Source code for lenstronomy.LensModel.Profiles.p_jaffe_ellipse

from lenstronomy.LensModel.Profiles.p_jaffe import PJaffe
import lenstronomy.Util.param_util as param_util
from lenstronomy.LensModel.Profiles.base_profile import LensProfileBase
import numpy as np

__all__ = ['PJaffe_Ellipse']


[docs]class PJaffe_Ellipse(LensProfileBase): """ this class contains functions concerning the NFW profile relation are: R_200 = c * Rs """ param_names = ['sigma0', 'Ra', 'Rs', 'e1', 'e2', 'center_x', 'center_y'] lower_limit_default = {'sigma0': 0, 'Ra': 0, 'Rs': 0, 'e1': -0.5, 'e2': -0.5, 'center_x': -100, 'center_y': -100} upper_limit_default = {'sigma0': 10, 'Ra': 100, 'Rs': 100, 'e1': 0.5, 'e2': 0.5, 'center_x': 100, 'center_y': 100} def __init__(self): self.spherical = PJaffe() self._diff = 0.000001 super(PJaffe_Ellipse, self).__init__()
[docs] def function(self, x, y, sigma0, Ra, Rs, e1, e2, center_x=0, center_y=0): """ returns double integral of NFW profile """ phi_G, q = param_util.ellipticity2phi_q(e1, e2) x_shift = x - center_x y_shift = y - center_y cos_phi = np.cos(phi_G) sin_phi = np.sin(phi_G) e = min(abs(1. - q), 0.99) x_ = (cos_phi*x_shift+sin_phi*y_shift)*np.sqrt(1 - e) y_ = (-sin_phi*x_shift+cos_phi*y_shift)*np.sqrt(1 + e) f_ = self.spherical.function(x_, y_, sigma0, Ra, Rs) return f_
[docs] def derivatives(self, x, y, sigma0, Ra, Rs, e1, e2, center_x=0, center_y=0): """ returns df/dx and df/dy of the function (integral of NFW) """ phi_G, q = param_util.ellipticity2phi_q(e1, e2) x_shift = x - center_x y_shift = y - center_y cos_phi = np.cos(phi_G) sin_phi = np.sin(phi_G) e = min(abs(1. - q), 0.99) x_ = (cos_phi*x_shift+sin_phi*y_shift)*np.sqrt(1 - e) y_ = (-sin_phi*x_shift+cos_phi*y_shift)*np.sqrt(1 + e) f_x_prim, f_y_prim = self.spherical.derivatives(x_, y_, sigma0, Ra, Rs, center_x=0, center_y=0) f_x_prim *= np.sqrt(1 - e) f_y_prim *= np.sqrt(1 + e) f_x = cos_phi*f_x_prim-sin_phi*f_y_prim f_y = sin_phi*f_x_prim+cos_phi*f_y_prim return f_x, f_y
[docs] def hessian(self, x, y, sigma0, Ra, Rs, e1, e2, center_x=0, center_y=0): """ returns Hessian matrix of function d^2f/dx^2, d^2/dxdy, d^2/dydx, d^f/dy^2 """ alpha_ra, alpha_dec = self.derivatives(x, y, sigma0, Ra, Rs, e1, e2, center_x, center_y) diff = self._diff alpha_ra_dx, alpha_dec_dx = self.derivatives(x + diff, y, sigma0, Ra, Rs, e1, e2, center_x, center_y) alpha_ra_dy, alpha_dec_dy = self.derivatives(x, y + diff, sigma0, Ra, Rs, e1, e2, center_x, center_y) f_xx = (alpha_ra_dx - alpha_ra)/diff f_xy = (alpha_ra_dy - alpha_ra)/diff f_yx = (alpha_dec_dx - alpha_dec)/diff f_yy = (alpha_dec_dy - alpha_dec)/diff return f_xx, f_xy, f_yx, f_yy
[docs] def mass_3d_lens(self, r, sigma0, Ra, Rs, e1=0, e2=0): """ :param r: :param sigma0: :param Ra: :param Rs: :param q: :param phi_G: :return: """ return self.spherical.mass_3d_lens(r, sigma0, Ra, Rs)