Injectivity of fraction to float conversion

Mark Dickinson
August 21, 2022

It can occasionally be convenient to store fractions as floating-point numbers.
Any mapping from the (infinite) set of all possible fractions to a finite set of
limited-precision floats must necessarily be lossy: there will be examples of
different fractions which map to the same float. But with a small enough bound
on the numerator and denominator of the fractions considered, the function
which maps each such bounded fraction to the nearest exactly representable
float becomes injective, making it possibly to unambiguously recover the fraction
from its floating-point representation. The best possible bound will depend on
the target floating-point format.

This note establishes that for IEEE 754 binary64 floating-point (often re-
ferred to as “double precision”), 67114657 is such a bound. This bound is best
possible, since the distinct fractions 67114658 /67114657 and 67114657 /67114656
round to the same IEEE 754 binary64 float under round-to-nearest.

Theorem 1. Suppose that a/b and c¢/d are rational numbers, written in lowest
terms (with b and d positive), that max(|al,b, |c|,d) < 67114657, and that a/b
and c¢/d become equal when rounded to the nearest finite IEEE binary64 floating-
point number. Then a/b = c/d.

Proof. Tt’s straightforward to check that when we round a fraction with numer-
ator and denominator bounded by 67114657 to a float, no underflow or overflow
occurs, and that under the same bounds positive fractions round to positive
floats and negative fractions to negative floats. So if a/b and ¢/d round to the
same float then both are positive, both are negative, or both are zero, and in
the last case we're done. Negating both fractions if necessary, without loss of
generality we can assume going forward that all of a, b, ¢ and d are positive.

Now we separate into two cases. The first case we consider is the case in
which a/b and ¢/d belong to the same closed binade—that is, there’s an integer e
such that both a/b and ¢/d lie in the interval [2¢,2F1]. Since consecutive IEEE
754 binary64 floats in that interval have difference 26752, for a/b and ¢/d to
round to the same float we must have |a/b — ¢/d| < 2¢752 from which

252=¢|ad — be| < bd. (1)
From this inequality combined with 2¢ < a/b and 2¢ < ¢/d, we have:
2521¢|qd — be| < 2%¢bd < ac. (2)

Using (1) if e < 0 and (2) if e > 0, along with the bound on max(a, b, ¢, d), we
have
2°2+lel|d — be| < 671146572 < 2°3. (3)

hence
2lellad — be| < 2. (4)

It follows that either |ad — bc| = 0 (in which case a/b = ¢/d as required), or
lad —bc| = 1 and e = 0. In this case the inequality (1) gives 252 < bd, and the
inequalities 2¢ < a/b and 2¢ < ¢/d give b < a and ¢ < d. At this point we look
for a contradiction.

Swapping a/b and c¢/d if necessary, we can assume that d < b, so from
252 < pd we have 226 < b < . We can further deduce that d < b (if d = b then
1 = |ad — bc| is divisible by b, which is impossible), and that 0 < ¢ < a.

Now it’s possible to do an exhaustive search over all pairs (a,b) of integers
satisfying

226 < h < a < 67114657,

There are exactly 16788115 such pairs (reducing to 10204542 after we discard
those with ged(a, b) # 1), making this search computationally very feasible. For
each pair (a,b) we can use the extended Euclidean algorithm to efficiently find
all possible solutions in integers ¢ and d to |ad — bc| = 1 with 0 < d < b (there
are at most two), and check that a/b and ¢/d do not round to the same float,
giving us our contradiction.

There remains the second case, where there is no integer e such that both a/b
and ¢/d lie in [2¢,2°"1]. The only way for this to be possible is if there’s a power
of two separating a/b and c¢/d; that is, without loss of generality (swapping a/b
and c/d if necessary) there’s an e satisfying

a/b < 2°<c/d.

From the bounds on a, b, ¢ and d, we must have —26 < e¢ < 26. But now 2¢
can be expressed as a fraction with numerator and denominator not exceeding
67114657, and since a/b and ¢/d round to the same float, 2¢ (being squeezed
between a/b and ¢/d) must round to that same float. So we can apply the case 1
proof to a/b and 2¢ to deduce that a/b = 2¢, and again to 2¢ and ¢/d to deduce
that 2¢ = ¢/d, hence that a/b = ¢/d, as required. O

Listing 1 shows Python code for the exhaustive search; rather than stopping
once it reaches a = 67114657, it keeps going to print all solutions found to
a/b = c/d. It produces the first result in under 30 seconds on my laptop.

from math import gcd

def find_cd(a: int, b: int) -> list[tuple[int, int]]:
mirrn
Given a positive fraction a/b (expressed in lowest terms), find both
fractions c/d which are simpler than a/b and which satisfy |ad - bc| = 1.
p’ q’ r’ S = 07 l, l! 0
while b:
x =a// b
a, b) P, 9, r, s = b) a - X * b) r\k.s, ptxx*>r,q+x=*s
return [(p, q), (r - p, s - q)]

for a in range(2x*x26, 2*x*x27):
for b in range(2*x*26, a):
if gcd(a, b) > 1:
continue
for ¢, d in find_cd(a, b):
if a / b ==c¢ / d:
print(f"{a}/{b} == {c}/{d}")

Listing 1: Exhaustive search

