
The PYCHEMKIN User Manual

Jane Huang, Kimia Mavon, Weidong Xu, Zeyu Zhao

1 Introduction

pychemkin is a Python 3 chemical kinetics library. The core functionality is to compute
reaction rates of all species participating in a reaction system. New extended functionality
now allows reaction rates and concentrations to be computed as a function of time and to
be visualized, in order to facilitate understanding of the timescales upon which the system
operates, the production yields of the system, and sensitivity to initial conditions.

1.1 Key chemical concepts and terminology

A system consisting of M elementary reactions involving N species has the general form

N

∑
i=1

ν′ijSi −→
N

∑
i=1

ν′′ijSi, j = 1, . . . , M. (1)

for irreversible reactions (i.e., the reaction only proceeds in the forward direction) and

N

∑
i=1

ν′ijSi

N

∑
i=1

ν′′ijSi, j = 1, . . . , M. (2)

for reversible reactions (i.e., the reaction can proceed in either the forward or backward
directions).

Si is the ith specie in the system, ν′ij is its stoichiometric coefficient (dimensionless) on
the reactants side of the jth reaction, and ν′′ij is its stoichiometric coefficient (dimensionless)
on the product side for the jth reaction.

Each specie is characterized by a concentration xi, in units of [mol/vol]. The reaction
rate of each specie is the time rate of change of its concentration, dxi

dt . The reaction rate is
usually represented by the symbol fi, such that

fi =
M

∑
j=1

(ν′′ij − ν′ij)ωj =
M

∑
j=1

νijωj, i = 1, . . . , N. (3)

1

The progress rate of the jth reaction is given by

ωj = k(f)
j

N

∏
i=1

x
ν′ij
i − k(b)j

N

∏
i=1

x
ν′′ij
i , j = 1, . . . , M. (4)

The forward reaction rate coefficient k(f)
j is assumed to take one of three possible

forms:

1. k = constant

2. Arrhenius: k = A exp(− E
RT), where A is the pre-factor, E is the activation energy, R

is the universal gas constant, and T is the temperature.

3. Modified Arrhenius: k = ATb exp(− E
RT), where A is the pre-factor, E is the activation

energy, R is the universal gas constant, T is the temperature, and b is the temperature
scaling parameter.

The forward and backward reaction rate coefficients are related by

k(b)j =
k(f)

j

ke
j

, j = 1, . . . , M, (5)

where the equilibrium coefficient ke
j is given by

ke
j =

(p0

RT

)γj
exp

(
∆Sj

R
−

∆Hj

RT

)
, j = 1, . . . , M. (6)

The pressure p0 is fixed at 105 Pa in this package. γj = ∑N
i=1 νij. The entropy change of

reaction j is

∆Sj =
N

∑
i=1

νijSi, j = 1, . . . , M, (7)

where Si is the entropy of specie i. Likewise, the enthalpy change of reaction j is

∆Hj =
N

∑
i=1

νijHi, j = 1, . . . , M. (8)

An irreversible reaction can be thought of as the limiting case where ke
j approaches ∞,

in which case the backwards reaction rate coefficient k(b)j approaches 0. The progress rate
expression then simplifies to

ωj = k(f)
j

N

∏
i=1

x
ν′ij
i , j = 1, . . . , M. (9)

2

Traditionally for combustion chemistry, the entropy and enthalpy of each species are
approximated by polynomial fits to numerical calculations from Gordon and McBride’s
1963 report, The Thermodynamic Properties of Chemical Substances to 6000 K, NASA Report
SP-3001:

Hi

RT
= ai1 +

1
2

ai2T +
1
3

ai3T2 +
1
4

ai4T3 +
1
5

ai5T4 +
ai6

T
(10)

and
Si

R
= ai1 ln (T) + ai2T +

1
2

ai3T2 +
1
3

ai4T3 +
1
4

ai5T4 + ai7. (11)

These are known as the NASA polynomials. For each specie, there are two sets of coeffi-
cients ai, the first of which is applicable at low temperatures and a second that is applicable
at high temperatures.

1.2 Features

1.2.1 Basic

The package can solve for the reaction rates of a system of elementary reactions (both
reversible and irreversible). The number of reactions and species is arbitrary. For each
system of reactions, the user supplies the species participating in the reactions, the chemical
equations, the stoichiometric coefficients for the reactants and products, and the rate
coefficient parameters (e.g., E and A for Arrhenius rates). For a given system, the user can
then specify a temperature and a vector of species concentrations in order to return the
reaction rates in the form of a NumPy array. pychemkin stores the NASA polynomials for
computing thermodynamic quantities (taken from http://burcat.technion.ac.il/dir/)
in an sqlite database and retrieves values for species requested by the user.

1.2.2 Advanced

The updated version of pychemkin can now compute and save the time-evolution of
reaction rates and concentration and then visualize the results. See Section 4 for more
details.

2 Installation

2.1 Where to find and download the code

2.1.1 Using pip

The most recent stable release of pychemkin is hosted on PyPi at https://pypi.python.
org/pypi/pychemkin. To download and install the package, simply type pip install

pychemkin into your terminal.

3

http://burcat.technion.ac.il/dir/
https://pypi.python.org/pypi/pychemkin
https://pypi.python.org/pypi/pychemkin

2.1.2 Installing from source and contributing to the source code

While pip is the preferred method of installation, you may prefer to obtain the most
up-to-date version from GitHub, especially if you are interested in developing the code
further. The most up-to-date version is hosted at https://github.com/cs207group4/

cs207-FinalProject. If you have a GitHub account, you can simply open your termi-
nal and type git clone git@github.com:cs207group4/cs207-FinalProject.git. Oth-
erwise, you can download the package by clicking on the green button in the upper right
corner of the page that says ”Clone or download,” then click ”Download ZIP” to download
the entire repository as a ZIP file. Once you download the contents of the repository from
GitHub, enter the directory and type python setup.py install.

In order to run the test suite, you need to have pytest v. 3.00+ and pytest-cov v. 2.5+
installed. When you’re in the top level of the package directory, type pytest into the
terminal. The results of the test code will be printed out to the terminal.

To contribute to the code, simply fork our repository and place a pull request when
you’re ready.

2.2 Third-party dependencies

This package has dependencies that usually come standard with the Anaconda distribution,
but will otherwise automatically be installed for you if you use pip, along with their
individual dependencies (e.g., pandas requires PyTables to process HDF5 output). Other
than the packages lised above for running the test-suite, the explicitly required packages
outside the Python Standard Library are as follows:

• NumPy v. 1.13.3+

• SciPy v. 1.0.0+

• Matplotlib v. 2.0.2+

• pandas v. 0.20.3 +

• tables v. 3.4.2 +

3 Basic Usage and Examples

Note: All output files described in the following section can be found in the ‘examples’
folder in the GitHub repository. As an example of basic code usage, we first consider the
following system of elementary, irreversible reactions:

1. H + O2
k1→ OH + O

4

https://github.com/cs207group4/cs207-FinalProject
https://github.com/cs207group4/cs207-FinalProject
https://docs.pytest.org/en/latest/
https://pypi.python.org/pypi/pytest-cov
http://www.numpy.org/
https://www.scipy.org/
https://pandas.pydata.org/
https://matplotlib.org/api/pyplot_api.html
http://www.pytables.org

2. H2 + O
k2→OH + H

3. H2 + OH
k3→ H2O + H

Reaction 1 has an Arrhenius rate coefficient with A = 3.52× 1010 and E = 7.14× 104.
Reaction 2 has a modified Arrhenius rate coefficient with A = 5.06× 10−2, b = 2.7, and
E = 2.63× 104. Finally, reaction 3 has a constant rate coefficient of k3 = 103.

3.1 User-required input

In an xml input file, the user provides the species participating in the reactions, the chemical
equations, the stoichiometric coefficients, and the rate coefficient parameters. See rxns.xml
in the tests/test xml folder for an example of how to format the input file.

The xml file will be processed and stored in a chemkin object as follows:

>>>from pychemkin import chemkin

>>>rxn_system = chemkin(‘rxns.xml’)

Finished reading xml input file

We can print out information about the reaction system as follows:

>>>print(rxn_system)

chemical equations:

[

H + O2 =] OH + O

H2 + O =] OH + H

H2 + OH =] H2O + H

]

species: [‘H’, ‘O’, ‘OH’, ‘H2’, ‘H2O’, ‘O2’]

nu_react:

[[1 0 0]

[0 1 0]

[0 0 1]

[0 1 1]

[0 0 0]

[1 0 0]]

nu_prod:

[[0 1 1]

[1 0 0]

[1 1 0]

[0 0 0]

[0 0 1]

[0 0 0]]

reaction coefficients:

5

[

Arrhenius Reaction Coeffs: {‘A’: 35200000000.0, ‘E’: 71400.0, ‘R’: 8.314}

modifiedArrhenius Reaction Coeffs: {‘A’: 0.0506, ‘b’: 2.7, ‘E’: 26300.0, ‘R’

↪→ : 8.314}

Constant Reaction Coeffs: {‘k’: 1000.0, ‘R’: 8.314}

]

reaction types: [‘Elementary’, ‘Elementary’, ‘Elementary’]

reversible: [False False False]

3.2 Computing reaction rates

Given the reaction data from a user-provided input file, the reaction rates can be computed
for an arbitrary temperature and set of species concentrations.

>>> import numpy as np

>>> T = 1000 #K

>>> x = np.array([1,1,1,1,1,1])

>>> rxn_system.reaction_rate_T(x,T)

array([-6.28889929e+06, 6.28989929e+06, 6.82761528e+06,

-2.70357993e+05, 1.00000000e+03, -6.55925729e+06])

3.2.1 Obtaining intermediate calculations

Rate coefficients and progress rates are calculated in the course of computing the reaction
rates. While these methods do not have to be called by the user to obtain the reaction rates,
they are accessible if the user wishes to obtain these values.

To obtain the reaction rate coefficients, the user can call

>>> x, kf, kb = rxn_system._init_progress_rate(x,T)

>>> print(kf) #forward reaction rate coefficients

[6.55925729e+06 2.69357993e+05 1.00000000e+03]

>>> print(kb) #backward reaction rate coefficients (should be empty array

↪→ since all reactions are irreversible)

[]

The progress rate values wi can then be computed in the following manner:

>>> T = 1000 #K

>>> x = np.array([1,1,1,1,1,1])

>>> rxn_system.progress_rate(x,T)

array([6.55925729e+06, 2.69357993e+05, 1.00000000e+03])

6

3.3 Computing the time evolution of reaction rates and species concen-
trations

The reaction rate function outputs the right-hand side of the equation

dxi

dt
= f (xi, t) (12)

You can solve for xi(t) with the following function calls, for which we use the file from
test xml/rxns reversible.xml for illustrative purposes.

>>> import numpy as np

>>> from pychemkin import chemkin, ChemSolver

>>> T = 1000 #temperature in K

>>> x_init = np.ones(8) #initial concentration

>>> t_max = 5.e-13 # integration end time in seconds

>>> dt = 1.e-16 # step size in seconds

>>> cs = ChemSolver(chemkin(‘../tests/test_xml/rxns_reversible.xml’))

>>> cs.solve(x_init, T, t_max, dt)

The solve function is wrapped around scipy.integrate.ode and can therefore take
as an argument any of the optional parameters in scipy.integrate.ode.setintegrator.
For example, while the default integrator is set to lsoda, one can instead specify the vode

integrator using backward differentiation formulas and a maximum number of steps of
500 per call to the integrator with:

>>> cs.solve(x_init, T, t_max, dt, algorithm = ‘vode’, method = ‘bdf’,

↪→ nsteps = 500).

See Section 4 for a more detailed discussion of the implementation.
The results of the ODE solver can be accessed in several ways.

time array, conc array, rxnrate array = cs.get results() allows the arrays for the
time steps and corresponding concentrations and reaction rates to be accessed most directly.
The user also has the option of viewing and manipulating the data in the form of a pandas

dataframe: df = cs.to df().

If the calculations are lengthy, we recommend saving them in either csv or HDF5 format
with the following commands:
df.save results(‘simulationdata.csv’) or df.save results(‘simulationdata.h5’).

To quickly explore parameter space with different temperatures and starting concentra-
tion values, the user can do the following:

>>> T = [500,1000,1500] #temperature in K

>>> #initial concentration (each row corresponds to a different

↪→ concentration vector)

>>> x_init = np.array([[1 , 1, 1, 1, 1, 1, 1, 1],

[1, 1, 1, 1, 0, 0, 0, 0]])

>>> t_max = 5.e-13 # integration end time in seconds

7

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.html

>>> dt = 1.e-16 # step size in seconds

>>> cs = ChemSolver(chemkin(‘../tests/test_xml/rxns_reversible.xml’))

>>> cs.grid_solve(x_init, T, t_max, dt)

To get the parameters explored for the grid and a dictionary of the grid ouput, you can call
initial conditions, results = cs.get grid result() The results can be saved to csv
or hdf5 with the following command:

>>> cs.save_grid_results(‘gridoutput’, filetype = ‘csv’)

For the example given above, this will result in six csv files being saved, with ‘grid-
output T0 x0.csv’ corresponding to the results for T = 500 and an initial concentration
vector of [1,1,1,1,1,1,1,1], ‘gridoutput T1 x1.csv’ corresponding to T = 1000 and an initial
concentration vector of [1,1,1,1,0,0,0,0], etc.

3.4 Visualizing the time evolution of the reaction system

The evolution of concentration and reaction rates with time as computed by the ChemSolver
module can be plotted with the ChemViz module. Going back to the first example given
for the solver, we can use the following commands to plot the concentration rates of H,
OH, O2, and H2O from 0 to 4.5×1013 s. (By default, all species and the entire simulation
timerange are plotted). The output image is shown in Figure 1.

>>> import numpy as np

>>> from pychemkin import chemkin, ChemSolver, ChemViz

>>> T = 1000 #temperature in K

>>> x_init = np.ones(8) #initial concentration

>>> t_max = 5.e-13 # integration end time in seconds

>>> dt = 1.e-16 # step size in seconds

>>> cs = ChemSolver(chemkin(‘../tests/test_xml/rxns_reversible.xml’))

>>> cs.solve(x_init, T, t_max, dt)

>>> cv = ChemViz(cs)

>>> cv.plot_time_series(‘concentration’,tmin=0, tmax = 4.5e-13, species = [‘

↪→ H’, ‘OH’, ‘O2’, ‘H2O’],outputfile = ‘modeldocfig1.png’)

Similarly, the reaction rates can be plotted with the command

>>> cv.plot_time_series(‘reactionrate’,tmin=1.e-13, tmax = 4.5e-13,

↪→ outputfile = ‘modeldocfig2.png’)

The output is shown in Figure 2.
As a complementary approach for visualizing how a reaction system evolves, the

species network can be diagrammed with

>>> cv.plot_network([0, 1.5e-13, 3e-13], figsize = (8, 15),outputfile = ‘

↪→ modeldocfig3.png’)

8

Figure 1: Example output for concentration as a function of time for user-selected species
from a given simulation.

Figure 2: Example output for reaction rates as a function of time for user-selected species
from a given simulation.

The output is shown in Figure 3. Each specie is plotted with a bubble, the size of which
depends linearly on its concentration. Red bubbles indicate that the species concentration
is decreasing at that time and teal bubbles indicate that the concentration is increasing.
Two species are connected by a blue line if they react with one another (including reverse
reactions). If the specie reacts with itself, a loop is drawn. The width of the connecting
line varies logarithmically with the reaction rate coefficients (k f for the forward reactions
and kb for the backward reactions). If two reactants are associated with multiple reaction
coefficients (due to formation of different products), the width of the connecting line is
based on the largest coefficient, and the line is shaded darker to indicate the existence of
multiple pathways involving the same reactants.

The chemical equations, reaction rate coefficients, time series plots, and network plots
can be combined in a summary HTML report with the following command:
cv.html report(file name). For the HTML report that would be generated with the

9

Figure 3: Example output for species network at three different timepoints

reaction system demonstrated in this section, see ‘examples/modeldocexample.html.’
Time series of combinations of initial concentrations and temperatures can be plotted

easily as well via the combination of ChemSolver and ChemViz:

10

>>> T = [1000,1500] #temperature in K

>>> #initial concentration (each row corresponds to a different

↪→ concentration vector)

>>> x_init = np.array([[1 , 1, 1, 1, 1, 1, 1, 1],

[1, 1, 1, 1, 0, 0, 0, 0]])

>>> t_max = 5.e-13 # integration end time in seconds

>>> dt = 1.e-16 # step size in seconds

>>> cs = ChemSolver(chemkin(‘../tests/test_xml/rxns_reversible.xml’))

>>> cs.grid_solve(x_init, T, t_max, dt)

>>> cv = ChemViz(cs)

>>> cv.plot_gridtime_series(‘concentration’, tmax = 2e-14, species = [‘H’, ‘

↪→ OH’, ‘O2’], outputfile = ‘modeldocfig4.png’)

The example output is shown in Figure 4, demonstrating how highly sensitive species
concentrations are to temperature and the initial concentrations of other species in the
system.

3.5 Simple IO

Users can save and load pychemkin objects by using the simpleIO module. Users are
allowed to load the saved pychemkin objects (such as ChemSolver or ChemViz without
explicitly preloading dependent objects (such as chemkin), and restart calculations or
visualization from any previous steps they want.

>>> import numpy as np

>>> from pychemkin import chemkin, ChemSolver, simpleIO

>>> T = 1000 #temperature in K

>>> x_init = np.ones(8) #initial concentration

>>> t_max = 5.e-13 # integration end time in seconds

>>> dt = 1.e-16 # step size in seconds

>>> cs = ChemSolver(chemkin(‘../tests/test_xml/rxns_reversible.xml’))

>>> cs.solve(x_init, T, t_max, dt)

>>> simpleIO(‘cs.pkl’).to_pickle(cs)

>>> cs2 = simpleIO(‘cs.pkl’).read_pickle()

4 Implementation details of new code feature

4.1 Motivation

Understanding how reaction systems evolve with time (i.e. the study of chemical kinetics)
is important for employing chemical processes for human benefit. For example, we need
to know whether the timescales over which the processes act are suitable for the desired
application, we need to estimate production yields in order to determine whether a process

11

Figure 4: Example output of plot gridtime series

is efficient enough in producing species of interest and minimizing unwanted byproducts,
and we need to be able to explore how the behavior of the system depends on initial
conditions in order to identify the optimal starting conditions. Our package specifically
addresses the issue of calculating and visualizing how reaction rates and species con-
centrations change over time. Visualization of these quantities is an essential tool for
understanding the behavior of the system, since it 1) serves as a quick way to diagnose
whether the inputs and calculations appear to be correct and 2) presents information in
an easily digestible form and makes it easier to identify trends or relationships between
different variables.

4.2 New modules

The extension of pychemkin involved the creation of three new classes: ChemSolver,
ChemViz, and simpleIO. The design and implementation of each new class is described

12

below.

4.2.1 ChemSolver

The ChemSolver module solves reaction rate equations (a first-order ordinary differential
equation (ODE) system) to obtain species reaction rates and concentrations as a function
of time. The module wrap arounds SciPy’s ODE library, which is a well-tested and widely
used Python implementation of popular ODE solving algorithms. ChemSolver is initialized
with a chemkin object.

The user-facing methods are as follows:

• solve(y0, T, t1, dt, algorithm=‘lsoda’, **options): This method wraps around
scipy.integrate.ode to solve for reaction rates and species concentrations as a func-
tion of time. y0 is the initial concentration, T is the temperature, t1 is the endpoint
for the integration, dt is the interval for which solutions should be returned, ‘algo-
rithm’ is the choice of SciPy algorithm for solving the ODE system, and the optional
parameters are the options listed in the documentation for scipy.integrate.ode.
The five integrator options available through SciPy are lsoda, vode, zvode, dop853,
and dopri5. Reaction rate equation systems are often stiff, meaning that algorithms
have to take very small timesteps to achieve numerical stability. For this reason, we
recommend the usage of either lsoda or vode with ‘method = “bdf”’ (backwards
differentiation formula), which are specifically designed for stiff systems. By default,
we use lsoda, which can automatically transition between stiff and non-stiff methods,
which allows for more efficient calculations in cases where the system is not stiff.
Note that dt corresponds to the interval for which the solutions are returned to the
user, NOT to the internal timestep that the integrator takes. This timestep is chosen
automatically through SciPy, but if the integrator appears to be terminating prema-
turely or the solver appears to be unstable, the internal timesteps can be adjusted
using the optional parameters nsteps (number of internal steps taken per integration
interval), and min step and max step for the smallest and largest possible step sizes
taken by the integrator.

• get results(return reaction rate=True), to df(), save results(file name), and
load results(file name) are the various methods to save and retrieve the results,
depending on the user’s needs. get results simply returns a tuple of (time, con-
centrations, reaction rates) if the user plans to manipulate these variables further
in the program. to df creates a pandas dataframe for the output data, for ease of
viewing and to take advantage of convenient indexing and slicing. The user has
the option of saving the output data in the form of a table of the concentration and
reaction rates at every time step with save results. The two output formats are
csv and HDF5. The csv format is convenient because it can easily be processed by
many external programs, and the user can simply open up the file to retrieve values
as necessary. The HDF5 format is convenient for large files, if the user has a large
number of species or timesteps. load results will load the output csv or HDF5 file

13

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.html
https://www.mathworks.com/help/matlab/math/solve-stiff-odes.html

back into memory, to make it convenient for the user to manipulate that data in other
forms (e.g., in the forms returned by to df and get results).

• is equilibrium(tol = 1.) is a function that assesses whether a chemical kinetics
simulation has reached steady-state by checking whether the reaction rates are
sufficiently close to zero (given a tolerance level by the user). As a complementary
check, the user may also wish to examine plots of concentration vs. time to see
whether the curves level off (see next section).

• grid solve(y0s, Ts, t1, dt, algorithm=‘lsoda’, return reaction rate=True,

**options) is a function intended to solve for the concentrations and reaction rates
of a given system for different combinations of system temperature and initial con-
centrations. The inputs are similar to solve, except Ts is now a vector of temperature
values and y0s is a two-dimensional array for which each row represents a differ-
ent initial concentration vector. The user may be interested in this option if they
wish to systematically explore parameter space by examining how varying initial
concentrations or temperatures affect the time evolution of a system.

• get grid result() and save grid results(file prefix, filetype = ‘csv’) are
functions to retrieve and store the calculations from grid solve. get grid result re-
turns a tuple of the starting conditions and a dictionary of the derived concentrations
and reaction rates, while save grid results will save the results of the simulations
to csv or HDF5 files (one for each unique combination of temperature and initial
concentration, each of which has a filename starting with the same ‘file prefix’.

4.2.2 ChemViz

The ChemViz module is a companion to the ChemSolver module, plotting the solutions
found for the system of reaction rate ODEs. This module is built on top of Python’s
Matplotlib library. A ChemViz object is initialized with a ChemSolver object.

The user-facing methods are as follows:

• plot time series(yaxis, species = None, tmin = 0, tmax = None, outputfile=None)

allows for concentration or reaction rates to be plotted as a function of time after
ChemSolver solves for the time evolution of the user’s chosen reaction system. By
default, all species are plotted over the entire time range for which calculations have
been performed. However, since the user may only be interested in a subset of
species or part of the time range, the user is allowed to enter a list of species to be
plotted via the ‘species’ keyword and the time limits for the plot via ‘tmin’ and ‘tmax.’
The resulting image can be saved as a png file by setting the ‘outputfile’ keyword.

• plot gridtime series(yaxis, species = None, tmin = 0, tmax = None, outputfile=None)

is similar to the previous function, except it plots a grid of time series for tempera-
ture/initial concentration combos as calculated by ChemSolver.grid solve

14

• plot network(timepoints, outputfile = None, figsize = (7,14)) presents a com-
plementary way of visually summarizing the evolution of the reaction system.
Whereas the time series plots are focused on the individual species, this function
plots a diagram of the species in relation to one another. It is intended to help the
user quickly identify the major species in the system, assess how favorable certain
reactions are, and visualize how species are consumed. For example, the time series
plot may show that H is decreasing rapidly with time, but it does not identify why
H is decreasing with time. The diagram provides that complementary information
by showing which species H reacts with, and which pairs of reactants have more
favorable reaction rate coefficients.

• html report(file name) generates an HTML file containing a summary of the chem-
ical equations, the reaction rate coefficients, the initial and end concentrations, and
time series and network plots. The html template is based on GitHub’s cayman
theme.

4.2.3 simpleIO

simpleIO allows users to save and load pychemkin objects. Users can load the saved py-
chemkin objects (such as ChemSolver or ChemViz without explicitly preloading dependent
objects (such as chemkin), and restart calculations or visualization from any previous steps
they want.

The user-facing methods are as follows:

• to pickle(obj) allows users to save a Python object to the Python-specific pickle
format. Users can save pychemkin objects such as ChemSolver or ChemViz to pickle-
format files.

• read pickle() allows users to load a Python object from a pickle file. Specifically,
instance variables and methods will also be implicitly loaded.

15

https://github.com/pages-themes/cayman

	Introduction
	Key chemical concepts and terminology
	Features
	Basic
	Advanced

	Installation
	Where to find and download the code
	Using pip
	Installing from source and contributing to the source code

	Third-party dependencies

	Basic Usage and Examples
	User-required input
	Computing reaction rates
	Obtaining intermediate calculations

	Computing the time evolution of reaction rates and species concentrations
	Visualizing the time evolution of the reaction system
	Simple IO

	Implementation details of new code feature
	Motivation
	New modules
	ChemSolver
	ChemViz
	simpleIO

