFW profile at y
:rtype: ``type(y)``
"""
r_s = kwargs['r_s']
r_trunc = kwargs['r_trunc']
r_core = kwargs['r_core']
rho_s = kwargs['rho_s']
a = kwargs['a']
beta = r_core/r_s
tau = r_trunc/r_s
x = y/r_s
return rho_s * (tau*tau / (tau*tau + x*x)) / (x**a + beta**a)**(
1./a) / (1. + x)**2
[docs] def get_scale(self, **kwargs):
"""
Identify the scale size from the keyword arguments.
:param \**kwargs: Keyword arguments
:Keyword Arguments:
* **r_s** (``float``) --
Scale radius
* **r_trunc** (``float``) --
Truncation radius
* **r_core** (``float``) --
Core radius
* **rho_s** (``float``) --
Density normalization
* **a** (``float``) --
Core regularization parameter
:return: NFW scale radius
:rtype: ``float``
"""
return kwargs['r_s']