"""
routines that manipulate convolution kernels
"""
import numpy as np
import copy
import scipy.ndimage.interpolation as interp
import lenstronomy.Util.util as util
import lenstronomy.Util.image_util as image_util
from lenstronomy.LightModel.Profiles.gaussian import Gaussian
import lenstronomy.Util.multi_gauss_expansion as mge
from lenstronomy.Util.package_util import exporter
export, __all__ = exporter()
[docs]@export
def de_shift_kernel(kernel, shift_x, shift_y, iterations=20, fractional_step_size=1):
"""
de-shifts a shifted kernel to the center of a pixel. This is performed iteratively.
The input kernel is the solution of a linear interpolated shift of a sharper kernel centered in the middle of the
pixel. To find the de-shifted kernel, we perform an iterative correction of proposed de-shifted kernels and compare
its shifted version with the input kernel.
:param kernel: (shifted) kernel, e.g. a star in an image that is not centered in the pixel grid
:param shift_x: x-offset relative to the center of the pixel (sub-pixel shift)
:param shift_y: y-offset relative to the center of the pixel (sub-pixel shift)
:param iterations: number of repeated iterations of shifting a new de-shifted kernel and apply corrections
:param fractional_step_size: float (0, 1] correction factor relative to previous proposal (can be used for stability
:return: de-shifted kernel such that the interpolated shift boy (shift_x, shift_y) results in the input kernel
"""
nx, ny = np.shape(kernel)
kernel_new = np.zeros((nx+2, ny+2)) + (kernel[0, 0] + kernel[0, -1] + kernel[-1, 0] + kernel[-1, -1]) / 4.
kernel_new[1:-1, 1:-1] = kernel
int_shift_x = int(round(shift_x))
frac_x_shift = shift_x - int_shift_x
int_shift_y = int(round(shift_y))
frac_y_shift = shift_y - int_shift_y
kernel_init = copy.deepcopy(kernel_new)
kernel_init_shifted = copy.deepcopy(interp.shift(kernel_init, [int_shift_y, int_shift_x], order=1))
kernel_new = interp.shift(kernel_new, [int_shift_y, int_shift_x], order=1)
norm = np.sum(kernel_init_shifted)
for i in range(iterations):
kernel_shifted_inv = interp.shift(kernel_new, [-frac_y_shift, -frac_x_shift], order=1)
delta = kernel_init_shifted - kernel_norm(kernel_shifted_inv) * norm
kernel_new += delta * fractional_step_size
kernel_new = kernel_norm(kernel_new) * norm
return kernel_new[1:-1, 1:-1]
[docs]@export
def center_kernel(kernel, iterations=20):
"""
given a kernel that might not be perfectly centered, this routine computes its light weighted center and then
moves the center in an iterative process such that it is centered
:param kernel: 2d array (odd numbers)
:param iterations: int, number of iterations
:return: centered kernel
"""
kernel = kernel_norm(kernel)
nx, ny = np.shape(kernel)
if nx %2 == 0:
raise ValueError("kernel needs odd number of pixels")
# make coordinate grid of kernel
x_grid, y_grid = util.make_grid(nx, deltapix=1, left_lower=False)
# compute 1st moments to get light weighted center
x_w = np.sum(kernel * util.array2image(x_grid))
y_w = np.sum(kernel * util.array2image(y_grid))
# de-shift kernel
kernel_centered = de_shift_kernel(kernel, shift_x=-x_w, shift_y=-y_w, iterations=iterations)
return kernel_norm(kernel_centered)
[docs]@export
def kernel_norm(kernel):
"""
:param kernel:
:return: normalisation of the psf kernel
"""
norm = np.sum(np.array(kernel))
kernel /= norm
return kernel
[docs]@export
def subgrid_kernel(kernel, subgrid_res, odd=False, num_iter=100):
"""
creates a higher resolution kernel with subgrid resolution as an interpolation of the original kernel in an
iterative approach
:param kernel: initial kernel
:param subgrid_res: subgrid resolution required
:return: kernel with higher resolution (larger)
"""
subgrid_res = int(subgrid_res)
if subgrid_res == 1:
return kernel
nx, ny = np.shape(kernel)
d_x = 1. / nx
x_in = np.linspace(d_x/2, 1-d_x/2, nx)
d_y = 1. / nx
y_in = np.linspace(d_y/2, 1-d_y/2, ny)
nx_new = nx * subgrid_res
ny_new = ny * subgrid_res
if odd is True:
if nx_new % 2 == 0:
nx_new -= 1
if ny_new % 2 == 0:
ny_new -= 1
d_x_new = 1. / nx_new
d_y_new = 1. / ny_new
x_out = np.linspace(d_x_new/2., 1-d_x_new/2., nx_new)
y_out = np.linspace(d_y_new/2., 1-d_y_new/2., ny_new)
kernel_input = copy.deepcopy(kernel)
kernel_subgrid = image_util.re_size_array(x_in, y_in, kernel_input, x_out, y_out)
kernel_subgrid = kernel_norm(kernel_subgrid)
for i in range(max(num_iter, 1)):
# given a proposition, re-size it to original pixel size
if subgrid_res % 2 == 0:
kernel_pixel = averaging_even_kernel(kernel_subgrid, subgrid_res)
else:
kernel_pixel = util.averaging(kernel_subgrid, numGrid=nx_new, numPix=nx)
delta = kernel - kernel_pixel
temp_kernel = kernel_input + delta
kernel_subgrid = image_util.re_size_array(x_in, y_in, temp_kernel, x_out, y_out)#/norm_subgrid
kernel_subgrid = kernel_norm(kernel_subgrid)
kernel_input = temp_kernel
#from scipy.ndimage import zoom
#ratio = subgrid_res
#kernel_subgrid = zoom(kernel, ratio, order=4) / ratio ** 2
#print(np.shape(kernel_subgrid))
# whatever has not been matched is added to zeroth order (in squares of the undersampled PSF)
if subgrid_res % 2 == 0:
return kernel_subgrid
kernel_pixel = util.averaging(kernel_subgrid, numGrid=nx_new, numPix=nx)
kernel_pixel = kernel_norm(kernel_pixel)
delta_kernel = kernel_pixel - kernel_norm(kernel)
id = np.ones((subgrid_res, subgrid_res))
delta_kernel_sub = np.kron(delta_kernel, id)/subgrid_res**2
return kernel_norm(kernel_subgrid - delta_kernel_sub)
[docs]@export
def averaging_even_kernel(kernel_high_res, subgrid_res):
"""
makes a lower resolution kernel based on the kernel_high_res (odd numbers) and the subgrid_res (even number), both
meant to be centered.
:param kernel_high_res: high resolution kernel with even subsampling resolution, centered
:param subgrid_res: subsampling resolution (even number)
:return: averaged undersampling kernel
"""
n_kernel_high_res = len(kernel_high_res)
n_low = int(round(n_kernel_high_res / subgrid_res + 0.5))
if n_low % 2 == 0:
n_low += 1
n_high = int(n_low * subgrid_res - 1)
assert n_high % 2 == 1
if n_high == n_kernel_high_res:
kernel_high_res_edges = kernel_high_res
else:
i_start = int((n_high - n_kernel_high_res) / 2)
kernel_high_res_edges = np.zeros((n_high, n_high))
kernel_high_res_edges[i_start:-i_start, i_start:-i_start] = kernel_high_res
kernel_low_res = np.zeros((n_low, n_low))
# adding pixels that are fully within a single re-binned pixel
for i in range(subgrid_res-1):
for j in range(subgrid_res-1):
kernel_low_res += kernel_high_res_edges[i::subgrid_res, j::subgrid_res]
# adding half of a pixel that has over-lap with two pixels
i = subgrid_res - 1
for j in range(subgrid_res - 1):
kernel_low_res[1:, :] += kernel_high_res_edges[i::subgrid_res, j::subgrid_res] / 2
kernel_low_res[:-1, :] += kernel_high_res_edges[i::subgrid_res, j::subgrid_res] / 2
j = subgrid_res - 1
for i in range(subgrid_res - 1):
kernel_low_res[:, 1:] += kernel_high_res_edges[i::subgrid_res, j::subgrid_res] / 2
kernel_low_res[:, :-1] += kernel_high_res_edges[i::subgrid_res, j::subgrid_res] / 2
# adding a quarter of a pixel value that is at the boarder of four pixels
i = subgrid_res - 1
j = subgrid_res - 1
kernel_edge = kernel_high_res_edges[i::subgrid_res, j::subgrid_res]
kernel_low_res[1:, 1:] += kernel_edge / 4
kernel_low_res[:-1, 1:] += kernel_edge / 4
kernel_low_res[1:, :-1] += kernel_edge / 4
kernel_low_res[:-1, :-1] += kernel_edge / 4
return kernel_low_res
[docs]@export
def kernel_pixelsize_change(kernel, deltaPix_in, deltaPix_out):
"""
change the pixel size of a given kernel
:param kernel:
:param deltaPix_in:
:param deltaPix_out:
:return:
"""
numPix = len(kernel)
numPix_new = int(round(numPix * deltaPix_in/deltaPix_out))
if numPix_new % 2 == 0:
numPix_new -= 1
x_in = np.linspace(-(numPix-1)/2*deltaPix_in, (numPix-1)/2*deltaPix_in, numPix)
x_out = np.linspace(-(numPix_new-1)/2*deltaPix_out, (numPix_new-1)/2*deltaPix_out, numPix_new)
kernel_out = image_util.re_size_array(x_in, x_in, kernel, x_out, x_out)
kernel_out = kernel_norm(kernel_out)
return kernel_out
[docs]@export
def cut_psf(psf_data, psf_size):
"""
cut the psf properly
:param psf_data: image of PSF
:param psf_size: size of psf
:return: re-sized and re-normalized PSF
"""
kernel = image_util.cut_edges(psf_data, psf_size)
kernel = kernel_norm(kernel)
return kernel
[docs]@export
def pixel_kernel(point_source_kernel, subgrid_res=7):
"""
converts a pixelised kernel of a point source to a kernel representing a uniform extended pixel
:param point_source_kernel:
:param subgrid_res:
:return: convolution kernel for an extended pixel
"""
kernel_subgrid = subgrid_kernel(point_source_kernel, subgrid_res, num_iter=10)
kernel_size = len(point_source_kernel)
kernel_pixel = np.zeros((kernel_size*subgrid_res, kernel_size*subgrid_res))
for i in range(subgrid_res):
k_x = int((kernel_size-1) / 2 * subgrid_res + i)
for j in range(subgrid_res):
k_y = int((kernel_size-1) / 2 * subgrid_res + j)
kernel_pixel = image_util.add_layer2image(kernel_pixel, k_x, k_y, kernel_subgrid)
kernel_pixel = util.averaging(kernel_pixel, numGrid=kernel_size*subgrid_res, numPix=kernel_size)
return kernel_norm(kernel_pixel)
[docs]@export
def kernel_average_pixel(kernel_super, supersampling_factor):
"""
computes the effective convolution kernel assuming a uniform surface brightness on the scale of a pixel
:param kernel_super: supersampled PSF of a point source (odd number per axis
:param supersampling_factor: supersampling factor (int)
:return:
"""
kernel_sum = np.sum(kernel_super)
kernel_size = int(round(len(kernel_super)/float(supersampling_factor) + 0.5))
if kernel_size % 2 == 0:
kernel_size += 1
n_high = kernel_size*supersampling_factor
if n_high % 2 == 0:
n_high += 1
kernel_pixel = np.zeros((n_high, n_high))
for i in range(supersampling_factor):
k_x = int((kernel_size - 1) / 2 * supersampling_factor + i)
for j in range(supersampling_factor):
k_y = int((kernel_size - 1) / 2 * supersampling_factor + j)
kernel_pixel = image_util.add_layer2image(kernel_pixel, k_x, k_y, kernel_super)
if supersampling_factor % 2 == 0:
kernel_pixel = averaging_even_kernel(kernel_pixel, supersampling_factor)
else:
kernel_pixel = util.averaging(kernel_pixel, numGrid=n_high,
numPix=kernel_size)
kernel_pixel /= np.sum(kernel_pixel)
return kernel_pixel * kernel_sum
[docs]@export
def kernel_gaussian(kernel_numPix, deltaPix, fwhm):
sigma = util.fwhm2sigma(fwhm)
#if kernel_numPix % 2 == 0:
# kernel_numPix += 1
x_grid, y_grid = util.make_grid(kernel_numPix, deltaPix)
gaussian = Gaussian()
kernel = gaussian.function(x_grid, y_grid, amp=1., sigma=sigma, center_x=0, center_y=0)
kernel /= np.sum(kernel)
kernel = util.array2image(kernel)
return kernel
[docs]@export
def split_kernel(kernel_super, supersampling_kernel_size, supersampling_factor, normalized=True):
"""
pixel kernel and subsampling kernel such that the convolution of both applied on an image can be
performed, i.e. smaller subsampling PSF and hole in larger PSF
:param kernel: PSF kernel of the size of the pixel
:param kernel_super: super-sampled kernel
:param supersampling_kernel_size: size of super-sampled PSF in units of degraded pixels
:param normalized: boolean, if True returns a split kernel that is area normalized=1 representing a convolution kernel
:return: degraded kernel with hole and super-sampled kernel
"""
if supersampling_factor <= 1:
raise ValueError('To split a kernel, the supersampling_factor needs to be > 1, givn %s' %supersampling_factor)
if supersampling_kernel_size % 2 == 0:
raise ValueError('supersampling_kernel_size needs to be an odd number!')
n_super = len(kernel_super)
n_sub = supersampling_kernel_size * supersampling_factor
if n_sub % 2 == 0:
n_sub += 1
if n_sub > n_super:
n_sub = n_super
kernel_hole = copy.deepcopy(kernel_super)
n_min = int((n_super-1) / 2 - (n_sub - 1) / 2)
n_max = int((n_super-1) / 2 + (n_sub - 1) / 2 + 1)
kernel_hole[n_min:n_max, n_min:n_max] = 0
kernel_hole_resized = degrade_kernel(kernel_hole, degrading_factor=supersampling_factor)
kernel_subgrid_cut = kernel_super[n_min:n_max, n_min:n_max]
if normalized is True:
flux_subsampled = np.sum(kernel_subgrid_cut)
flux_hole = np.sum(kernel_hole_resized)
if flux_hole > 0:
kernel_hole_resized *= (1. - flux_subsampled) / np.sum(kernel_hole_resized)
else:
kernel_subgrid_cut /= np.sum(kernel_subgrid_cut)
else:
kernel_hole_resized /= supersampling_factor ** 2
return kernel_hole_resized, kernel_subgrid_cut
[docs]@export
def degrade_kernel(kernel_super, degrading_factor):
"""
:param kernel_super: higher resolution kernel (odd number per axis)
:param degrading_factor: degrading factor (effectively the super-sampling resolution of the kernel given
:return: degraded kernel with odd axis number with the sum of the flux/values in the kernel being preserved
"""
if degrading_factor == 1:
return kernel_super
if degrading_factor % 2 == 0:
kernel_low_res = averaging_even_kernel(kernel_super, degrading_factor)
else:
n_kernel = len(kernel_super)
numPix = int(round(n_kernel / degrading_factor + 0.5))
if numPix % 2 == 0:
numPix += 1
n_high = numPix * degrading_factor
kernel_super_ = np.zeros((n_high, n_high))
i_start = int((n_high-n_kernel)/2)
kernel_super_[i_start:i_start+n_kernel, i_start:i_start+n_kernel] = kernel_super
kernel_low_res = util.averaging(kernel_super_, numGrid=n_high, numPix=numPix) * degrading_factor**2 # multiplicative factor added when providing flux conservation
return kernel_low_res
[docs]@export
def cutout_source(x_pos, y_pos, image, kernelsize, shift=True):
"""
cuts out point source (e.g. PSF estimate) out of image and shift it to the center of a pixel
:param x_pos:
:param y_pos:
:param image:
:param kernelsize:
:return:
"""
if kernelsize % 2 == 0:
raise ValueError("even pixel number kernel size not supported!")
x_int = int(round(x_pos))
y_int = int(round(y_pos))
n = len(image)
d = (kernelsize - 1)/2
x_max = int(np.minimum(x_int + d + 1, n))
x_min = int(np.maximum(x_int - d, 0))
y_max = int(np.minimum(y_int + d + 1, n))
y_min = int(np.maximum(y_int - d, 0))
image_cut = copy.deepcopy(image[y_min:y_max, x_min:x_max])
shift_x = x_int - x_pos
shift_y = y_int - y_pos
if shift is True:
kernel_shift = de_shift_kernel(image_cut, shift_x, shift_y, iterations=50)
else:
kernel_shift = image_cut
kernel_final = np.zeros((kernelsize, kernelsize))
k_l2_x = int((kernelsize - 1) / 2)
k_l2_y = int((kernelsize - 1) / 2)
xk_min = np.maximum(0, -x_int + k_l2_x)
yk_min = np.maximum(0, -y_int + k_l2_y)
xk_max = np.minimum(kernelsize, -x_int + k_l2_x + n)
yk_max = np.minimum(kernelsize, -y_int + k_l2_y + n)
kernel_final[yk_min:yk_max, xk_min:xk_max] = kernel_shift
return kernel_final
[docs]@export
def fwhm_kernel(kernel):
"""
:param kernel:
:return:
"""
n = len(kernel)
center = (n - 1) / 2.
I_r = image_util.radial_profile(kernel, center=[center, center])
if n % 2 == 0:
raise ValueError('only works with odd number of pixels in kernel!')
max_flux = kernel[int((n-1)/2), int((n-1)/2)]
I_2 = max_flux / 2.
r = np.linspace(0, (n - 1) / 2, int((n + 1) / 2)) + 0.33
for i in range(1, len(I_r)):
if I_r[i] < I_2:
fwhm_2 = (I_2 - I_r[i - 1]) / (I_r[i] - I_r[i - 1]) + r[i - 1]
return fwhm_2 * 2
raise ValueError('The kernel did not drop to half the max value - fwhm not determined!')
[docs]@export
def estimate_amp(data, x_pos, y_pos, psf_kernel):
"""
estimates the amplitude of a point source located at x_pos, y_pos
:param data:
:param x_pos:
:param y_pos:
:param deltaPix:
:return:
"""
numPix_x, numPix_y = np.shape(data)
#data_center = int((numPix-1.)/2)
x_int = int(round(x_pos-0.49999))#+data_center
y_int = int(round(y_pos-0.49999))#+data_center
# TODO: make amplitude estimate not sucebtible to rounding effects on which pixels to chose to estimate the amplitude
if x_int > 2 and x_int < numPix_x-2 and y_int > 2 and y_int < numPix_y-2:
mean_image = max(np.sum(data[y_int - 2:y_int+3, x_int-2:x_int+3]), 0)
num = len(psf_kernel)
center = int((num-0.5)/2)
mean_kernel = np.sum(psf_kernel[center-2:center+3, center-2:center+3])
amp_estimated = mean_image/mean_kernel
else:
amp_estimated = 0
return amp_estimated
[docs]@export
def mge_kernel(kernel, order=5):
"""
azimutal Multi-Gaussian expansion of a pixelized kernel
:param kernel: 2d numpy array
:return:
"""
# radial average
n = len(kernel)
center = (n - 1) / 2.
psf_r = image_util.radial_profile(kernel, center=[center, center])
# MGE of radial average
n_r = len(psf_r)
r_array = np.linspace(start=0., stop=n_r - 1, num=n_r)
amps, sigmas, norm = mge.mge_1d(r_array, psf_r, N=order, linspace=True)
return amps, sigmas, norm
[docs]@export
def match_kernel_size(image, size):
"""
matching kernel/image to a dedicated size by either expanding the image with zeros at the edges or chopping of the
edges.
:param image: 2d array (square with odd number of pixels)
:param size: integer (odd number)
:return: image with matched size, either by cutting or by adding zeros in the outskirts
"""
n = len(image)
if n == size:
return image
image_copy = copy.deepcopy(image)
if n > size:
return image_copy[int((n-size)/2): int(n - (n-size)/2), int((n-size)/2): int(n - (n-size)/2)]
else:
image_add = np.zeros((size, size))
image_add[int((size - n)/2): int(size - (size - n)/2), int((size - n)/2): int(size - (size - n)/2)] = image_copy
return image_add