
SUNDIALS Installation Guide v7.3.0
SUNDIALS v7.3.0

Eddy Banks1, Alan C. Hindmarsh1, Radu Serban1, Cody J. Balos1,
David J. Gardner1, Daniel R. Reynolds2, and Carol S. Woodward1

1Center for Applied Scientific Computing, Lawrence Livermore National Laboratory
2Department of Mathematics, Southern Methodist University

April 07, 2025

UCRL-SM-208108

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States government. Neither
the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any
warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or useful-
ness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors ex-
pressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National
Security, LLC, and shall not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344.

Approved for public release; further dissemination unlimited

CONTRIBUTORS

The SUNDIALS library has been developed over many years by a number of contributors. The current SUNDIALS
team consists of Cody J. Balos, David J. Gardner, Alan C. Hindmarsh, Daniel R. Reynolds, and Carol S. Woodward.
We thank Radu Serban for significant and critical past contributions.

Other contributors to SUNDIALS include: Mustafa Aggul, James Almgren-Bell, Lawrence E. Banks, Peter N. Brown,
George Byrne, Rujeko Chinomona, Scott D. Cohen, Aaron Collier, Keith E. Grant, Steven L. Lee, Shelby L. Lockhart,
John Loffeld, Daniel McGreer, Yu Pan, Slaven Peles, Cosmin Petra, Steven B. Roberts, H. Hunter Schwartz, Jean M.
Sexton, Dan Shumaker, Steve G. Smith, Shahbaj Sohal, Allan G. Taylor, Hilari C. Tiedeman, Chris White, Ting Yan,
and Ulrike M. Yang.

Contents

1 Installing SUNDIALS 1
1.1 Installing with Spack . 1
1.2 Installing with CMake . 1
1.3 Configuration options . 4
1.4 Testing the Build and Installation . 31
1.5 Building and Running Examples . 31
1.6 Using SUNDIALS In Your Project . 31
1.7 Libraries and Header Files . 33

Index 53

i

ii

Chapter 1

Installing SUNDIALS

In this chapter we discuss two ways for building and installing SUNDIALS from source. The first is with the Spack
HPC package manager and the second is with CMake.

1.1 Installing with Spack

Spack is a package management tool that provides a simple spec syntax to configure and install software on a wide
variety of platforms and environments. See the Getting Started section in the Spack documentation for more information
on installing Spack.

Once Spack is setup on your system, the default SUNDIALS configuration can be install with the command

spack install sundials

Additional options can be enabled through various Spack package variants. For information on the available variants
visit the SUNDIALS Spack package web page or use the command

spack info sundials

1.2 Installing with CMake

CMake provides a platform-independent build system capable of generating Unix and Linux Makefiles, as well as
KDevelop, Visual Studio, and (Apple) XCode project files from the same configuration file. A GUI front end is also
available allowing for an interactive build and installation process.

At a minimum, building SUNDIALS requires CMake version 3.18.0 or higher and a working C compiler. If a compat-
ible version of CMake is not already installed on you system, source files or pre-built binary files can be obtained from
the CMake Download website.

When building with CMake, you will need to obtain the SUNDIALS source code. You can get the source files by either
cloning the SUNDIALS GitHub repository with the command

git clone https://github.com/LLNL/sundials

or by downloading release compressed archives (.tar.gz files) from the SUNDIALS download website. The com-
pressed archives allow for downloading the entire SUNDIALS suite or individual packages. The name of the distri-
bution archive is of the form SOLVER-7.3.0.tar.gz, where SOLVER is one of: sundials, cvode, cvodes, arkode,

1

https://spack.io/
https://cmake.org/
https://spack.readthedocs.io/en/latest/getting_started.html
https://packages.spack.io/package.html?name=sundials
https://cmake.org/download/
https://github.com/LLNL/sundials
https://computing.llnl.gov/projects/sundials/sundials-software

SUNDIALS Installation Guide, v7.3.0

ida, idas, or kinsol, and 7.3.0 represents the version number of the SUNDIALS suite or of the individual package.
After downloading the relevant archives, uncompress and expand the sources. For example, by running

tar -zxf SOLVER-7.3.0.tar.gz

the extracted source files will be under the SOLVER-7.3.0 directory.

In the installation steps below we will refer to the following directories:

• SOLVER_DIR is the sundials directory created when cloning from GitHub or the SOLVER-7.3.0 directory
created after uncompressing the release archive.

• BUILD_DIR is the (temporary) directory under which SUNDIALS is built. In-source builds are prohibited; the
build directory BUILD_DIR can not be the same as SOLVER_DIR and such an attempt will lead to an error. This
prevents “polluting” the source tree, simplifies building with different configurations and/or options, and makes
it easy to clean-up all traces of the build by simply removing the build directory.

• INSTALL_DIR is the directory under which the SUNDIALS exported header files and libraries will be installed.
The installation directory INSTALL_DIR can not be the same as the SOLVER_DIR directory. Typically, header files
are exported under a directory INSTALL_DIR/include while libraries are typically installed under INSTALL_-
DIR/lib or INSTALL_LIB/lib64, with INSTALL_DIR specified at configuration time.

1.2.1 Linux/Unix systems

CMake can be used from the command line with the cmake command, or from graphical interfaces with the ccmake
or cmake-gui commands. Below we present the installation steps using the command line interface.

Using CMake from the command line is simply a matter of generating the build files for the desired configuration,
building, and installing. For example, the following commands will build and install the default configuration:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR

cd BUILD_DIR
make
make install

The default configuration will install static and shared libraries for all SUNDIALS packages and install the associated
example codes. Additional features can be enabled by specifying more options in the configuration step. For example,
to enable MPI add -D ENABLE_MPI=ON to the cmake command above:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D ENABLE_MPI=ON

See section §1.3 below for a complete list of SUNDIALS configuration options and additional configuration examples.

2 Chapter 1. Installing SUNDIALS

SUNDIALS Installation Guide, v7.3.0

1.2.2 Windows Systems

CMake can also be used to build SUNDIALS on Windows. To build SUNDIALS for use with Visual Studio the
following steps should be performed:

1. Create a separate BUILD_DIR

2. Open a Visual Studio Command Prompt and cd to BUILD_DIR

3. Run cmake-gui ../SOLVER_DIR

a. Hit Configure

b. Check/Uncheck solvers to be built

c. Change CMAKE_INSTALL_PREFIX to INSTALL_DIR

d. Set other options as desired (see section §1.3)

e. Hit Generate

4. Back in the VS Command Window:

a. Run msbuild ALL_BUILD.vcxproj

b. Run msbuild INSTALL.vcxproj

The resulting libraries will be in the INSTALL_DIR.

The SUNDIALS project can also now be opened in Visual Studio. Double click on the ALL_BUILD.vcxproj file to
open the project. Build the whole solution to create the SUNDIALS libraries. To use the SUNDIALS libraries in
your own projects, you must set the include directories for your project, add the SUNDIALS libraries to your project
solution, and set the SUNDIALS libraries as dependencies for your project.

1.2.3 HPC Clusters

This section is a guide for installing SUNDIALS on specific HPC clusters. In general, the procedure is the same as
described previously in §1.2.1 for Unix/Linux machines. The main differences are in the modules and environment
variables that are specific to different HPC clusters. We aim to keep this section as up to date as possible, but it may
lag the latest software updates to each cluster.

1.2.3.1 Frontier

Frontier is an Exascale supercomputer at the Oak Ridge Leadership Computing Facility. If you are new to this system,
then we recommend that you review the Frontier user guide.

A Standard Installation

Load the modules and set the environment variables needed to build SUNDIALS. This configuration enables both MPI
and HIP support for distributed and GPU parallelism. It uses the HIP compiler for C and C++ and the Cray Fortran
compiler. Other configurations are possible.

required dependencies
module load PrgEnv-cray-amd/8.5.0
module load craype-accel-amd-gfx90a
module load rocm/5.3.0
module load cmake/3.23.2

GPU-aware MPI
(continues on next page)

1.2. Installing with CMake 3

https://www.olcf.ornl.gov/frontier/
https://docs.olcf.ornl.gov/systems/frontier_user_guide.html

SUNDIALS Installation Guide, v7.3.0

(continued from previous page)

export MPICH_GPU_SUPPORT_ENABLED=1

compiler environment hints
export CC=$(which hipcc)
export CXX=$(which hipcc)
export FC=$(which ftn)
export CFLAGS="-I${ROCM_PATH}/include"
export CXXFLAGS="-I${ROCM_PATH}/include -Wno-pass-failed"
export LDFLAGS="-L${ROCM_PATH}/lib -lamdhip64 ${PE_MPICH_GTL_DIR_amd_gfx90a} -lmpi_gtl_hsa"

Now we can build SUNDIALS. In general, this is the same procedure described in the previous sections. The following
command builds and installs SUNDIALS with MPI, HIP, and the Fortran interface enabled, where <account> is your
allocation account on Frontier:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D AMDGPU_TARGETS=gfx90a \
-D ENABLE_HIP=ON \
-D ENABLE_MPI=ON \
-D BUILD_FORTRAN_MODULE_INTERFACE=ON

cd BUILD_DIR
make -j8 install
Need an allocation to run the tests:
salloc -A <account> -t 10 -N 1 -p batch
make test
make test_install_all

1.3 Configuration options

All available SUNDIALS CMake options are described in the sections below. The default values for some options
(e.g., compiler flags and installation paths) are for a Linux system and are provided as illustration only.

Note

When using a CMake graphical interface (ccmake or cmake-gui), multiple configuration passes are performed
before generating the build files. For options where the default value depends on the value of another option,
the initial value is set on the first configuration pass and is not updated automatically if the related option value is
changed in subsequent passes. For example, the default value of EXAMPLES_INSTALL_PATH is CMAKE_INSTALL_-
PREFIX/examples; if the value of CMAKE_INSTALL_PREFIX is updated, then EXAMPLES_INSTALL_PATH will
also need to be updated as its value was set using the CMAKE_INSTALL_PREFIX default.

4 Chapter 1. Installing SUNDIALS

SUNDIALS Installation Guide, v7.3.0

1.3.1 Build Type

The build type determines the level of compiler optimization, if debug information is included, and if additional error
checking code is generated. The provided build types are:

• Debug – no optimization flags, debugging information included, additional error checking enabled

• Release – high optimization flags, no debugging information, no additional error checks

• RelWithDebInfo – high optimization flags, debugging information included, no additional error checks

• MinSizeRel – minimize size flags, no debugging information, no additional error checks

Each build type has a corresponding option for the set of compiler flags that are appended to the user-specified compiler
flags. See section §1.3.2 for more information.

CMAKE_BUILD_TYPE

Choose the type of build for single-configuration generators (e.g., Makefiles or Ninja).

Default: RelWithDebInfo

CMAKE_CONFIGURATION_TYPES

Specifies the build types for multi-config generators (e.g. Visual Studio, Xcode, or Ninja Multi-Config) as a
semicolon-separated list.

Default: Debug, Release, RelWithDebInfo, and MinSizeRel

1.3.2 Compilers and Compiler Flags

Building SUNDIALS requires a C compiler that supports at least a subset of the C99 standard (specifically those
features implemented by Visual Studio 2015).

Additional SUNDIALS features that interface with external C++ libraries or GPU programming models require a C++
compiler (e.g., CUDA, HIP, SYCL, Ginkgo, Trilinos, etc.). The C++ standard required depends on the particular library
or programming model used and is noted with the relevant options below. The C++ convenience classes provided by
SUNDIALS require C++14 or newer. C++ applications that require an earlier C++ standard should use the SUNDIALS
C API.

When enabling the SUNDIALS Fortran interfaces, a Fortran compiler that supports the Fortran 2003 or newer standard
is required in order to utilize the ISO_C_BINDING module.

1.3.2.1 C Compiler

CMAKE_C_COMPILER

The full path to the C compiler

Default: CMake will attempt to automatically locate a C compiler on the system (e.g., from the CC environment
variable or common installation paths).

CMAKE_C_FLAGS

User-specified flags for the C compiler. The value of this option should be a string with flags separated by spaces.

Default: Initialized by the CFLAGS environment variable.

CMAKE_C_FLAGS_DEBUG

C compiler flags appended when the CMAKE_BUILD_TYPE is Debug

Default: -g

1.3. Configuration options 5

SUNDIALS Installation Guide, v7.3.0

CMAKE_C_FLAGS_RELEASE

C compiler flags appended when the CMAKE_BUILD_TYPE is Release

Default: -O3 -DNDEBUG

CMAKE_C_FLAGS_RELWITHDEBINFO

C compiler flags appended when the CMAKE_BUILD_TYPE is RelWithDebInfo

Default: -O2 -g -DNDEBUG

CMAKE_C_FLAGS_MINSIZEREL

C compiler flags appended when the CMAKE_BUILD_TYPE is MinSizeRel

Default: -Os -DNDEBUG

CMAKE_C_STANDARD

The C standard used when building SUNDIALS C source files.

Default: 99

Options: 99, 11, or 17

CMAKE_C_EXTENSIONS

Enable compiler specific C extensions.

Default: ON

1.3.2.2 C++ Compiler

CMAKE_CXX_COMPILER

The full path to the C++ compiler

Default: CMake will attempt to automatically locate a C++ compiler on the system (e.g., from the CXX environ-
ment variable or common installation paths).

CMAKE_CXX_FLAGS

User-specified flags for the C++ compiler. The value of this option should be a string with flags separated by
spaces.

Default: Initialized by the CXXFLAGS environment variable.

CMAKE_CXX_FLAGS_DEBUG

C++ compiler flags appended when the CMAKE_BUILD_TYPE is Debug

Default: -g

CMAKE_CXX_FLAGS_RELEASE

C++ compiler flags appended when the CMAKE_BUILD_TYPE is Release

Default: -O3 -DNDEBUG

CMAKE_CXX_FLAGS_RELWITHDEBINFO

C++ compiler flags appended when the CMAKE_BUILD_TYPE is RelWithDebInfo

Default: -O2 -g -DNDEBUG

CMAKE_CXX_FLAGS_MINSIZEREL

C++ compiler flags appended when the CMAKE_BUILD_TYPE is MinSizeRel

Default: -Os -DNDEBUG

6 Chapter 1. Installing SUNDIALS

SUNDIALS Installation Guide, v7.3.0

CMAKE_CXX_STANDARD

The C++ standard used when building SUNDIALS C++ source files.

Default: 14

Options: 14, 17, or 20

CMAKE_CXX_EXTENSIONS

Enable compiler specific C++ extensions.

Default: ON

1.3.2.3 Fortran Compiler

CMAKE_Fortran_COMPILER

The full path to the Fortran compiler

Default: CMake will attempt to automatically locate a Fortran compiler on the system (e.g., from the FC envi-
ronment variable or common installation paths).

CMAKE_Fortran_FLAGS

User-specified flags for the Fortran compiler. The value of this option should be a string with flags separated by
spaces.

Default: Initialized by the FFLAGS environment variable.

CMAKE_Fortran_FLAGS_DEBUG

Fortran compiler flags appended when the CMAKE_BUILD_TYPE is Debug

Default: -g

CMAKE_Fortran_FLAGS_RELEASE

Fortran compiler flags appended when the CMAKE_BUILD_TYPE is Release

Default: -O3

CMAKE_Fortran_FLAGS_RELWITHDEBINFO

Fortran compiler flags appended when the CMAKE_BUILD_TYPE is RelWithDebInfo

Default: -O2 -g

CMAKE_Fortran_FLAGS_MINSIZEREL

Fortran compiler flags appended when the CMAKE_BUILD_TYPE is MinSizeRel

Default: -Os

1.3.3 Install Location

Use the following options to set where the SUNDIALS headers, library, and CMake configuration files will be installed.

CMAKE_INSTALL_PREFIX

Install path prefix (INSTALL_DIR), prepended onto install directories

Default: /usr/local

1.3. Configuration options 7

SUNDIALS Installation Guide, v7.3.0

Note

The user must have write access to the location specified through this option. Exported SUNDIALS header
files and libraries will be installed under subdirectories include and CMAKE_INSTALL_LIBDIR of CMAKE_-
INSTALL_PREFIX , respectively.

CMAKE_INSTALL_LIBDIR

The directory under CMAKE_INSTALL_PREFIX where libraries will be installed

Default: Set based on the system as lib, lib64, or lib/<multiarch-tuple>

SUNDIALS_INSTALL_CMAKEDIR

The directory under CMAKE_INSTALL_PREFIX where the SUNDIALS CMake package configuration files will
be installed (see section §1.6.1 for more information)

Default: CMAKE_INSTALL_LIBDIR/cmake/sundials

1.3.4 Shared and Static Libraries

Use the following options to set which types of libraries will be installed. By default both static and shared libraries
are installed.

BUILD_SHARED_LIBS

Build shared libraries

Default: ON

BUILD_STATIC_LIBS

Build static libraries

Default: ON

1.3.5 Index Size

SUNDIALS_INDEX_SIZE

The integer size (in bits) used for indices in SUNDIALS (e.g., for vector and matrix entries), options are: 32 or
64

Default: 64

Note

The build system tries to find an integer type of the appropriate size. Candidate 64-bit integer types are (in
order of preference): int64_t, __int64, long long, and long. Candidate 32-bit integers are (in order
of preference): int32_t, int, and long. The advanced option, SUNDIALS_INDEX_TYPE can be used to
provide a type not listed here.

SUNDIALS_INDEX_TYPE

The integer type used for SUNDIALS indices. The type size must match the size provided in the SUNDIALS_-
INDEX_SIZE option.

Default: Automatically determined based on SUNDIALS_INDEX_SIZE

8 Chapter 1. Installing SUNDIALS

SUNDIALS Installation Guide, v7.3.0

Changed in version 3.2.0: In prior versions, this option could be set to INT64_T to use 64-bit integers or INT32_T
to use 32-bit integers. These special values are deprecated and a user will only need to use the SUNDIALS_-
INDEX_SIZE option in most cases.

1.3.6 Precision

SUNDIALS_PRECISION

The floating-point precision used in SUNDIALS packages and class implementations, options are: single,
double, or extended

Default: double

1.3.7 Math Library

SUNDIALS_MATH_LIBRARY

The standard C math library (e.g., libm) to link with.

Default: -lm on Unix systems, none otherwise

1.3.8 SUNDIALS Packages

The following options can be used to enable/disable particular SUNDIALS packages.

BUILD_ARKODE

Build the ARKODE library

Default: ON

BUILD_CVODE

Build the CVODE library

Default: ON

BUILD_CVODES

Build the CVODES library

Default: ON

BUILD_IDA

Build the IDA library

Default: ON

BUILD_IDAS

Build the IDAS library

Default: ON

BUILD_KINSOL

Build the KINSOL library

Default: ON

1.3. Configuration options 9

SUNDIALS Installation Guide, v7.3.0

1.3.9 Example Programs

EXAMPLES_ENABLE_C

Build the SUNDIALS C examples

Default: ON

EXAMPLES_ENABLE_CXX

Build the SUNDIALS C++ examples

Default: OFF

EXAMPLES_ENABLE_CUDA

Build the SUNDIALS CUDA examples

Default: ON when ENABLE_CUDA is ON, otherwise OFF

EXAMPLES_ENABLE_F2003

Build the SUNDIALS Fortran 2003 examples

Default: ON when BUILD_FORTRAN_MODULE_INTERFACE is ON, otherwise OFF

EXAMPLES_INSTALL

Install example program source files and sample output files. See EXAMPLES_INSTALL_PATH for the install
location.

A CMakeLists.txt file to build the examples will be automatically generated and installed with the source
files. If building on a Unix-like system, a Makefile for compiling the installed example programs will be also
generated and installed.

Default: ON

EXAMPLES_INSTALL_PATH

Full path to where example source and output files will be installed

Default: CMAKE_INSTALL_PREFIX/examples

1.3.10 Fortran Interfaces

BUILD_FORTRAN_MODULE_INTERFACE

Build the SUNDIALS Fortran 2003 interface

Default: OFF

Note

The Fortran interface are only compatible with double precision (i.e., SUNDIALS_PRECISION must be dou-
ble).

Warning

There is a known issue with MSYS/gfortran and SUNDIALS shared libraries that causes linking the Fortran
interfaces to fail when building SUNDIALS. For now the work around is to only build with static libraries
when using MSYS with gfortran on Windows.

10 Chapter 1. Installing SUNDIALS

SUNDIALS Installation Guide, v7.3.0

1.3.11 Error Checking

For more information on error handling in SUNDIALS, see Error Checking.

SUNDIALS_ENABLE_ERROR_CHECKS

Build SUNDIALS with more extensive checks for unrecoverable errors.

Default: ON when CMAKE_BUILD_TYPE is Debug, otherwise OFF

Warning

Error checks will impact performance, but can be helpful for debugging.

1.3.12 Logging

For more information on logging in SUNDIALS, see Status and Error Logging.

SUNDIALS_LOGGING_LEVEL

The maximum logging level. The options are:

• 0 – no logging

• 1 – log errors

• 2 – log errors + warnings

• 3 – log errors + warnings + informational output

• 4 – log errors + warnings + informational output + debug output

• 5 – log all of the above and even more (e.g. vector valued variables may be logged)

Default: 2

Warning

Logging will impact performance, but can be helpful for debugging or understanding algorithm performance.
The higher the logging level, the more output that may be logged, and the more performance may degrade.

1.3.13 Monitoring

SUNDIALS_BUILD_WITH_MONITORING

Build SUNDIALS with capabilities for fine-grained monitoring of solver progress and statistics. This is primarily
useful for debugging.

Default: OFF

Warning

Building with monitoring may result in minor performance degradation even if monitoring is not utilized.

1.3. Configuration options 11

https://sundials.readthedocs.io/en/v7.3.0/sundials/Errors_link.html#sundials-errors
https://sundials.readthedocs.io/en/v7.3.0/sundials/Logging_link.html#sundials-logging

SUNDIALS Installation Guide, v7.3.0

1.3.14 Profiling

For more information on profiling in SUNDIALS, see Performance Profiling.

SUNDIALS_BUILD_WITH_PROFILING

Build SUNDIALS with capabilities for fine-grained profiling. This requires POSIX timers, the Windows
profileapi.h timers, or enabling Caliper with ENABLE_CALIPER .

Default: OFF

Warning

Profiling will impact performance, and should be enabled judiciously.

1.3.15 Building with Adiak

Adiak is a library for recording meta-data about HPC simulations. Adiak is developed by Lawrence Livermore National
Laboratory and can be obtained from the Adiak GitHub repository.

ENABLE_ADIAK

Enable Adiak support

Default: OFF

adiak_DIR

Path to the root of an Adiak installation

Default: None

1.3.16 Building with Caliper

Caliper is a performance analysis library providing a code instrumentation and performance measurement framework
for HPC applications. Caliper is developed by Lawrence Livermore National Laboratory and can be obtained from the
Caliper GitHub repository.

When profiling and Caliper are both enabled, SUNDIALS will utilize Caliper for performance profiling.

To enable Caliper support, set the ENABLE_CALIPER to ON and set CALIPER_DIR to the root path of the Caliper
installation. For example, the following command will configure SUNDIALS with profiling and Caliper support:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D SUNDIALS_BUILD_WITH_PROFILING=ON \
-D ENABLE_CALIPER=ON \
-D CALIPER_DIR=/path/to/caliper/installation

ENABLE_CALIPER

Enable CALIPER support

Default: OFF

12 Chapter 1. Installing SUNDIALS

https://sundials.readthedocs.io/en/v7.3.0/sundials/Profiling_link.html#sundials-profiling
http://software.llnl.gov/Adiak/
https://github.com/LLNL/Adiak
https://software.llnl.gov/Caliper/
https://github.com/LLNL/Caliper

SUNDIALS Installation Guide, v7.3.0

Note

Using Caliper requires setting SUNDIALS_BUILD_WITH_PROFILING to ON.

CALIPER_DIR

Path to the root of a Caliper installation

Default: None

1.3.17 Building with CUDA

The NVIDIA CUDA Toolkit provides a development environment for GPU-accelerated computing with NVIDIA
GPUs. The CUDA Toolkit and compatible NVIDIA drivers are available from the NVIDIA developer website. SUN-
DIALS has been tested with the CUDA toolkit versions 10, 11, and 12.

When CUDA support is enabled, the CUDA NVector, the cuSPARSE SUNMatrix, and the cuSPARSE batched QR
SUNLinearSolver will be built (see sections §1.7.3.11, §1.7.4.2, and §1.7.5.2, respectively, for the corresponding header
files and libraries). For more information on using SUNDIALS with GPUs, see Features for GPU Accelerated Com-
puting.

To enable CUDA support, set ENABLE_CUDA to ON. If CUDA is installed in a nonstandard location, you may need
to set CUDA_TOOLKIT_ROOT_DIR to your CUDA Toolkit installation path. You will also need to set CMAKE_CUDA_-
ARCHITECTURES to the CUDA architecture for your system. For example, the following command will configure
SUNDIALS with CUDA support for a system with an Ampere GPU:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D ENABLE_CUDA=ON \
-D CMAKE_CUDA_ARCHITECTURES="80"

ENABLE_CUDA

Enable CUDA support

Default: OFF

CUDA_TOOLKIT_ROOT_DIR

Path to the CUDA Toolkit installation

Default: CMake will attempt to automatically locate an installed CUDA Toolkit

CMAKE_CUDA_ARCHITECTURES

Specifies the CUDA architecture to compile for i.e., 60 for Pascal, 70 for Volta, 80 for Ampere, 90 for Hopper,
etc. See the GPU compute capability tables on the NVIDIA webpage and the GPU Compilation section of the
CUDA documentation for more information.

Default: Determined automatically by CMake. Users are encouraged to override this value with the architecture
for their system as the default varies across compilers and compiler versions.

Changed in version 7.2.0: In prior versions CMAKE_CUDA_ARCHITECTURES defaulted to 70.

1.3. Configuration options 13

https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-downloads
https://sundials.readthedocs.io/en/v7.3.0/nvectors/NVector_links.html#nvectors-cuda
https://sundials.readthedocs.io/en/v7.3.0/sunmatrix/SUNMatrix_links.html#sunmatrix-cusparse
https://sundials.readthedocs.io/en/v7.3.0/sunlinsol/SUNLinSol_links.html#sunlinsol-cusolversp
https://sundials.readthedocs.io/en/v7.3.0/sunlinsol/SUNLinSol_links.html#sunlinsol-cusolversp
https://sundials.readthedocs.io/en/v7.3.0/sundials/GPU_link.html#sundials-gpu
https://sundials.readthedocs.io/en/v7.3.0/sundials/GPU_link.html#sundials-gpu
https://developer.nvidia.com/cuda-gpus
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html#gpu-compilation

SUNDIALS Installation Guide, v7.3.0

1.3.18 Building with Ginkgo

Ginkgo is a high-performance linear algebra library with a focus on solving sparse linear systems. It is implemented
using modern C++ (you will need at least a C++14 compliant compiler to build it), with GPU kernels implemented
in CUDA (for NVIDIA devices), HIP (for AMD devices), and SYCL/DPC++ (for Intel devices and other supported
hardware). Ginkgo can be obtained from the Ginkgo GitHub repository. SUNDIALS is regularly tested with the latest
versions of Ginkgo, specifically up to version 1.8.0.

When Ginkgo support is enabled, the Ginkgo SUNMatrix and the Ginkgo SUNLinearSolver header files will be in-
stalled (see sections §1.7.4.4 and §1.7.5.4, respectively, for the corresponding header files). For more information on
using SUNDIALS with GPUs, see Features for GPU Accelerated Computing.

To enable Ginkgo support, set ENABLE_GINKGO to ON and set Ginkgo_DIR to the root path of the Ginkgo installation.
Additionally, set SUNDIALS_GINKGO_BACKENDS to a semicolon-separated list of Ginkgo target architectures/executors.
For example, the following command will configure SUNDIALS with Ginkgo support using the reference, OpenMP,
and CUDA (targeting Ampere GPUs) backends:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D ENABLE_GINKGO=ON \
-D Ginkgo_DIR=/path/to/ginkgo/installation \
-D SUNDIALS_GINKGO_BACKENDS="REF;OMP;CUDA" \
-D ENABLE_CUDA=ON \
-D CMAKE_CUDA_ARCHITECTURES="80" \
-D ENABLE_OPENMP=ON

Note

The SUNDIALS interfaces to Ginkgo are not compatible with extended precision (i.e., when SUNDIALS_PRECI-
SION is set to extended).

ENABLE_GINKGO

Enable Ginkgo support

Default: OFF

Ginkgo_DIR

Path to the Ginkgo installation

Default: None

SUNDIALS_GINKGO_BACKENDS

Semi-colon separated list of Ginkgo target architectures/executors to build for. Options currently supported are
REF (the Ginkgo reference executor), OMP (OpenMP), CUDA, HIP, and SYCL.

Default: "REF;OMP"

Changed in version 7.1.0: The DPCPP option was changed to SYCL to align with Ginkgo’s naming convention.

14 Chapter 1. Installing SUNDIALS

https://ginkgo-project.github.io/
https://github.com/ginkgo-project/ginkgo
https://sundials.readthedocs.io/en/v7.3.0/sunmatrix/SUNMatrix_links.html#sunmatrix-ginkgo
https://sundials.readthedocs.io/en/v7.3.0/sunlinsol/SUNLinSol_links.html#sunlinsol-ginkgo
https://sundials.readthedocs.io/en/v7.3.0/sundials/GPU_link.html#sundials-gpu

SUNDIALS Installation Guide, v7.3.0

1.3.19 Building with HIP

The Heterogeneous-compute Interface for Portability (HIP) allows developers to create portable applications for AMD
and NVIDIA GPUs. HIP can be obtained from the HIP GitHub repository. SUNDIALS has been tested with HIP
versions between 5.0.0 to 5.4.3.

When HIP support is enabled, the HIP NVector will be built (see section §1.7.3.12 for the corresponding header file
and library). For more information on using SUNDIALS with GPUs, see Features for GPU Accelerated Computing.

To enable HIP support, set ENABLE_HIP to ON and set AMDGPU_TARGETS to the desired target (e.g., gfx705). In
addition, set CMAKE_C_COMPILER and CMAKE_CXX_COMPILER to a HIP compatible compiler e.g., hipcc. For example,
the following command will configure SUNDIALS with HIP support for a system with an MI250X GPU:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D CMAKE_C_COMPILER=hipcc \
-D CMAKE_CXX_COMPILER=hipcc \
-D ENABLE_HIP=ON \
-D AMDGPU_TARGETS="gfx90a"

ENABLE_HIP

Enable HIP Support

Default: OFF

AMDGPU_TARGETS

Specify which AMD GPUs to target

Default: None

1.3.20 Building with hypre

hypre is a library of high performance preconditioners and solvers featuring multigrid methods for the solution of large,
sparse linear systems of equations on massively parallel computers. The library is developed by Lawrence Livermore
National Laboratory and is available from the hypre GitHub repository. SUNDIALS is regularly tested with the latest
versions of hypre, specifically up to version 2.26.0.

When hypre support is enabled, the ParHyp NVector will be built (see section §1.7.3.9 for the corresponding header
file and library).

To enable hypre support, set ENABLE_MPI to ON, set ENABLE_HYPRE to ON, and set HYPRE_DIR to the root path of the
hypre installation. For example, the following command will configure SUNDIALS with hypre support:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D ENABLE_MPI=ON \
-D ENABLE_HYPRE=ON \
-D HYPRE_DIR=/path/to/hypre/installation

1.3. Configuration options 15

https://rocm.docs.amd.com/projects/HIP/en/latest/
https://github.com/ROCm-Developer-Tools/HIP
https://sundials.readthedocs.io/en/v7.3.0/nvectors/NVector_links.html#nvectors-hip
https://sundials.readthedocs.io/en/v7.3.0/sundials/GPU_link.html#sundials-gpu
https://www.llnl.gov/casc/hypre/
https://github.com/hypre-space/hypre
https://sundials.readthedocs.io/en/v7.3.0/nvectors/NVector_links.html#nvectors-parhyp

SUNDIALS Installation Guide, v7.3.0

Note

SUNDIALS must be configured so that SUNDIALS_INDEX_SIZE is compatible with HYPRE_BigInt in the hypre
installation.

ENABLE_HYPRE

Enable hypre support

Default: OFF

HYPRE_DIR

Path to the hypre installation

Default: none

1.3.21 Building with KLU

KLU is a software package for the direct solution of sparse nonsymmetric linear systems of equations that arise in
circuit simulation and is part of SuiteSparse, a suite of sparse matrix software. The library is developed by Texas A&M
University and is available from the SuiteSparse GitHub repository. SUNDIALS is regularly tested with the latest
versions of KLU, specifically up to SuiteSparse version 7.7.0.

When KLU support is enabled, the KLU SUNLinearSolver will be built (see section §1.7.5.5 for the corresponding
header file and library).

To enable KLU support, set ENABLE_KLU to ON. For SuiteSparse 7.4.0 and newer, set KLU_ROOT to the root of the
SuiteSparse installation. Alternatively, set KLU_INCLUDE_DIR and KLU_LIBRARY_DIR to the path to the header and
library files, respectively, of the SuiteSparse installation. For example, the following command will configure SUNDI-
ALS with KLU support:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D ENABLE_KLU=ON \
-D KLU_ROOT=/path/to/suitesparse/installation

ENABLE_KLU

Enable KLU support

Default: OFF

KLU_ROOT

Path to the SuiteSparse installation

Default: OFF

KLU_INCLUDE_DIR

Path to SuiteSparse header files

Default: none

KLU_LIBRARY_DIR

Path to SuiteSparse installed library files

Default: none

16 Chapter 1. Installing SUNDIALS

https://people.engr.tamu.edu/davis/suitesparse.html
https://github.com/DrTimothyAldenDavis/SuiteSparse
https://sundials.readthedocs.io/en/v7.3.0/sunlinsol/SUNLinSol_links.html#sunlinsol-klu

SUNDIALS Installation Guide, v7.3.0

1.3.22 Building with Kokkos

Kokkos is a modern C++ (requires at least C++14) programming model for witting performance portable code for
multicore CPU and GPU-based systems including NVIDIA, AMD, and Intel GPUs. Kokkos is developed by Sandia
National Laboratory and can be obtained from the Kokkos GitHub repository. The minimum supported version of
Kokkos 3.7.00. SUNDIALS is regularly tested with the latest versions of Kokkos, specifically up to version 4.3.01.

When Kokkos support is enabled, the Kokkos NVector header file will be installed (see section §1.7.3.16 for the cor-
responding header file). For more information on using SUNDIALS with GPUs, see Features for GPU Accelerated
Computing.

To enable Kokkos support, set the ENABLE_KOKKOS to ON and set Kokkos_DIR to root path of the Kokkos installation.
For example, the following command will configure SUNDIALS with Kokkos support:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D ENABLE_KOKKOS=ON \
-D Kokkos_DIR=/path/to/kokkos/installation

ENABLE_KOKKOS

Enable Kokkos support

Default: OFF

Kokkos_DIR

Path to the Kokkos installation.

Default: None

1.3.23 Building with KokkosKernels

The KokkosKernels library is built on Kokkos and provides common linear algebra computational kernels. KokkosKer-
nels is developed by Sandia National Laboratory and can be obtained from the KokkosKernels GitHub repository.
The minimum supported version of KokkosKernels 3.7.00. SUNDIALS is regularly tested with the latest versions of
KokkosKernels, specifically up to version 4.3.01.

When KokkosKernels support is enabled, the KokkosKernels SUNMatrix and KokkosKernels SUNLinearSolver
header files will be installed (see sections §1.7.4.5 and §1.7.5.6, respectively, for the corresponding header files). For
more information on using SUNDIALS with GPUs, see Features for GPU Accelerated Computing.

To enable KokkosKernels support, set ENABLE_KOKKOS and ENABLE_KOKKOS_KERNELS to ON and set Kokkos_DIR
and KokkosKernels_DIR to the root paths for the Kokkos and KokkosKernels installations, respectively. For example,
the following command will configure SUNDIALS with Kokkos and KokkosKernels support:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D ENABLE_KOKKOS=ON \
-D Kokkos_DIR=/path/to/kokkos/installation \
-D ENABLE_KOKKOS_KERNELS=ON \
-D KokkosKernels_DIR=/path/to/kokkoskernels/installation

1.3. Configuration options 17

https://kokkos.github.io/kokkos-core-wiki/
https://github.com/kokkos/kokkos
https://sundials.readthedocs.io/en/v7.3.0/nvectors/NVector_links.html#nvectors-kokkos
https://sundials.readthedocs.io/en/v7.3.0/sundials/GPU_link.html#sundials-gpu
https://sundials.readthedocs.io/en/v7.3.0/sundials/GPU_link.html#sundials-gpu
https://github.com/kokkos/kokkos-kernels
https://github.com/kokkos/kokkos-kernels
https://sundials.readthedocs.io/en/v7.3.0/sunmatrix/SUNMatrix_links.html#sunmatrix-kokkos
https://sundials.readthedocs.io/en/v7.3.0/sunlinsol/SUNLinSol_links.html#sunlinsol-kokkos
https://sundials.readthedocs.io/en/v7.3.0/sundials/GPU_link.html#sundials-gpu

SUNDIALS Installation Guide, v7.3.0

ENABLE_KOKKOS_KERNELS

Enable KokkosKernels support

Default: OFF

KokkosKernels_DIR

Path to the KokkosKernels installation.

Default: None

1.3.24 Building with LAPACK

The Linear Algebra PACKage (LAPACK) library interface defines functions for solving systems of linear equations.
Several LAPACK implementations are available e.g., the Netlib reference implementation, the Intel oneAPI Math
Kernel Library, or OpenBLAS (among others). SUNDIALS is regularly tested with the latest versions of OpenBLAS,
specifically up to version 0.3.27.

When LAPACK support is enabled, the LAPACK banded SUNLinearSolver and LAPACK dense SUNLinearSolver
will be built (see sections §1.7.5.7 and §1.7.5.8, respectively, for the corresponding header files and libraries).

To enable LAPACK support, set ENABLE_LAPACK to ON. CMake will attempt to find BLAS and LAPACK installations
on the system and set the variables BLAS_LIBRARIES, BLAS_LINKER_FLAGS, LAPACK_LIBRARIES, and LAPACK_-
LINKER_FLAGS. To explicitly specify the LAPACK library to build with, manually set the aforementioned variables to
the desired values when configuring the build. For example, the following command will configure SUNDIALS with
LAPACK support:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D ENABLE_LAPACK=ON \
-D BLAS_LIBRARIES=/path/to/lapack/installation/lib/libblas.so \
-D LAPACK_LIBRARIES=/path/to/lapack/installation/lib/liblapack.so

Note

If a working Fortran compiler is not available to infer the name-mangling scheme for LAPACK functions, the
options SUNDIALS_LAPACK_CASE and SUNDIALS_LAPACK_UNDERSCORES must be set to bypass the check for a
Fortran compiler and define the name-mangling scheme. The defaults for these options in earlier versions of SUN-
DIALS were lower and one, respectively.

ENABLE_LAPACK

Enable LAPACK support

Default: OFF

BLAS_LIBRARIES

BLAS libraries

Default: none (CMake will try to find a BLAS installation)

BLAS_LINKER_FLAGS

BLAS required linker flags

Default: none (CMake will try to determine the necessary flags)

18 Chapter 1. Installing SUNDIALS

https://netlib.org/lapack/
https://www.netlib.org/lapack/
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
http://www.openmathlib.org/OpenBLAS/
https://sundials.readthedocs.io/en/v7.3.0/sunlinsol/SUNLinSol_links.html#sunlinsol-lapackband
https://sundials.readthedocs.io/en/v7.3.0/sunlinsol/SUNLinSol_links.html#sunlinsol-lapackdense

SUNDIALS Installation Guide, v7.3.0

LAPACK_LIBRARIES

LAPACK libraries

Default: none (CMake will try to find a LAPACK installation)

LAPACK_LINKER_FLAGS

LAPACK required linker flags

Default: none (CMake will try to determine the necessary flags)

SUNDIALS_LAPACK_CASE

Specify the case to use in the Fortran name-mangling scheme, options are: lower or upper

Default:

Note

The build system will attempt to infer the Fortran name-mangling scheme using the Fortran compiler. This
option should only be used if a Fortran compiler is not available or to override the inferred or default (lower)
scheme if one can not be determined. If used, SUNDIALS_LAPACK_UNDERSCORES must also be set.

SUNDIALS_LAPACK_UNDERSCORES

Specify the number of underscores to append in the Fortran name-mangling scheme, options are: none, one, or
two

Default:

Note

The build system will attempt to infer the Fortran name-mangling scheme using the Fortran compiler. This
option should only be used if a Fortran compiler is not available or to override the inferred or default (one)
scheme if one can not be determined. If used, SUNDIALS_LAPACK_CASE must also be set.

1.3.25 Building with MAGMA

The Matrix Algebra on GPU and Multicore Architectures (MAGMA) project provides a dense linear algebra library
similar to LAPACK but targeting heterogeneous architectures. The library is developed by the University of Tennessee
and is available from the MAGMA GitHub repository. SUNDIALS is regularly tested with the latest versions of
MAGMA, specifically up to version 2.8.0.

When MAGMA support is enabled, the MAGMA dense SUNMatrix and MAGMA dense SUNLinearSolver will be
built (see sections §1.7.4.6 and §1.7.5.9, respectively, for the corresponding header files and libraries). For more
information on using SUNDIALS with GPUs, see Features for GPU Accelerated Computing.

To enable MAGMA support, set ENABLE_MAGMA to ON, MAGMA_DIR to the root path of MAGMA installation, and
SUNDIALS_MAGMA_BACKENDS to the desired MAGMA backend to use. For example, the following command will
configure SUNDIALS with MAGMA support with the CUDA backend (targeting Ampere GPUs):

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D ENABLE_MAGMA=ON \
-D MAGMA_DIR=/path/to/magma/installation \

(continues on next page)

1.3. Configuration options 19

https://icl.utk.edu/magma/
https://github.com/icl-utk-edu/magma
https://sundials.readthedocs.io/en/v7.3.0/sunmatrix/SUNMatrix_links.html#sunmatrix-magmadense
https://sundials.readthedocs.io/en/v7.3.0/sunlinsol/SUNLinSol_links.html#sunlinsol-magmadense
https://sundials.readthedocs.io/en/v7.3.0/sundials/GPU_link.html#sundials-gpu

SUNDIALS Installation Guide, v7.3.0

(continued from previous page)

-D SUNDIALS_MAGMA_BACKEND="CUDA" \
-D ENABLE_CUDA=ON \
-D CMAKE_CUDA_ARCHITECTURES="80"

ENABLE_MAGMA

Enable MAGMA support

Default: OFF

MAGMA_DIR

Path to the MAGMA installation

Default: none

SUNDIALS_MAGMA_BACKENDS

Which MAGMA backend to use under the SUNDIALS MAGMA interface: CUDA or HIP

Default: CUDA

1.3.26 Building with MPI

The Message Passing Interface (MPI) is a standard for communication on parallel computing systems. Several MPI
implementations are available e.g., OpenMPI, MPICH, MVAPICH, Cray MPICH, Intel MPI, or IBM Spectrum MPI
(among others). SUNDIALS is regularly tested with the latest versions of OpenMPI, specifically up to version 5.0.5.

When MPI support is enabled, the parallel NVector, MPI ManyVector NVector, and MPI+X NVector will be built (see
sections §1.7.3.3, §1.7.3.4, and §1.7.3.5, respectively, for the corresponding header files and libraries).

Attention

Changed in version 7.0.0: When MPI is enabled, all SUNDIALS libraries will include MPI symbols and applica-
tions will need to include the path for MPI headers and link against the corresponding MPI library.

To enable MPI support, set ENABLE_MPI to ON. If CMake is unable to locate an MPI installation, set the relevant MPI_-
<language>_COMPILER options to the desired MPI compilers. For example, the following command will configure
SUNDIALS with MPI support:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D ENABLE_MPI=ON

ENABLE_MPI

Enable MPI support

Default: OFF

MPI_C_COMPILER

The MPI C compiler e.g., mpicc

Default: CMake will attempt to locate an MPI C compiler

20 Chapter 1. Installing SUNDIALS

https://www.mpi-forum.org/
https://www.open-mpi.org/
https://www.mpich.org/
https://mvapich.cse.ohio-state.edu/
https://cpe.ext.hpe.com/docs/24.03/mpt/mpich/index.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/mpi-library.html
https://www.ibm.com/products/spectrum-mpi
https://sundials.readthedocs.io/en/v7.3.0/nvectors/NVector_links.html#nvectors-nvparallel
https://sundials.readthedocs.io/en/v7.3.0/nvectors/NVector_links.html#nvectors-mpimanyvector
https://sundials.readthedocs.io/en/v7.3.0/nvectors/NVector_links.html#nvectors-mpiplusx

SUNDIALS Installation Guide, v7.3.0

MPI_CXX_COMPILER

The MPI C++ compiler e.g., mpicxx

Default: CMake will attempt to locate an MPI C++ compiler

Note

This option is only needed if MPI is enabled (ENABLE_MPI is ON) and C++ examples are enabled (EXAM-
PLES_ENABLE_CXX is ON). All SUNDIALS solvers can be used from C++ MPI applications by without
setting any additional configuration options other than ENABLE_MPI.

MPI_Fortran_COMPILER

The MPI Fortran compiler e.g., mpif90

Default: CMake will attempt to locate an MPI Fortran compiler

Note

This option is triggered only needed if MPI is enabled (ENABLE_MPI is ON) and the Fortran interfaces are
enabled (BUILD_FORTRAN_MODULE_INTERFACE is ON).

MPIEXEC_EXECUTABLE

Specify the executable for running MPI programs e.g., mpiexec

Default: CMake will attempt to locate the MPI executable

MPIEXEC_PREFLAGS

Specifies flags that come directly after MPIEXEC_EXECUTABLE and before MPIEXEC_NUMPROC_FLAG and
MPIEXEC_MAX_NUMPROCS.

Default: none

MPIEXEC_POSTFLAGS

Specifies flags that come after the executable to run but before any other program arguments.

Default: none

1.3.27 Building with oneMKL

The Intel oneAPI Math Kernel Library (oneMKL) includes CPU and SYCL/DPC++ interfaces for LAPACK dense
linear algebra routines. The SUNDIALS oneMKL interface targets the SYCL/DPC++ routines, to utilize the CPU
routine see section §1.3.24. SUNDIALS has been tested with oneMKL version 2021.4.

When oneMKL support is enabled, the oneMLK dense SUNMatrix and the oneMKL dense SUNLinearSolver will
be built (see sections §1.7.4.7 and §1.7.5.10, respectively, for the corresponding header files and libraries). For more
information on using SUNDIALS with GPUs, see Features for GPU Accelerated Computing.

To enable the SUNDIALS oneMKL interface set ENABLE_ONEMKL to ON and ONEMKL_DIR to the root path of oneMKL
installation. For example, the following command will configure SUNDIALS with oneMKL support:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \

(continues on next page)

1.3. Configuration options 21

https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl.html
https://sundials.readthedocs.io/en/v7.3.0/sunmatrix/SUNMatrix_links.html#sunmatrix-onemkldense
https://sundials.readthedocs.io/en/v7.3.0/sunlinsol/SUNLinSol_links.html#sunlinsol-onemkldense
https://sundials.readthedocs.io/en/v7.3.0/sundials/GPU_link.html#sundials-gpu

SUNDIALS Installation Guide, v7.3.0

(continued from previous page)

-D ENABLE_ONEMKL=ON \
-D ONEMKL_DIR=/path/to/onemkl/installation \

ENABLE_ONEMKL

Enable oneMKL support

Default: OFF

ONEMKL_DIR

Path to oneMKL installation.

Default: none

SUNDIALS_ONEMKL_USE_GETRF_LOOP

This advanced debugging option replaces the batched LU factorization with a loop over each system in the batch
and a non-batched LU factorization.

Default: OFF

SUNDIALS_ONEMKL_USE_GETRS_LOOP

This advanced debugging option replaces the batched LU solve with a loop over each system in the batch and a
non-batched solve.

Default: OFF

1.3.28 Building with OpenMP

The OpenMP API defines a directive-based approach for portable parallel programming across architectures.

When OpenMP support is enabled, the OpenMP NVector will be built (see section §1.7.3.6 for the corresponding
header file and library).

To enable OpenMP support, set the ENABLE_OPENMP to ON. For example, the following command will configure SUN-
DIALS with OpenMP support:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D ENABLE_OPENMP=ON

ENABLE_OPENMP

Enable OpenMP support

Default: OFF

22 Chapter 1. Installing SUNDIALS

https://www.openmp.org/
https://sundials.readthedocs.io/en/v7.3.0/nvectors/NVector_links.html#nvectors-openmp

SUNDIALS Installation Guide, v7.3.0

1.3.29 Building with OpenMP Device Offloading

The OpenMP 4.0 specification added support for offloading computations to devices (i.e., GPUs). SUNDIALS requires
OpenMP 4.5 for GPU offloading support.

When OpenMP offloading support is enabled, the OpenMPDEV NVector will be built (see section §1.7.3.7 for the
corresponding header file and library).

To enable OpenMP device offloading support, set the ENABLE_OPENMP_DEVICE to ON. For example, the following
command will configure SUNDIALS with OpenMP device offloading support:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D ENABLE_OPENMP_DEVICE=ON

ENABLE_OPENMP_DEVICE

Enable OpenMP device offloading support

Default: OFF

1.3.30 Building with PETSc

The Portable, Extensible Toolkit for Scientific Computation (PETSc) is a suite of data structures and routines for simu-
lating applications modeled by partial differential equations. The library is developed by Argonne National Laboratory
and is available from the PETSc GitLab repository. SUNDIALS requires PETSc 3.5.0 or newer and is regularly tested
with the latest versions of PETSc, specifically up to version 3.21.4.

When PETSc support is enabled, the PETSc NVector and PETSc SNES SUNNonlinearSolver will be built (see sections
§1.7.3.10 and §1.7.6.3, respectively, for the corresponding header files and libraries).

To enable PETSc support, set ENABLE_MPI to ON, set ENABLE_PETSC to ON, and set PETSC_DIR to the path of the
PETSc installation. Alternatively, a user can provide a list of include paths in PETSC_INCLUDES and a list of complete
paths to the PETSc libraries in PETSC_LIBRARIES. For example, the following command will configure SUNDIALS
with PETSc support:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D ENABLE_MPI=ON \
-D ENABLE_PETSC=ON \
-D PETSC_DIR=/path/to/petsc/installation

ENABLE_PETSC

Enable PETSc support

Default: OFF

PETSC_DIR

Path to PETSc installation

Default: none

1.3. Configuration options 23

https://www.openmp.org/
https://sundials.readthedocs.io/en/v7.3.0/nvectors/NVector_links.html#nvectors-openmpdev
https://petsc.org
https://gitlab.com/petsc/petsc
https://sundials.readthedocs.io/en/v7.3.0/nvectors/NVector_links.html#nvectors-nvpetsc
https://sundials.readthedocs.io/en/v7.3.0/sunnonlinsol/SUNNonlinSol_links.html#sunnonlinsol-petscsnes

SUNDIALS Installation Guide, v7.3.0

PETSC_LIBRARIES

Semi-colon separated list of PETSc link libraries. Unless provided by the user, this is autopopulated based on
the PETSc installation found in PETSC_DIR .

Default: none

PETSC_INCLUDES

Semi-colon separated list of PETSc include directories. Unless provided by the user, this is autopopulated based
on the PETSc installation found in PETSC_DIR .

Default: none

1.3.31 Building with PThreads

POSIX Threads (PThreads) is an API for shared memory programming defined by the Institute of Electrical and Elec-
tronics Engineers (IEEE) standard POSIX.1c.

When PThreads support is enabled, the PThreads NVector will be built (see section §1.7.3.8 for the corresponding
header file and library).

To enable PThreads support, set ENABLE_PTHREAD to ON. For example, the following command will configure SUN-
DIALS with PThreads support:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D ENABLE_PTHREAD=ON

ENABLE_PTHREAD

Enable PThreads support

Default: OFF

1.3.32 Building with RAJA

RAJA is a performance portability layer developed by Lawrence Livermore National Laboratory and can be obtained
from the RAJA GitHub repository. SUNDIALS is regularly tested with the latest versions of RAJA, specifically up to
version 2024.02.2.

When RAJA support is enabled, the RAJA NVector will be built (see section §1.7.3.13 for the corresponding header
files and libraries).

To enable RAJA support, set ENABLE_RAJA to ON, set RAJA_DIR to the path of the RAJA installation, set SUNDIALS_-
RAJA_BACKENDS to the desired backend (CUDA, HIP, or SYCL), and set ENABLE_CUDA , ENABLE_HIP, or ENABLE_SYCL
to ON depending on the selected backend. For example, the following command will configure SUNDIALS with RAJA
support using the CUDA backend (targeting Ampere GPUs):

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D ENABLE_RAJA=ON \
-D RAJA_DIR=/path/to/raja/installation \
-D SUNDIALS_RAJA_BACKENDS="CUDA" \

(continues on next page)

24 Chapter 1. Installing SUNDIALS

https://sundials.readthedocs.io/en/v7.3.0/nvectors/NVector_links.html#nvectors-pthreads
https://raja.readthedocs.io/en/develop/
https://github.com/LLNL/RAJA
https://sundials.readthedocs.io/en/v7.3.0/nvectors/NVector_links.html#nvectors-raja

SUNDIALS Installation Guide, v7.3.0

(continued from previous page)

-D ENABLE_CUDA=ON \
-D CMAKE_CUDA_ARCHITECTURES="80"

ENABLE_RAJA

Enable RAJA support

Default: OFF

RAJA_DIR

Path to the RAJA installation

Default: none

SUNDIALS_RAJA_BACKENDS

If building SUNDIALS with RAJA support, this sets the RAJA backend to target. Values supported are CUDA,
HIP, or SYCL.

Default: CUDA

1.3.33 Building with SuperLU_DIST

SuperLU_DIST is a general purpose library for the direct solution of large, sparse, nonsymmetric systems of linear
equations in a distributed memory setting. The library is developed by Lawrence Berkeley National Laboratory and is
available from the SuperLU_DIST GitHub repository. SuperLU_DIST version 7.0.0 or newer is required. SUNDIALS
is regularly tested with the latest versions of SuperLU_DIST, specifically up to version 8.2.1.

When SuperLU_DIST support is enabled, the SuperLU_DIST (SLUNRloc) SUNMatrix and SuperLU_DIST SUNLin-
earSolver will be built (see sections §1.7.4.9 and §1.7.5.16 for the corresponding header files and libraries).

To enable SuperLU_DIST support, set ENABLE_MPI to ON, set ENABLE_SUPERLUDIST to ON, and set SUPERLUDIST_-
DIR to the path where SuperLU_DIST is installed. If SuperLU_DIST was built with OpenMP enabled, set SUPER-
LUDIST_OpenMP and ENABLE_OPENMP to ON. For example, the following command will configure SUNDIALS with
SuperLU_DIST support:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D ENABLE_SUPERLUDIST=ON \
-D SUPERLUDIST_DIR=/path/to/superludist/installation

ENABLE_SUPERLUDIST

Enable SuperLU_DIST support

Default: OFF

SUPERLUDIST_DIR

Path to SuperLU_DIST installation.

Default: none

SUPERLUDIST_OpenMP

Enable SUNDIALS support for SuperLU_DIST built with OpenMP

Default: none

1.3. Configuration options 25

https://portal.nersc.gov/project/sparse/superlu/
https://github.com/xiaoyeli/superlu_dist
https://sundials.readthedocs.io/en/v7.3.0/sunmatrix/SUNMatrix_links.html#sunmatrix-slunrloc
https://sundials.readthedocs.io/en/v7.3.0/sunlinsol/SUNLinSol_links.html#sunlinsol-superludist
https://sundials.readthedocs.io/en/v7.3.0/sunlinsol/SUNLinSol_links.html#sunlinsol-superludist

SUNDIALS Installation Guide, v7.3.0

Note

SuperLU_DIST must be built with OpenMP support for this option to function. Additionally the environment
variable OMP_NUM_THREADS must be set to the desired number of threads.

SUPERLUDIST_INCLUDE_DIRS

List of include paths for SuperLU_DIST (under a typical SuperLU_DIST install, this is typically the SuperLU_-
DIST SRC directory)

Default: none

Note

This is an advanced option. Prefer to use SUPERLUDIST_DIR .

SUPERLUDIST_LIBRARIES

Semi-colon separated list of libraries needed for SuperLU_DIST

Default: none

Note

This is an advanced option. Prefer to use SUPERLUDIST_DIR .

SUPERLUDIST_INCLUDE_DIR

Path to SuperLU_DIST header files (under a typical SuperLU_DIST install, this is typically the SuperLU_DIST
SRC directory)

Default: none

Note

This is an advanced option. This option is deprecated. Use SUPERLUDIST_INCLUDE_DIRS.

SUPERLUDIST_LIBRARY_DIR

Path to SuperLU_DIST installed library files

Default: none

Note

This option is deprecated. Use SUPERLUDIST_DIR .

26 Chapter 1. Installing SUNDIALS

SUNDIALS Installation Guide, v7.3.0

1.3.34 Building with SuperLU_MT

SuperLU_MT is a general purpose library for the direct solution of large, sparse, nonsymmetric systems of linear
equations on shared memory parallel machines. The library is developed by Lawrence Berkeley National Laboratory
and is available from the SuperLU_MT GitHub repository. SUNDIALS is regularly tested with the latest versions of
SuperLU_MT, specifically up to version 4.0.1.

When SuperLU_MT support is enabled, the SuperLU_MT SUNLinearSolver will be built (see section §1.7.5.17 for
the corresponding header file and library).

To enable SuperLU_MT support, set ENABLE_SUPERLUMT to ON, set SUPERLUMT_INCLUDE_DIR and SUPERLUMT_-
LIBRARY_DIR to the location of the header and library files, respectively, of the SuperLU_MT installation. Depending
on the SuperLU_MT installation, it may also be necessary to set SUPERLUMT_LIBRARIES to a semi-colon separated
list of other libraries SuperLU_MT depends on. For example, if SuperLU_MT was build with an external blas library,
then include the full path to the blas library in this list. Additionally, the variable SUPERLUMT_THREAD_TYPE must be
set to either Pthread or OpenMP. For example, the following command will configure SUNDIALS with SuperLU_MT
support using PThreads:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D ENABLE_SUPERLUMT=ON \
-D SUPERLUMT_INCLUDE_DIR=/path/to/superlumt/installation/include/dir \
-D SUPERLUMT_LIBRARY_DIR=/path/to/superlumt/installation/library/dir \
-D SUPERLUMT_THREAD_TYPE="Pthread"

Warning

Do not mix thread types when using SUNDIALS packages. For example, if using the OpenMP or PThreads NVector
then the SuperLU_MT installation should use the same threading type.

ENABLE_SUPERLUMT

Enable SuperLU_MT support

Default: OFF

SUPERLUMT_INCLUDE_DIR

Path to SuperLU_MT header files (under a typical SuperLU_MT install, this is typically the SuperLU_MT SRC
directory)

Default: none

SUPERLUMT_LIBRARY_DIR

Path to SuperLU_MT installed library files

Default: none

SUPERLUMT_LIBRARIES

Semi-colon separated list of libraries needed for SuperLU_MT

Default: none

SUPERLUMT_THREAD_TYPE

Must be set to Pthread or OpenMP, depending on how SuperLU_MT was compiled.

Default: Pthread

1.3. Configuration options 27

https://portal.nersc.gov/project/sparse/superlu/
https://github.com/xiaoyeli/superlu_mt
https://sundials.readthedocs.io/en/v7.3.0/sunlinsol/SUNLinSol_links.html#sunlinsol-superlumt

SUNDIALS Installation Guide, v7.3.0

1.3.35 Building with SYCL

SYCL is an abstraction layer for programming heterogeneous parallel computing based on C++17.

When SYCL support is enabled, the SYCL NVector will be built (see section §1.7.3.14 for the corresponding header
file and library).

To enable SYCL support, set the ENABLE_SYCL to ON. For example, the following command will configure SUNDIALS
with SYCL support using Intel compilers:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D CMAKE_C_COMPILER=icx \
-D CMAKE_CXX_COMPILER=icpx \
-D CMAKE_CXX_FLAGS="-fsycl" \
-D ENABLE_SYCL=ON

ENABLE_SYCL

Enable SYCL support

Default: OFF

Note

Building with SYCL enabled requires a compiler that supports a subset of the of SYCL 2020 specification
(specifically sycl/sycl.hpp must be available).

CMake does not currently support autodetection of SYCL compilers and CMAKE_CXX_COMPILER must be
set to a valid SYCL compiler. At present the only supported SYCL compilers are the Intel oneAPI compilers
i.e., dpcpp and icpx. When using icpx the -fsycl flag and any ahead of time compilation flags must be
added to CMAKE_CXX_FLAGS.

SUNDIALS_SYCL_2020_UNSUPPORTED

This advanced option disables the use of some features from the SYCL 2020 standard in SUNDIALS libraries
and examples. This can be used to work around some cases of incomplete compiler support for SYCL 2020.

Default: OFF

1.3.36 Building with Trilinos

Trilinos is a collection of C++ libraries of linear solvers, non-linear solvers, optimization solvers, etc. developed by
Sandia National Laboratory and available from the Trilinos GitHub repository. SUNDIALS is regularly tested with
the latest versions of Trilinos, specifically up to version 16.0.0.

When Trilinos support is enabled, the Trilinos Tpetra NVector will be built (see section §1.7.3.15 for the corresponding
header file and library).

To enable Trilinos support, set the ENABLE_TRILINOS to ON and set Trilinos_DIR to root path of the Trilinos instal-
lation. For example, the following command will configure SUNDIALS with Trilinos support:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \

(continues on next page)

28 Chapter 1. Installing SUNDIALS

https://www.khronos.org/sycl/
https://sundials.readthedocs.io/en/v7.3.0/nvectors/NVector_links.html#nvectors-sycl
https://trilinos.github.io/
https://github.com/trilinos/Trilinos
https://sundials.readthedocs.io/en/v7.3.0/nvectors/NVector_links.html#nvectors-nvtrilinos

SUNDIALS Installation Guide, v7.3.0

(continued from previous page)

-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D ENABLE_TRILONOS=ON \
-D TRILINOS_DIR=/path/to/trilinos/installation

ENABLE_TRILINOS

Enable Trilinos support

Default: OFF

Trilinos_DIR

Path to the Trilinos installation

Default: None

1.3.37 Building with XBraid

XBraid is parallel-in-time library implementing an optimal-scaling multigrid reduction in time (MGRIT) solver. The
library is developed by Lawrence Livermore National Laboratory and is available from the XBraid GitHub repository.
SUNDIALS is regularly tested with the latest versions of XBraid, specifically up to version 3.0.0.

To enable XBraid support, set ENABLE_MPI to ON, set ENABLE_XBRAID to ON, set XBRAID_DIR to the root path of the
XBraid installation. For example, the following command will configure SUNDIALS with XBraid support:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D SUNDIALS_INDEX_SIZE="32" \
-D ENABLE_MPI=ON \
-D ENABLE_XBRAID=ON \
-D XBRAID_DIR=/path/to/xbraid/installation

Note

At this time the XBraid types braid_Int and braid_Real are hard-coded to int and double respectively. As
such SUNDIALS must be configured with SUNDIALS_INDEX_SIZE set to 32 and SUNDIALS_PRECISION set to
double. Additionally, SUNDIALS must be configured with ENABLE_MPI set to ON.

ENABLE_XBRAID

Enable or disable the ARKStep + XBraid interface.

Default: OFF

XBRAID_DIR

The root directory of the XBraid installation.

Default: OFF

XBRAID_INCLUDES

Semi-colon separated list of XBraid include directories. Unless provided by the user, this is autopopulated based
on the XBraid installation found in XBRAID_DIR .

Default: none

1.3. Configuration options 29

https://github.com/XBraid/xbraid

SUNDIALS Installation Guide, v7.3.0

XBRAID_LIBRARIES

Semi-colon separated list of XBraid link libraries. Unless provided by the user, this is autopopulated based on
the XBraid installation found in XBRAID_DIR .

Default: none

1.3.38 Building with xSDK Defaults

The Extreme-scale Scientific Software Development Kit (xSDK) is a community of HPC libraries and applications
developing best practices and standards for scientific software.

USE_XSDK_DEFAULTS

Enable xSDK default configuration settings. This sets the default value for CMAKE_BUILD_TYPE to Debug,
SUNDIALS_INDEX_SIZE to 32, and SUNDIALS_PRECISION to double.

Default: OFF

1.3.39 Building with External Addons

SUNDIALS “addons” are community developed code additions for SUNDIALS that can be subsumed by the SUN-
DIALS build system so that they have full access to all internal SUNDIALS symbols. The intent is for SUNDIALS
addons to function as if they are part of the SUNDIALS library, while allowing them to potentially have different li-
censes (although we encourage BSD-3-Clause still), code style (although we encourage them to follow the SUNDIALS
style outlined here).

Warning

SUNDIALS addons are not maintained by the SUNDIALS team and may come with different licenses. Use them
at your own risk.

To build with SUNDIALS addons,

1. Clone/copy the addon(s) into SOLVER_DIR/external/

2. Copy the sundials-addon-example block in the SOLVER_DIR/external/CMakeLists.txt, paste it below
the example block, and modify the path listed for your own external addon(s).

3. When building SUNDIALS, set the CMake option SUNDIALS_ENABLE_EXTERNAL_ADDONS to ON

4. Build SUNDIALS as usual.

SUNDIALS_ENABLE_EXTERNAL_ADDONS

Build SUNDIALS with any external addons that you have put in SOLVER_DIR/external.

Default: OFF

30 Chapter 1. Installing SUNDIALS

https://xsdk.info
https://sundials.readthedocs.io/en/v7.3.0/developers/source_code/index.html#sourcecode

SUNDIALS Installation Guide, v7.3.0

1.4 Testing the Build and Installation

If SUNDIALS was configured with any EXAMPLES_ENABLE_<language> options set to ON, then a set of regression
tests can be run after building with the command:

make test

Additionally, if EXAMPLES_INSTALL is set to ON, then a set of smoke tests can be run after installing with the command:

make test_install

1.5 Building and Running Examples

Each of the SUNDIALS solvers is distributed with a set of examples demonstrating basic usage. To build and install
the examples, set at least one of the EXAMPLES_ENABLE_<language> options to ON, and set EXAMPLES_INSTALL to
ON. Along side the example sources and outputs, automatically generated CMakeLists.txt configuration files (and
Makefile files if on Linux/Unix systems) are installed referencing the installed SUNDIALS headers and libraries.

Either the CMakeLists.txt file or the traditional Makefilemay be used to build the examples and serve as a template
for building user developed problems. To use the supplied Makefile simply run make to compile and generate the
executables. To use CMake from within the installed example directory, run cmake (or ccmake or cmake-gui to use
the GUI) followed by make to compile the example code. Note that if CMake is used, it will overwrite the traditional
Makefile with a new CMake-generated Makefile.

The resulting output from running the examples can be compared with example output bundled in the SUNDIALS
distribution.

Note

There will potentially be differences in the output due to machine architecture, compiler versions, use of third party
libraries, etc.

1.6 Using SUNDIALS In Your Project

After installing SUNDIALS, building your application with SUNDIALS involves two steps: including the right header
files and linking to the right libraries. Depending on what features of SUNDIALS that your application uses, the
header files and libraries needed will vary. For example, if you want to use CVODE for serial computations you need
the following includes:

#include <cvode/cvode.h>
#include <nvector/nvector_serial.h>

and must link to libsundials_cvode and libsundials_nvecserial. If you wanted to use CVODE with the GM-
RES linear solver and the CUDA NVector, you need the following includes:

#include <cvode/cvode.h>
#include <nvector/nvector_cuda.h>
#include <sunlinsol/sunlinsol_spgmr.h>

and must link to libsundials_cvode, libsundials_nveccuda, and libsundials_sunlinsolspgmr.

1.4. Testing the Build and Installation 31

SUNDIALS Installation Guide, v7.3.0

Attention

Added in version 7.0.0: All applications must also link to libsundials_core. For projects using SUNDIALS
CMake targets (see section §1.6.1), this dependency is automatically included.

Refer to section §1.7 below or the documentations sections for the individual SUNDIALS packages and modules of
interest for the proper includes and libraries to link against.

1.6.1 CMake Projects

For projects that use CMake, the SUNDIALS CMake package configuration file provides CMake targets for the con-
suming project. Use the CMake find_package command to search for the configuration file, SUNDIALSConfig.
cmake, which is installed alongside a package version file, SUNDIALSConfigVersion.cmake, under the INSTALL_-
DIR/SUNDIALS_INSTALL_CMAKEDIR directory. The SUNDIALS CMake targets follow the same naming convention
as the generated library binaries with the libsundials_ prefix replaced by SUNDIALS::. For example, the exported
target for libsundials_cvode is SUNDIALS::cvode. See section §1.7 for a complete list of CMake targets. The
CMake code snippit below shows how a consuming project might leverage the SUNDIALS package configuration file
to build against SUNDIALS in their own CMake project.

project(MyProject)

Set the variable SUNDIALS_DIR to the SUNDIALS instdir.
When using the cmake CLI command, this can be done like so:
cmake -D SUNDIALS_DIR=/path/to/sundials/installation

Find any SUNDIALS version...
find_package(SUNDIALS REQUIRED)

... or find any version newer than some minimum...
find_package(SUNDIALS 7.1.0 REQUIRED)

... or find a version in a range
find_package(SUNDIALS 7.0.0...7.1.0 REQUIRED)

To check if specific components are available in the SUNDIALS installation,
use the COMPONENTS option followed by the desired target names
find_package(SUNDIALS REQUIRED COMPONENTS cvode nvecpetsc)

add_executable(myexec main.c)

Link to SUNDIALS libraries through the exported targets.
This is just an example, users should link to the targets appropriate
for their use case.
target_link_libraries(myexec PUBLIC SUNDIALS::cvode SUNDIALS::nvecpetsc)

Note

Changed in version 7.1.0: A single version provided to find_package denotes the minimum version of SUN-
DIALS to look for, and any version equal or newer than what is specified will match. In prior versions
SUNDIALSConfig.cmake required the version found to have the same major version number as the single ver-
sion provided to find_package.

32 Chapter 1. Installing SUNDIALS

https://cmake.org/cmake/help/v3.18/manual/cmake-packages.7.html

SUNDIALS Installation Guide, v7.3.0

To accommodate installing both static and shared libraries simultaneously, targets are created with _static and _-
shared suffixes, respectively, and the un-suffixed target is an alias to the _shared version. For example, SUNDI-
ALS::cvode is an alias to SUNDIALS::cvode_shared in this case. Projects that wish to use static libraries should
use the _static version of the target when both library types are installed. When only static or shared libraries (not
both) are installed the un-suffixed alias corresponds to the library type chosen at configuration time (see section §1.3.4).

1.7 Libraries and Header Files

As noted above, the SUNDIALS the header files and libraries are installed under the CMAKE_INSTALL_PREFIX path in
the include and CMAKE_INSTALL_LIBDIR subdirectories, respectively. The public header files are further organized
into subdirectories under the include directory. The installed public header files and libraries are listed for reference
in the sections below. Additionally, the exported CMake targets are also listed for projects using CMake (see section
§1.6.1). The file extension .LIB used below is typically .so, .dll, or .dylib for shared libraries and .a or .lib for
static libraries.

Warning

SUNDIALS installs some header files to CMAKE_INSTALL_PREFIX/include/sundials/priv. All of the header
files in this directory are private and should not be included in user code. The private headers are subject to change
without any notice and relying on them may break your code.

1.7.1 SUNDIALS Core

The core library contains the shared infrastructure utilized by SUNDIALS packages. All applications using SUNDI-
ALS must link against the core library. For codes using the SUNDIALS CMake targets, the core target is automatically
included as needed by other targets.

Table 1.1: The SUNDIALS core library, header, and CMake target

Libraries libsundials_core.LIB
Headers sundials/sundials_core.h
CMake target SUNDIALS::core

The core header file is a convenient way to include all the header files that make up the SUNDIALS core infrastructure.

1.7. Libraries and Header Files 33

SUNDIALS Installation Guide, v7.3.0

Table 1.2: Header files included by sundials_core.h

Headers sundials/sundials_adaptcontroller.h
sundials/sundials_adjointstepper.h
sundials/sundials_adjointcheckpointscheme.h
sundials/sundials_config.h
sundials/sundials_context.h
sundials/sundials_errors.h
sundials/sundials_iterative.h
sundials/sundials_linearsolver.h
sundials/sundials_logger.h
sundials/sundials_math.h
sundials/sundials_matrix.h
sundials/sundials_memory.h
sundials/sundials_nonlinearsolver.h
sundials/sundials_nvector.h
sundials/sundials_profiler.h
sundials/sundials_types.h
sundials/sundials_version.h

For C++ applications, several convenience classes are provided for interacting with SUNDIALS objects. These can be
accessed by including the C++ core header file.

Table 1.3: The SUNDIALS C++ core header file

Headers sundials/sundials_core.hpp

Like the C core header file, the C++ core header file is a convenient way to include all the header files for the core C++
classes.

Warning

Features in the sundials::experimental namespace are not yet part of the public API and are subject to change
or removal without notice.

Table 1.4: Header files included by sundials_core.hpp

Headers sundials/sundials_context.hpp
sundials/sundials_core.h
sundials/sundials_linearsolver.hpp
sundials/sundials_matrix.hpp
sundials/sundials_memory.hpp
sundials/sundials_nonlinearsolver.hpp
sundials/sundials_nvector.hpp
sundials/sundials_profiler.hpp

When MPI support is enabled (ENABLE_MPI is ON), the following header file provides aliases between MPI data types
and SUNDIALS types. The alias MPI_SUNREALTYPE is one of MPI_FLOAT, MPI_DOUBLE, or MPI_LONG_DOUBLE
depending on the value of SUNDIALS_PRECISION. The alias MPI_SUNINDEXTYPE is either MPI_INT32_T or MPI_-
INT64_T depending on the value of SUNDIALS_INDEX_SIZE.

34 Chapter 1. Installing SUNDIALS

SUNDIALS Installation Guide, v7.3.0

Table 1.5: Header file defining aliases between SUNDIALS and MPI data
types

Headers sundials/sundials_mpi_types.h

When XBraid support is enabled (ENABLE_XBRAID is ON), the following header file defines types and functions for
interfacing SUNDIALS with XBraid.

Table 1.6: SUNDIALS header for interfacing with XBraid

Headers sundials/sundials_xbraid.h

1.7.2 SUNDIALS Packages

1.7.2.1 CVODE

To use the CVODE package, include the header file and link to the library given below.

Table 1.7: CVODE library, header file, and CMake target

Libraries libsundials_cvode.LIB
Headers cvode/cvode.h
CMake target SUNDIALS::cvode

The CVODE header file includes the files below which define functions, types, and constants for the CVODE linear
solver interface and using projection methods with CVODE.

Table 1.8: Additional header files included by cvode.h

Headers cvode/cvode_ls.h
cvode/cvode_proj.h

CVODE provides a specialized linear solver module for diagonal linear systems. Include the header file below to access
the related functions.

Table 1.9: CVODE diagonal linear solver

Headers cvode/cvode_diag.h

For problems in which the user cannot define a more effective, problem-specific preconditioner for Krylov iterative lin-
ear solvers, CVODE provides banded (bandpre) and band-block-diagonal (bbdpre) preconditioner modules. Include
the header files below to access the related functions.

Table 1.10: CVODE preconditioner modules

Headers cvode/cvode_bandpre.h
cvode/cvode_bbdpre.h

1.7. Libraries and Header Files 35

https://sundials.readthedocs.io/en/v7.3.0/cvode/index.html#cvode

SUNDIALS Installation Guide, v7.3.0

1.7.2.2 CVODES

To use the CVODES package, include the header file and link to the library given below.

Warning

CVODES is a superset of CVODE and defines the same functions as provided by CVODE. As such, applications
should not link to both CVODES and CVODE.

Table 1.11: CVODES library, header file, and CMake target

Libraries libsundials_cvodes.LIB
Headers cvodes/cvodes.h
CMake target SUNDIALS::cvodes

The CVODES header file includes the files below which define functions, types, and constants for the CVODES linear
solver interface and using projection methods with CVODES.

Table 1.12: Additional header files included by cvodes.h

Headers cvodes/cvodes_ls.h
cvodes/cvodes_proj.h

CVODES provides a specialized linear solver module for diagonal linear systems. Include the header file below to
access the related functions.

Table 1.13: CVODES diagonal linear solver

Headers cvodes/cvodes_diag.h

For problems in which the user cannot define a more effective, problem-specific preconditioner for Krylov iterative lin-
ear solvers, CVODES provides banded (bandpre) and band-block-diagonal (bbdpre) preconditioner modules. Include
the header files below to access the related functions.

Table 1.14: CVODES preconditioner modules

Headers cvodes/cvodes_bandpre.h
cvodes/cvodes_bbdpre.h

1.7.2.3 ARKODE

To use the ARKODE package, link to the library below and include the header file for the desired module.

36 Chapter 1. Installing SUNDIALS

https://sundials.readthedocs.io/en/v7.3.0/cvodes/index.html#cvodes
https://sundials.readthedocs.io/en/v7.3.0/arkode/index.html#arkode

SUNDIALS Installation Guide, v7.3.0

Table 1.15: ARKODE library, header files, and CMake target

Libraries libsundials_arkode.LIB
Headers arkode/arkode_arkstep.h

arkode/arkode_erkstep.h
arkode/arkode_forcingstep.h
arkode/arkode_lsrkstep.h
arkode/arkode_mristep.h
arkode/arkode_splittingstep.h
arkode/arkode_sprkstep.h

CMake target SUNDIALS::arkode

The ARKODE module header files include the header file for the shared ARKODE interface functions, constants, and
types (arkode.h). As appropriate, the module header files also include the ARKODE linear solver interface as well
as the header files defining method coefficients.

Table 1.16: Additional header files included by arkode_*step.h header
files

Headers arkode/arkode.h
arkode/arkode_butcher.h
arkode/arkode_butcher_dirk.h
arkode/arkode_butcher_erk.h
arkode/arkode_ls.h
arkode/arkode_sprk.h

For problems in which the user cannot define a more effective, problem-specific preconditioner for Krylov iterative
linear solvers, ARKODE provides banded (bandpre) and band-block-diagonal (bbdpre) preconditioner modules. In-
clude the header files below to access the related functions.

Table 1.17: ARKODE preconditioner modules

Headers arkode/arkode_bandpre.h
arkode/arkode_bbdpre.h

When XBraid support is enabled (ENABLE_XBRAID is ON), include the ARKODE-XBraid interface header file and link
to the interface library given below to use ARKODE and XBraid together.

Table 1.18: ARKODE library, header, and CMake target for interfacing
with XBraid

Libraries libsundials_arkode_xbraid.LIB
Headers arkode/arkode_xbraid.h
CMake target SUNDIALS::arkode_xbraid

1.7. Libraries and Header Files 37

SUNDIALS Installation Guide, v7.3.0

1.7.2.4 IDA

To use the IDA package, include the header file and link to the library given below.

Table 1.19: IDA library, header file, and CMake target

Libraries libsundials_ida.LIB
Headers ida/ida.h
CMake target SUNDIALS::ida

The IDA header file includes the header file below which defines functions, types, and constants for the IDA linear
solver interface.

Table 1.20: Additional header files included by ida.h

Headers ida/ida_ls.h

For problems in which the user cannot define a more effective, problem-specific preconditioner for Krylov iterative
linear solvers, IDA provides a band-block-diagonal (bbdpre) preconditioner module. Include the header file below to
access the related functions.

Table 1.21: IDA preconditioner modules

Headers ida/ida_bbdpre.h

1.7.2.5 IDAS

To use the IDAS package, include the header file and link to the library given below.

Warning

IDAS is a superset of IDA and defines the same functions as provided by IDA. As such, applications should not
link to both IDAS and IDA.

Table 1.22: IDAS library, header file, and CMake target

Libraries libsundials_idas.LIB
Headers idas/idas.h
CMake target SUNDIALS::idas

The IDAS header file includes the header file below which defines functions, types, and constants for the IDAS linear
solver interface.

Table 1.23: Additional header files included by idas.h

Headers idas/idas_ls.h

For problems in which the user cannot define a more effective, problem-specific preconditioner for Krylov iterative
linear solvers, IDAS provides a band-block-diagonal (bbdpre) preconditioner module. Include the header file below
to access the related functions.

38 Chapter 1. Installing SUNDIALS

https://sundials.readthedocs.io/en/v7.3.0/ida/index.html#ida
https://sundials.readthedocs.io/en/v7.3.0/idas/index.html#idas

SUNDIALS Installation Guide, v7.3.0

Table 1.24: IDAS preconditioner modules

Headers idas/idas_bbdpre.h

1.7.2.6 KINSOL

To use the KINSOL package, include the header file and link to the library given below.

Table 1.25: KINSOL library, header file, and CMake target

Libraries libsundials_kinsol.LIB
Headers kinsol/kinsol.h
CMake target SUNDIALS::kinsol

The KINSOL header file includes the header file below which defines functions, types, and constants for the KINSOL
linear solver interface.

Table 1.26: Additional header files included by kinsol.h

Headers kinsol/kinsol_ls.h

For problems in which the user cannot define a more effective, problem-specific preconditioner for Krylov iterative
linear solvers, KINSOL provides a band-block-diagonal (bbdpre) preconditioner module. Include the header file below
to access the related functions.

Table 1.27: KINSOL preconditioner modules

Headers kinsol/kinsol_bbdpre.h

1.7.3 Vectors

1.7.3.1 Serial

To use the serial NVector, include the header file and link to the library given below.

When using SUNDIALS time integration packages or the KINSOL package, the serial NVector is bundled with the
package library and it is not necessary to link to the library below when using those packages.

Table 1.28: The serial NVector library, header file, and CMake target

Libraries libsundials_nvecserial.LIB
Headers nvector/nvector_serial.h
CMake target SUNDIALS::nvecserial

1.7. Libraries and Header Files 39

https://sundials.readthedocs.io/en/v7.3.0/kinsol/index.html#kinsol
https://sundials.readthedocs.io/en/v7.3.0/nvectors/NVector_links.html#nvectors-nvserial

SUNDIALS Installation Guide, v7.3.0

1.7.3.2 ManyVector

To use the ManyVector NVector, include the header file and link to the library given below.

Table 1.29: The ManyVector NVector library, header file, and CMake
target

Libraries libsundials_nvecmanyvector.LIB
Headers nvector/nvector_manyvector.h
CMake target SUNDIALS::nvecmanyvector

1.7.3.3 Parallel (MPI)

To use the parallel (MPI) NVector, include the header file and link to the library given below.

Table 1.30: The parallel (MPI) NVector library, header file, and CMake
target

Libraries libsundials_nvecparallel.LIB
Headers nvector/nvector_parallel.h
CMake target SUNDIALS::nvecparallel

1.7.3.4 MPI ManyVector

To use the MPI ManyVector NVector, include the header file and link to the library given below.

Table 1.31: The MPI ManyVector NVector library, header file, and
CMake target

Libraries libsundials_nvecmpimanyvector.LIB
Headers nvector/nvector_mpimanyvector.h
CMake target SUNDIALS::nvecmpimanyvector

1.7.3.5 MPI+X

To use the MPI+X NVector, include the header file and link to the library given below.

Table 1.32: The MPI+X NVector library, header file, and CMake target

Libraries libsundials_nvecmpiplusx.LIB
Headers nvector/nvector_mpiplusx.h
CMake target SUNDIALS::nvecmpiplusx

40 Chapter 1. Installing SUNDIALS

https://sundials.readthedocs.io/en/v7.3.0/nvectors/NVector_links.html#nvectors-manyvector
https://sundials.readthedocs.io/en/v7.3.0/nvectors/NVector_links.html#nvectors-nvparallel
https://sundials.readthedocs.io/en/v7.3.0/nvectors/NVector_links.html#nvectors-mpimanyvector
https://sundials.readthedocs.io/en/v7.3.0/nvectors/NVector_links.html#nvectors-mpiplusx

SUNDIALS Installation Guide, v7.3.0

1.7.3.6 OpenMP

To use the OpenMP NVector, include the header file and link to the library given below.

Table 1.33: The OpenMP NVector library, header file, and CMake target

Libraries libsundials_nvecopenmp.LIB
Headers nvector/nvector_openmp.h
CMake target SUNDIALS::nvecopenmp

1.7.3.7 OpenMPDEV

To use the OpenMP device offload NVector, include the header file and link to the library given below.

Table 1.34: The OpenMP device offload NVector library, header file, and
CMake target

Libraries libsundials_nvecopenmpdev.LIB
Headers nvector/nvector_openmpdev.h
CMake target SUNDIALS::nvecopenmpdev

1.7.3.8 PThreads

To use the POSIX Threads NVector, include the header file and link to the library given below.

Table 1.35: The POSIX Threads NVector library, header file, and CMake
target

Libraries libsundials_nvecpthreads.LIB
Headers nvector/nvector_pthreads.h
CMake target SUNDIALS::nvecpthreads

1.7.3.9 hypre (ParHyp)

To use the hypre (ParHyp) NVector, include the header file and link to the library given below.

Table 1.36: The hypre (ParHyp) NVector library, header file, and CMake
target

Libraries libsundials_nvecparhyp.LIB
Headers nvector/nvector_parhyp.h
CMake target SUNDIALS::nvecparhyp

1.7. Libraries and Header Files 41

https://sundials.readthedocs.io/en/v7.3.0/nvectors/NVector_links.html#nvectors-openmp
https://sundials.readthedocs.io/en/v7.3.0/nvectors/NVector_links.html#nvectors-openmpdev
https://sundials.readthedocs.io/en/v7.3.0/nvectors/NVector_links.html#nvectors-pthreads
https://sundials.readthedocs.io/en/v7.3.0/nvectors/NVector_links.html#nvectors-parhyp

SUNDIALS Installation Guide, v7.3.0

1.7.3.10 PETSc

To use the PETSc NVector, include the header file and link to the library given below.

Table 1.37: The PETSc NVector library, header file, and CMake target

Libraries libsundials_nvecpetsc.LIB
Headers nvector/nvector_petsc.h
CMake target SUNDIALS::nvecpetsc

1.7.3.11 CUDA

To use the CUDA NVector, include the header file and link to the library given below.

Table 1.38: The CUDA NVector library, header file, and CMake target

Libraries libsundials_nveccuda.LIB
Headers nvector/nvector_cuda.h
CMake target SUNDIALS::nveccuda

1.7.3.12 HIP

To use the HIP NVector, include the header file and link to the library given below.

Table 1.39: The HIP NVector library, header file, and CMake target

Libraries libsundials_nvechip.LIB
Headers nvector/nvector_hip.h
CMake target SUNDIALS::nvechip

1.7.3.13 RAJA

To use the RAJA NVector, include the header file and link to the library given below for the desired backend.

Table 1.40: The RAJA NVector libraries, header file, and CMake targets

Libraries libsundials_nveccudaraja.LIB
libsundials_nvechipraja.LIB
libsundials_nvecsyclraja.LIB

Headers nvector/nvector_raja.h
CMake target SUNDIALS::nveccudaraja

SUNDIALS::nvechipraja
SUNDIALS::nvecsyclraja

42 Chapter 1. Installing SUNDIALS

https://sundials.readthedocs.io/en/v7.3.0/nvectors/NVector_links.html#nvectors-parhyp
https://sundials.readthedocs.io/en/v7.3.0/nvectors/NVector_links.html#nvectors-cuda
https://sundials.readthedocs.io/en/v7.3.0/nvectors/NVector_links.html#nvectors-hip
https://sundials.readthedocs.io/en/v7.3.0/nvectors/NVector_links.html#nvectors-raja

SUNDIALS Installation Guide, v7.3.0

1.7.3.14 SYCL

To use the SYCL NVector, include the header file and link to the library given below.

Table 1.41: The SYCL NVector library, header file, and CMake target

Libraries libsundials_nvecsycl.LIB
Headers nvector/nvector_sycl.h
CMake target SUNDIALS::nvecsycl

1.7.3.15 Trilinos (Tpetra)

To use the Trilinos (Tpetra) NVector, include the header file and link to the library given below.

Table 1.42: The Trilinos (Tpetra) NVector library, header file, and CMake
target

Libraries libsundials_nvectrilinos.LIB
Headers nvector/nvector_trilinos.h
CMake target SUNDIALS::nvectrilinos

1.7.3.16 Kokkos

To use the Kokkos NVector, include the header file and link to the library given below.

Table 1.43: The Kokkos NVector library, header file, and CMake target

Headers nvector/nvector_kokkos.hpp
CMake target SUNDIALS::nveckokkos

1.7.4 Matrices

1.7.4.1 Banded

To use the banded SUNMatrix, include the header file and link to the library given below.

When using SUNDIALS time integration packages or the KINSOL package, the banded SUNMatrix is bundled with
the package library and it is not necessary to link to the library below when using those packages.

Table 1.44: The banded SUNMatrix library, header file, and CMake tar-
get

Libraries libsundials_sunmatrixband.LIB
Headers sunmatrix/sunmatrix_band.h
CMake target SUNDIALS::sunmatrixband

1.7. Libraries and Header Files 43

https://sundials.readthedocs.io/en/v7.3.0/nvectors/NVector_links.html#nvectors-sycl
https://sundials.readthedocs.io/en/v7.3.0/nvectors/NVector_links.html#nvectors-nvtrilinos
https://sundials.readthedocs.io/en/v7.3.0/nvectors/NVector_links.html#nvectors-kokkos
https://sundials.readthedocs.io/en/v7.3.0/sunmatrix/SUNMatrix_links.html#sunmatrix-band

SUNDIALS Installation Guide, v7.3.0

1.7.4.2 cuSPARSE

To use the cuSPARSE SUNMatrix, include the header file and link to the library given below.

Table 1.45: The cuSPARSE SUNMatrix library, header file, and CMake
target

Libraries libsundials_sunmatrixcusparse.LIB
Headers sunmatrix/sunmatrix_cusparse.h
CMake target SUNDIALS::sunmatrixcusparse

1.7.4.3 Dense

To use the dense SUNMatrix, include the header file and link to the library given below.

When using SUNDIALS time integration packages or the KINSOL package, the dense SUNMatrix is bundled with the
package library and it is not necessary to link to the library below when using those packages.

Table 1.46: The dense SUNMatrix library, header file, and CMake target

Libraries libsundials_sunmatrixdense.LIB
Headers sunmatrix/sunmatrix_dense.h
CMake target SUNDIALS::sunmatrixdense

1.7.4.4 Ginkgo

To use the Ginkgo SUNMatrix, include the header file given below.

Table 1.47: The Ginkgo SUNMatrix library, header file, and CMake tar-
get

Headers sunmatrix/sunmatrix_ginkgo.hpp
CMake target SUNDIALS::sunmatrixginkgo

1.7.4.5 KokkosKernels Dense

To use the KokkosKernels dense SUNMatrix, include the header file given below.

Table 1.48: The dense KokkosKernels SUNMatrix library, header file,
and CMake target

Headers sunmatrix/sunmatrix_kokkosdense.hpp
CMake target SUNDIALS::sunmatrixkokkosdense

44 Chapter 1. Installing SUNDIALS

https://sundials.readthedocs.io/en/v7.3.0/sunmatrix/SUNMatrix_links.html#sunmatrix-cusparse
https://sundials.readthedocs.io/en/v7.3.0/sunmatrix/SUNMatrix_links.html#sunmatrix-dense
https://sundials.readthedocs.io/en/v7.3.0/sunmatrix/SUNMatrix_links.html#sunmatrix-ginkgo
https://sundials.readthedocs.io/en/v7.3.0/sunmatrix/SUNMatrix_links.html#sunmatrix-kokkos

SUNDIALS Installation Guide, v7.3.0

1.7.4.6 MAGMA Dense

To use the MAGMA dense SUNMatrix, include the header file and link to the library given below.

Table 1.49: The dense MAGMA SUNMatrix library, header file, and
CMake target

Libraries libsundials_sunmatrixmagmadense.LIB
Headers sunmatrix/sunmatrix_magmadense.h
CMake target SUNDIALS::sunmatrixmagmadense

1.7.4.7 oneMKL Dense

To use the oneMKL dense SUNMatrix, include the header file and link to the library given below.

Table 1.50: The dense oneMKL SUNMatrix library, header file, and
CMake target

Libraries libsundials_sunmatrixonemkldense.LIB
Headers sunmatrix/sunmatrix_onemkldense.h
CMake target SUNDIALS::sunmatrixonemkldense

1.7.4.8 Sparse

To use the sparse SUNMatrix, include the header file and link to the library given below.

When using SUNDIALS time integration packages or the KINSOL package, the sparse SUNMatrix is bundled with
the package library and it is not necessary to link to the library below when using those packages.

Table 1.51: The sparse SUNMatrix library, header file, and CMake target

Libraries libsundials_sunmatrixsparse.LIB
Headers sunmatrix/sunmatrix_sparse.h
CMake target SUNDIALS::sunmatrixsparse

1.7.4.9 SuperLU_DIST (SLUNRloc)

To use the SuperLU_DIST (SLUNRloc) SUNMatrix, include the header file and link to the library given below.

Table 1.52: The SuperLU_DIST (SLUNRloc) SUNMatrix library, header
file, and CMake target

Libraries libsundials_sunmatrixslunrloc.LIB
Headers sunmatrix/sunmatrix_slunrloc.h
CMake target SUNDIALS::sunmatrixslunrloc

1.7. Libraries and Header Files 45

https://sundials.readthedocs.io/en/v7.3.0/sunmatrix/SUNMatrix_links.html#sunmatrix-magmadense
https://sundials.readthedocs.io/en/v7.3.0/sunmatrix/SUNMatrix_links.html#sunmatrix-onemkldense
https://sundials.readthedocs.io/en/v7.3.0/sunmatrix/SUNMatrix_links.html#sunmatrix-sparse
https://sundials.readthedocs.io/en/v7.3.0/sunmatrix/SUNMatrix_links.html#sunmatrix-slunrloc

SUNDIALS Installation Guide, v7.3.0

1.7.5 Linear Solvers

1.7.5.1 Banded

To use the banded SUNLinearSolver, include the header file and link to the library given below.

When using SUNDIALS time integration packages or the KINSOL package, the banded SUNLinearSolver is bundled
with the package library and it is not necessary to link to the library below when using those packages.

Table 1.53: The banded SUNLinearSolver library, header file, and
CMake target

Libraries libsundials_sunlinsolband.LIB
Headers sunlinsol/sunlinsol_band.h
CMake target SUNDIALS::sunlinsolband

1.7.5.2 cuSPARSE Batched QR

To use the cuSPARSE batched QR SUNLinearSolver, include the header file and link to the library given below.

Table 1.54: The cuSPARSE batched QR SUNLinearSolver library,
header file, and CMake target

Libraries libsundials_sunlinsolcusolversp.LIB
Headers sunlinsol/sunlinsol_cusolversp_batchqr.h
CMake target SUNDIALS::sunlinsolcusolversp

1.7.5.3 Dense

To use the dense SUNLinearSolver, include the header file and link to the library given below.

When using SUNDIALS time integration packages or the KINSOL package, the dense SUNLinearSolver is bundled
with the package library and it is not necessary to link to the library below when using those packages.

Table 1.55: The dense SUNLinearSolver library, header file, and CMake
target

Libraries libsundials_sunlinsoldense.LIB
Headers sunlinsol/sunlinsol_dense.h
CMake target SUNDIALS::sunlinsoldense

1.7.5.4 Ginkgo

To use the Ginkgo SUNLinearSolver, include the header file given below.

Table 1.56: The Ginkgo SUNLinearSolver header file and CMake target

Headers sunlinsol/sunlinsol_ginkgo.hpp
CMake target SUNDIALS::sunlinsolginkgo

46 Chapter 1. Installing SUNDIALS

https://sundials.readthedocs.io/en/v7.3.0/sunlinsol/SUNLinSol_links.html#sunlinsol-band
https://sundials.readthedocs.io/en/v7.3.0/sunlinsol/SUNLinSol_links.html#sunlinsol-cusolversp
https://sundials.readthedocs.io/en/v7.3.0/sunlinsol/SUNLinSol_links.html#sunlinsol-dense
https://sundials.readthedocs.io/en/v7.3.0/sunlinsol/SUNLinSol_links.html#sunlinsol-ginkgo

SUNDIALS Installation Guide, v7.3.0

1.7.5.5 KLU

To use the KLU SUNLinearSolver, include the header file and link to the library given below.

Table 1.57: The KLU SUNLinearSolver library, header file, and CMake
target

Libraries libsundials_sunlinsolklu.LIB
Headers sunlinsol/sunlinsol_klu.h
CMake target SUNDIALS::sunlinsolklu

1.7.5.6 KokkosKernels Dense

To use the KokkosKernels dense SUNLinearSolver, include the header file given below.

Table 1.58: The KokkosKernels dense SUNLinearSolver header file and
CMake target

Headers sunlinsol/sunlinsol_kokkosdense.hpp
CMake target SUNDIALS::sunlinsolkokkosdense

1.7.5.7 LAPACK Banded

To use the LAPACK banded SUNLinearSolver, include the header file and link to the library given below.

Table 1.59: The LAPACK banded SUNLinearSolver library, header file,
and CMake target

Libraries libsundials_sunlinsollapackband.LIB
Headers sunlinsol/sunlinsol_lapackband.h
CMake target SUNDIALS::sunlinsollapackband

1.7.5.8 LAPACK Dense

To use the LAPACK dense SUNLinearSolver, include the header file and link to the library given below.

Table 1.60: The LAPACK dense SUNLinearSolver library, header file,
and CMake target

Libraries libsundials_sunlinsollapackdense.LIB
Headers sunlinsol/sunlinsol_lapackdense.h
CMake target SUNDIALS::sunlinsollapackdense

1.7. Libraries and Header Files 47

https://sundials.readthedocs.io/en/v7.3.0/sunlinsol/SUNLinSol_links.html#sunlinsol-klu
https://sundials.readthedocs.io/en/v7.3.0/sunlinsol/SUNLinSol_links.html#sunlinsol-kokkos
https://sundials.readthedocs.io/en/v7.3.0/sunlinsol/SUNLinSol_links.html#sunlinsol-lapackband
https://sundials.readthedocs.io/en/v7.3.0/sunlinsol/SUNLinSol_links.html#sunlinsol-lapackdense

SUNDIALS Installation Guide, v7.3.0

1.7.5.9 MAGMA Dense

To use the MAGMA dense SUNLinearSolver, include the header file and link to the library given below.

Table 1.61: The MAGMA dense SUNLinearSolver library, header file,
and CMake target

Libraries libsundials_sunlinsolmagmadense.LIB
Headers sunlinsol/sunlinsol_magmadense.h
CMake target SUNDIALS::sunlinsolmagmadense

1.7.5.10 oneMKL Dense

To use the oneMKL dense SUNLinearSolver, include the header file and link to the library given below.

Table 1.62: The oneMKL dense SUNLinearSolver library, header file,
and CMake target

Libraries libsundials_sunlinsolonemkldense.LIB
Headers sunlinsol/sunlinsol_onemkldense.h
CMake target SUNDIALS::sunlinsolonemkldense

1.7.5.11 Preconditioned Conjugate Gradient (PCG)

To use the PCG SUNLinearSolver, include the header file and link to the library given below.

When using SUNDIALS time integration packages or the KINSOL package, the PCG SUNLinearSolver is bundled
with the package library and it is not necessary to link to the library below when using those packages.

Table 1.63: The PCG SUNLinearSolver library, header file, and CMake
target

Libraries libsundials_sunlinsolpcg.LIB
Headers sunlinsol/sunlinsol_pcg.h
CMake target SUNDIALS::sunlinsolpcg

1.7.5.12 Scaled, Preconditioned Bi-Conjugate Gradient, Stabilized (SPBCGS)

To use the SPBCGS SUNLinearSolver, include the header file and link to the library given below.

When using SUNDIALS time integration packages or the KINSOL package, the SPBCGS SUNLinearSolver is bundled
with the package library and it is not necessary to link to the library below when using those packages.

Table 1.64: The SPBCGS SUNLinearSolver library, header file, and
CMake target

Libraries libsundials_sunlinsolspbcgs.LIB
Headers sunlinsol/sunlinsol_spbcgs.h
CMake target SUNDIALS::sunlinsolspbcgs

48 Chapter 1. Installing SUNDIALS

https://sundials.readthedocs.io/en/v7.3.0/sunlinsol/SUNLinSol_links.html#sunlinsol-magmadense
https://sundials.readthedocs.io/en/v7.3.0/sunlinsol/SUNLinSol_links.html#sunlinsol-onemkldense
https://sundials.readthedocs.io/en/v7.3.0/sunlinsol/SUNLinSol_links.html#sunlinsol-pcg
https://sundials.readthedocs.io/en/v7.3.0/sunlinsol/SUNLinSol_links.html#sunlinsol-spbcgs

SUNDIALS Installation Guide, v7.3.0

1.7.5.13 Scaled, Preconditioned, Flexible, Generalized Minimum Residual (SPFGMR)

To use the SPFGMR SUNLinearSolver, include the header file and link to the library given below.

When using SUNDIALS time integration packages or the KINSOL package, the SPFGMR SUNLinearSolver is bun-
dled with the package library and it is not necessary to link to the library below when using those packages.

Table 1.65: The SPFGMR SUNLinearSolver library, header file, and
CMake target

Libraries libsundials_sunlinsolspfgmr.LIB
Headers sunlinsol/sunlinsol_spfgmr.h
CMake target SUNDIALS::sunlinsolspfgmr

1.7.5.14 Scaled, Preconditioned, Generalized Minimum Residual (SPGMR)

To use the SPGMR SUNLinearSolver, include the header file and link to the library given below.

When using SUNDIALS time integration packages or the KINSOL package, the SPGMR SUNLinearSolver is bundled
with the package library and it is not necessary to link to the library below when using those packages.

Table 1.66: The SPGMR SUNLinearSolver library, header file, and
CMake target

Libraries libsundials_sunlinsolspgmr.LIB
Headers sunlinsol/sunlinsol_spgmr.h
CMake target SUNDIALS::sunlinsolspgmr

1.7.5.15 Scaled, Preconditioned, Transpose-Free Quasi-Minimum Residual (SPTFQMR)

To use the SPTFQMR SUNLinearSolver, include the header file and link to the library given below.

When using SUNDIALS time integration packages or the KINSOL package, the SPTFQMR SUNLinearSolver is bun-
dled with the package library and it is not necessary to link to the library below when using those packages.

Table 1.67: The SPTFQMR SUNLinearSolver library, header file, and
CMake target

Libraries libsundials_sunlinsolsptfqmr.LIB
Headers sunlinsol/sunlinsol_sptfqmr.h
CMake target SUNDIALS::sunlinsolsptfqmr

1.7.5.16 SuperLU_DIST

To use the SuperLU_DIST SUNLinearSolver, include the header file and link to the library given below.

Table 1.68: The SuperLU_DIST SUNLinearSolver library, header file,
and CMake target

Libraries libsundials_sunlinsolsuperludist.LIB
Headers sunlinsol/sunlinsol_superludist.h
CMake target SUNDIALS::sunlinsolsuperludist

1.7. Libraries and Header Files 49

https://sundials.readthedocs.io/en/v7.3.0/sunlinsol/SUNLinSol_links.html#sunlinsol-spfgmr
https://sundials.readthedocs.io/en/v7.3.0/sunlinsol/SUNLinSol_links.html#sunlinsol-spgmr
https://sundials.readthedocs.io/en/v7.3.0/sunlinsol/SUNLinSol_links.html#sunlinsol-sptfqmr
https://sundials.readthedocs.io/en/v7.3.0/sunlinsol/SUNLinSol_links.html#sunlinsol-superludist

SUNDIALS Installation Guide, v7.3.0

1.7.5.17 SuperLU_MT

To use the SuperLU_MT SUNLinearSolver, include the header file and link to the library given below.

Table 1.69: The SuperLU_MT SUNLinearSolver library, header file, and
CMake target

Libraries libsundials_sunlinsolsuperlumt.LIB
Headers sunlinsol/sunlinsol_superlumt.h
CMake target SUNDIALS::sunlinsolsuperlumt

1.7.6 Nonlinear Solvers

1.7.6.1 Newton

To use the Newton SUNNonlinearSolver, include the header file and link to the library given below.

When using SUNDIALS time integration packages, the Newton SUNNonlinearSolver is bundled with the package
library and it is not necessary to link to the library below when using those packages.

Table 1.70: The Newton SUNNonlinearSolver library, header file, and
CMake target

Libraries libsundials_sunnonlinsolnewton.LIB
Headers sunnonlinsol/sunnonlinsol_newton.h
CMake target SUNDIALS::sunnonlinsolnewton

1.7.6.2 Fixed-point

To use the fixed-point SUNNonlinearSolver, include the header file and link to the library given below.

When using SUNDIALS time integration packages, the fixed-point SUNNonlinearSolver is bundled with the package
library and it is not necessary to link to the library below when using those packages.

Table 1.71: The Fixed-point SUNNonlinearSolver library, header file,
and CMake target

Libraries libsundials_sunnonlinsolfixedpoint.LIB
Headers sunnonlinsol/sunnonlinsol_fixedpoint.h
CMake target SUNDIALS::sunnonlinsolfixedpoint

1.7.6.3 PETSc SNES

To use the PETSc SNES SUNNonlinearSolver, include the header file and link to the library given below.

Table 1.72: The PETSc SNES SUNNonlinearSolver library, header file,
and CMake target

Libraries libsundials_sunnonlinsolpetscsnes.LIB
Headers sunnonlinsol/sunnonlinsol_petscsnes.h
CMake target SUNDIALS::sunnonlinsolpetscsnes

50 Chapter 1. Installing SUNDIALS

https://sundials.readthedocs.io/en/v7.3.0/sunlinsol/SUNLinSol_links.html#sunlinsol-superlumt
https://sundials.readthedocs.io/en/v7.3.0/sunnonlinsol/SUNNonlinSol_links.html#sunnonlinsol-newton
https://sundials.readthedocs.io/en/v7.3.0/sunnonlinsol/SUNNonlinSol_links.html#sunnonlinsol-fixedpoint
https://sundials.readthedocs.io/en/v7.3.0/sunnonlinsol/SUNNonlinSol_links.html#sunnonlinsol-petscsnes

SUNDIALS Installation Guide, v7.3.0

1.7.7 Memory Helpers

1.7.7.1 System

When using SUNDIALS time integration packages or the KINSOL package, the system SUNMemoryHelper is bundled
with the package library and it is not necessary to link to the library below when using those packages.

Table 1.73: SUNDIALS system memory helper header file

Headers sunmemory/sunmemory_system.h

1.7.7.2 CUDA

To use the CUDA SUNMemoryHelper, include the header file given below when using a CUDA-enabled NVector or
SUNMatrix.

Table 1.74: SUNDIALS CUDA memory helper header file

Headers sunmemory/sunmemory_cuda.h

1.7.7.3 HIP

To use the HIP SUNMemoryHelper, include the header file given below when using a HIP-enabled NVector or SUN-
Matrix.

Table 1.75: SUNDIALS HIP memory helper header file

Headers sunmemory/sunmemory_hip.h

1.7.7.4 SYCL

To use the SYCL SUNMemoryHelper, include the header file given below when using a SYCL-enabled NVector or
SUNMatrix.

Table 1.76: SUNDIALS SYCL memory helper header file

Headers sunmemory/sunmemory_sycl.h

1.7.8 Execution Policies

1.7.8.1 CUDA

When using a CUDA-enabled NVector or SUNMatrix, include the header file below to access the CUDA execution
policy C++ classes.

Table 1.77: SUNDIALS CUDA execution policies header file

Headers sundials/sundials_cuda_policies.hpp

1.7. Libraries and Header Files 51

https://sundials.readthedocs.io/en/v7.3.0/sunmemory/SUNMemory_links.html#sunmemory-cuda
https://sundials.readthedocs.io/en/v7.3.0/sunmemory/SUNMemory_links.html#sunmemory-hip
https://sundials.readthedocs.io/en/v7.3.0/sunmemory/SUNMemory_links.html#sunmemory-sycl

SUNDIALS Installation Guide, v7.3.0

1.7.8.2 HIP

When using a HIP-enabled NVector or SUNMatrix, include the header file below to access the HIP execution policy
C++ classes.

Table 1.78: SUNDIALS HIP execution policies header file

Headers sundials/sundials_hip_policies.hpp

1.7.8.3 SYCL

When using a SYCL-enabled NVector or SUNMatrix, include the header file below to access the SYCL execution
policy C++ classes.

Table 1.79: SUNDIALS SYCL execution policies header file

Headers sundials/sundials_sycl_policies.hpp

1.7.9 Adjoint Sensitivity Checkpointing

1.7.9.1 Fixed ASA checkpointing

For fixed-interval adjoint checkpointing, include the header file below:

Table 1.80: SUNDIALS fixed adjoint checkpointing header files

Headers sunadjointcheckpointscheme/sunadjointcheckpointscheme_fixed.h

52 Chapter 1. Installing SUNDIALS

Index

C
CMake options

adiak_DIR, 12
AMDGPU_TARGETS, 15
BLAS_LIBRARIES, 18
BLAS_LINKER_FLAGS, 18
BUILD_ARKODE, 9
BUILD_CVODE, 9
BUILD_CVODES, 9
BUILD_FORTRAN_MODULE_INTERFACE, 10
BUILD_IDA, 9
BUILD_IDAS, 9
BUILD_KINSOL, 9
BUILD_SHARED_LIBS, 8
BUILD_STATIC_LIBS, 8
CALIPER_DIR, 13
CMAKE_BUILD_TYPE, 5
CMAKE_C_COMPILER, 5
CMAKE_C_EXTENSIONS, 6
CMAKE_C_FLAGS, 5
CMAKE_C_FLAGS_DEBUG, 5
CMAKE_C_FLAGS_MINSIZEREL, 6
CMAKE_C_FLAGS_RELEASE, 5
CMAKE_C_FLAGS_RELWITHDEBINFO, 6
CMAKE_C_STANDARD, 6
CMAKE_CONFIGURATION_TYPES, 5
CMAKE_CUDA_ARCHITECTURES, 13
CMAKE_CXX_COMPILER, 6
CMAKE_CXX_EXTENSIONS, 7
CMAKE_CXX_FLAGS, 6
CMAKE_CXX_FLAGS_DEBUG, 6
CMAKE_CXX_FLAGS_MINSIZEREL, 6
CMAKE_CXX_FLAGS_RELEASE, 6
CMAKE_CXX_FLAGS_RELWITHDEBINFO, 6
CMAKE_CXX_STANDARD, 6
CMAKE_Fortran_COMPILER, 7
CMAKE_Fortran_FLAGS, 7
CMAKE_Fortran_FLAGS_DEBUG, 7
CMAKE_Fortran_FLAGS_MINSIZEREL, 7
CMAKE_Fortran_FLAGS_RELEASE, 7
CMAKE_Fortran_FLAGS_RELWITHDEBINFO, 7
CMAKE_INSTALL_LIBDIR, 8
CMAKE_INSTALL_PREFIX, 7
CUDA_TOOLKIT_ROOT_DIR, 13
ENABLE_ADIAK, 12

ENABLE_CALIPER, 12
ENABLE_CUDA, 13
ENABLE_GINKGO, 14
ENABLE_HIP, 15
ENABLE_HYPRE, 16
ENABLE_KLU, 16
ENABLE_KOKKOS, 17
ENABLE_KOKKOS_KERNELS, 17
ENABLE_LAPACK, 18
ENABLE_MAGMA, 20
ENABLE_MPI, 20
ENABLE_ONEMKL, 22
ENABLE_OPENMP, 22
ENABLE_OPENMP_DEVICE, 23
ENABLE_PETSC, 23
ENABLE_PTHREAD, 24
ENABLE_RAJA, 25
ENABLE_SUPERLUDIST, 25
ENABLE_SUPERLUMT, 27
ENABLE_SYCL, 28
ENABLE_TRILINOS, 29
ENABLE_XBRAID, 29
EXAMPLES_ENABLE_C, 10
EXAMPLES_ENABLE_CUDA, 10
EXAMPLES_ENABLE_CXX, 10
EXAMPLES_ENABLE_F2003, 10
EXAMPLES_INSTALL, 10
EXAMPLES_INSTALL_PATH, 10
Ginkgo_DIR, 14
HYPRE_DIR, 16
KLU_INCLUDE_DIR, 16
KLU_LIBRARY_DIR, 16
KLU_ROOT, 16
Kokkos_DIR, 17
KokkosKernels_DIR, 18
LAPACK_LIBRARIES, 18
LAPACK_LINKER_FLAGS, 19
MAGMA_DIR, 20
MPI_C_COMPILER, 20
MPI_CXX_COMPILER, 20
MPI_Fortran_COMPILER, 21
MPIEXEC_EXECUTABLE, 21
MPIEXEC_POSTFLAGS, 21
MPIEXEC_PREFLAGS, 21
ONEMKL_DIR, 22

53

SUNDIALS Installation Guide, v7.3.0

PETSC_DIR, 23
PETSC_INCLUDES, 24
PETSC_LIBRARIES, 23
RAJA_DIR, 25
SUNDIALS_BUILD_WITH_MONITORING, 11
SUNDIALS_BUILD_WITH_PROFILING, 12
SUNDIALS_ENABLE_ERROR_CHECKS, 11
SUNDIALS_ENABLE_EXTERNAL_ADDONS, 30
SUNDIALS_GINKGO_BACKENDS, 14
SUNDIALS_INDEX_SIZE, 8
SUNDIALS_INDEX_TYPE, 8
SUNDIALS_INSTALL_CMAKEDIR, 8
SUNDIALS_LAPACK_CASE, 19
SUNDIALS_LAPACK_UNDERSCORES, 19
SUNDIALS_LOGGING_LEVEL, 11
SUNDIALS_MAGMA_BACKENDS, 20
SUNDIALS_MATH_LIBRARY, 9
SUNDIALS_ONEMKL_USE_GETRF_LOOP, 22
SUNDIALS_ONEMKL_USE_GETRS_LOOP, 22
SUNDIALS_PRECISION, 9
SUNDIALS_RAJA_BACKENDS, 25
SUNDIALS_SYCL_2020_UNSUPPORTED, 28
SUPERLUDIST_DIR, 25
SUPERLUDIST_INCLUDE_DIR, 26
SUPERLUDIST_INCLUDE_DIRS, 26
SUPERLUDIST_LIBRARIES, 26
SUPERLUDIST_LIBRARY_DIR, 26
SUPERLUDIST_OpenMP, 25
SUPERLUMT_INCLUDE_DIR, 27
SUPERLUMT_LIBRARIES, 27
SUPERLUMT_LIBRARY_DIR, 27
SUPERLUMT_THREAD_TYPE, 27
Trilinos_DIR, 29
USE_XSDK_DEFAULTS, 30
XBRAID_DIR, 29
XBRAID_INCLUDES, 29
XBRAID_LIBRARIES, 29

54 Index

	Installing SUNDIALS
	Installing with Spack
	Installing with CMake
	Linux/Unix systems
	Windows Systems
	HPC Clusters
	Frontier

	Configuration options
	Build Type
	Compilers and Compiler Flags
	C Compiler
	C++ Compiler
	Fortran Compiler

	Install Location
	Shared and Static Libraries
	Index Size
	Precision
	Math Library
	SUNDIALS Packages
	Example Programs
	Fortran Interfaces
	Error Checking
	Logging
	Monitoring
	Profiling
	Building with Adiak
	Building with Caliper
	Building with CUDA
	Building with Ginkgo
	Building with HIP
	Building with hypre
	Building with KLU
	Building with Kokkos
	Building with KokkosKernels
	Building with LAPACK
	Building with MAGMA
	Building with MPI
	Building with oneMKL
	Building with OpenMP
	Building with OpenMP Device Offloading
	Building with PETSc
	Building with PThreads
	Building with RAJA
	Building with SuperLU_DIST
	Building with SuperLU_MT
	Building with SYCL
	Building with Trilinos
	Building with XBraid
	Building with xSDK Defaults
	Building with External Addons

	Testing the Build and Installation
	Building and Running Examples
	Using SUNDIALS In Your Project
	CMake Projects

	Libraries and Header Files
	SUNDIALS Core
	SUNDIALS Packages
	CVODE
	CVODES
	ARKODE
	IDA
	IDAS
	KINSOL

	Vectors
	Serial
	ManyVector
	Parallel (MPI)
	MPI ManyVector
	MPI+X
	OpenMP
	OpenMPDEV
	PThreads
	hypre (ParHyp)
	PETSc
	CUDA
	HIP
	RAJA
	SYCL
	Trilinos (Tpetra)
	Kokkos

	Matrices
	Banded
	cuSPARSE
	Dense
	Ginkgo
	KokkosKernels Dense
	MAGMA Dense
	oneMKL Dense
	Sparse
	SuperLU_DIST (SLUNRloc)

	Linear Solvers
	Banded
	cuSPARSE Batched QR
	Dense
	Ginkgo
	KLU
	KokkosKernels Dense
	LAPACK Banded
	LAPACK Dense
	MAGMA Dense
	oneMKL Dense
	Preconditioned Conjugate Gradient (PCG)
	Scaled, Preconditioned Bi-Conjugate Gradient, Stabilized (SPBCGS)
	Scaled, Preconditioned, Flexible, Generalized Minimum Residual (SPFGMR)
	Scaled, Preconditioned, Generalized Minimum Residual (SPGMR)
	Scaled, Preconditioned, Transpose-Free Quasi-Minimum Residual (SPTFQMR)
	SuperLU_DIST
	SuperLU_MT

	Nonlinear Solvers
	Newton
	Fixed-point
	PETSc SNES

	Memory Helpers
	System
	CUDA
	HIP
	SYCL

	Execution Policies
	CUDA
	HIP
	SYCL

	Adjoint Sensitivity Checkpointing
	Fixed ASA checkpointing

	Index

