Practical 9

Jumping Rivers

Question 1 - Advanced fuel economy

Here we're going to follow on from the fuel economy question in prac-
tical 1. If you've lost the code, the following will get you back up to

where you were

a) Yesterday we finished off by fitting the model F'E = S+ 81 EngDispl+
BoEngDispl?. Now we wish to add the transmission (‘Tranmission’)
variable to our model. This variable is categorical so we will require
some preprocessing prior to fitting the model. The following will
create a column transformer which will standardise the numeric
variables and one hot encode the categorical variable

x_train = np.hstack([
X[['EngDispl']],
X[['EngDispl']]1*X[['EngDispl']],
X[['Transmission']]

D
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import StandardScaler, OneHotEncoder

preprocessor = ColumnTransformer ([
('num',StandardScaler(), [0,1]),
('cat',OneHotEncoder(), [2])

D

b) Create a pipeline that will run the preprocessor and fit a linear

regression model

¢) We can assess which model gave us the smallest overall mean
squared error using the mean_squared_error function from the

sklearn.metrics module.
from sklearn.metrics import mean_squared_error

d) The following code will grab you the fitted values from the model

in the practical 2

Which model gave better performance?

Question 2 - diabetes

For this practical we will explore models for the prediction of progres-
sion of diabetes for 442 patients. Measurements of their age, gender,



body mass index, blood pressure and size blood serum measurements
were taken to gether with a numeric measurement of disease progres-
sion one year after a baseline.

The data are available in the jrpyanalytics package and can be
accessed with

import jrpyanalytics
diabetes = jrpyanalytics.datasets.diabetes.load_data()

The data have already been normalised, so we do not need to worry
about this. However we should separate the inputs from the output
ready for modelling.

X, y = diabetes.drop('y', axis=1), diabetes['y']

a) It is good practice to have a dedicated test set for final assessment
of our chosen models. We can create training and test sets from
data using sklearn.model_selection.train_test_split(). The
following code will partition our data with 10% held out for final
testing. The other 90% we will use for training and cross validation
of different models.

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(
X,y, test_size = 0.1,

random_state = 2019, # ensures same random subset

b) Begin by fitting a linear regression to the training set using all
available predictor variables.

¢) Use the mean_squared_error function from the sklearn.metrics
module on the full training set. This will give us the training error.

d) Training error gives us a measure of how far from the original data
our model is. However it is typically different to test error, which
would give us a better idea of how our model generalises to new
data. Use 10 fold cross validation to estimate the test error rate for
this model.

e) How does this compare to the training error?

f) The following code will return one bootstrapped estimate of the
test error for our data.

from sklearn.utils import resample

from sklearn.preprocessing import StandardScaler

PRACTICAL 9 2



model = Pipeline(
steps = [
('pre', StandardScaler()),

('reg', LinearRegression())

)
boot_X_train = resample(X, n_samples = X.shape[0], replace = True)
index = boot_X_train.index

boot_y_train = y[index]

not_index = [not i in index for i in X.index]

boot_X_test = X.iloc[not_index]

boot_y_test

y [not_index]
model.fit(boot_X_train, boot_y_train)

boot_train_pred = model.predict(boot_X_train)
boot_test_pred = model.predict(boot_X_test)
test_rmse = mean_squared_error (boot_y_test, boot_test_pred)

train_rmse = mean_squared_error(boot_y_train, boot_train_pred)
Create a for loop that will return 100 estimates.

g) Create a distribution plot of both the training and test RMSES
using seaborn

import seaborn as sns
sns.distplot(boot_train_rmses)

sns.distplot(boot_test_rmses)

Does this back up your answer to question e)?

PRACTICAL 9 3



