Quantum Mechanics
- haot.wavenumber_to_electronvolt(wavenumber_cm)[source]
Convert wavenumber [cm^-1] to energy in Joules [J].
- haot.wavenumber_to_joules(wavenumber_cm)[source]
Convert wavenumber [cm^-1] to energy in electron volts [eV].
- haot.zero_point_energy(molecule)[source]
Calculates zero-point energy (ZPE) using spectroscopy constants for diatomic molecules
- Parameters:
molecule (string) – NO+, N2+, O2+, NO, N2, O2
- Reference:
Experimental Vibrational Zero-Point Energies: Diatomic Molecules doi.org/10.1063/1.2436891
- Returns:
zero point energy [cm^-1]
- Return type:
zpe (float)
- haot.vibrational_partition_function(vibrational_number, temperature_K, molecule)[source]
Calculates the vibrational partition function base in the harmonic terms only for diatomic molecules.
- Parameters:
vibrational_number (int) – vibrational quantum number
temperature_K (float)
molecule (string) – NO+, N2+, O2+, NO, N2, O2
- Returns:
vibrational partition function
- Return type:
z_vib (float)
- haot.rotational_partition_function(rotational_number, temperature_K, molecule)[source]
Calculates the rotational partition function base in the harmonic terms only for diatomic molecules.
- Parameters:
rotational_number (int) – rotational quantum number
temperature_K (float)
molecule (string) – NO+, N2+, O2+, NO, N2, O2
- Returns:
rotational partition function
- Return type:
z_rot (float)
- haot.born_oppenheimer_partition_function(vibrational_number, rotational_number, temperature_K, molecule)[source]
Calculates the partition function using the Born-Oppenheimer approximation
- haot.potential_dunham_coef_012(molecule)[source]
Calculates the 0th, 1st, and 2nd Dunham potential coefficients. Using: Ogilvie (https://doi.org/10.1016/0022-2852(76)90323-4) and Herschbach (https://doi.org/10.1063/1.1731952).
- haot.potential_dunham_coeff_m(a_1, a_2, m)[source]
Calculates the higher order Dunham potential coefficients, using Morizadeh work (https://doi.org/10.1016/j.theochem.2003.12.003).
- haot.boltzman_factor(temperature_K, molecule, vibrational_number=None, rotational_number=None, born_opp_flag=False)[source]
Calculates the Boltzman factor at a given vibrational_number and/or rotational_number. If the born_opp_flag is provided, it will calculate the total energy using the Born-Oppenheimer approximation
- haot.distribution_function(temperature_K, molecule, vibrational_number=None, rotational_number=None, born_opp_flag=False)[source]
Compute the population distribution function.
- haot.born_oppenheimer_approximation(vibrational_number, rotational_number, molecule)[source]
Calculates the energy at a rotational and vibrational quantum number, using the Born-Oppenheimer approximation.
- haot.vibrational_energy_k(vibrational_number, molecule)[source]
Calculates the vibrational energy at a given vibrational quantum number, using for the harmonic terms
- haot.rotational_energy_k(rotational_number, molecule)[source]
Calculates the rotational energy at a given rotational quantum number, using for the harmonic terms